Dissertations / Theses on the topic 'Immunity and Inflammation'

To see the other types of publications on this topic, follow the link: Immunity and Inflammation.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Immunity and Inflammation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Wuttge, Dirk Marcus. "Cellular immunity and inflammation in atherosclerosis /." Stockholm : Karolinska Univ. Press, 2001. http://diss.kib.ki.se/2001/91-7349-051-2/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Salzano, Sonia. "Redox regulation of inflammation and immunity." Thesis, University of Brighton, 2013. https://research.brighton.ac.uk/en/studentTheses/f28a2a37-9169-4b2a-abe8-ee83c6bfe86f.

Full text
Abstract:
Inflammation is a consequence of the activation of innate immunity and represents an important component of several pathological conditions, including not only the complication of infections but also sterile and autoimmune diseases. An early event in inflammation is represented by the production of proinflammatory cytokines and both their production and action have often been associated to oxidative stress. The redox status of the cell is therefore a key regulator of inflammation and glutathionylation (formation of mixed disulphides between cysteine residues of proteins and glutathione) is considered an important mechanism of this regulation. While most of the studies in the past focused on glutathionylation of intracellular proteins and transcription factors, the main goal of this project was to verify whether glutathionylated proteins are released by inflammatory cells and if these have a biological role. Using redox proteomics, we identified several proteins in the supernatants from Raw 264.7 cells (murine macrophages) stimulated with bacterial lipopolysaccharide (LPS). Among the identified proteins, we focused our attention on Peroxiredoxin 2 (Prx2), an antioxidant enzyme involved in cells protection against oxidative stress by removing H2O2. Released Prx2 was also detected in supernatant from human peripheral blood mononuclear cells (PBMC) and human macrophages. Prx2 levels were also increased in the serum of LPS-treated mice. We could confirm that Prx2 is released in the glutathionylated form. Moreover it was observed that the intracellular level of glutathione affects Prx2 release suggesting a role for glutathionylation in the mechanism of its release. The second part of the project was to verify whether released glutathionylated proteins may act as mediators of inflammation. To this purpose, the possible inflammatory role of released Prx2 was studied. The results showed that extracellular Prx2 induced an increase of TNF-α production in Raw 264.7 cells and in human macrophages. In conclusion, Prx2 is released during inflammation in a redox-dependent manner, in addition to its well-known intracellular role as enzyme, Prx2, in its released form, can also play a role in inflammatory response.
APA, Harvard, Vancouver, ISO, and other styles
3

Ragheb, Ramy. "Etude de l'intéraction entre inflammation et infection chez la drosophile." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4104.

Full text
Abstract:
In mammals, both sterile wounding and infection induce inflammation and activate the innate immune system, and combining both challenges can lead to severe health defects, revealing that the balance between the intensity and resolution of the inflammatory response is central for the organism's fitness. The underlying mechanisms remain however elusive. Using Drosophila as a model, we show that a sterile wounding induces a reduced resistance to a bacterial challenge and is accompanied by an increased host mortality upon infection. We further investigate the underlying molecular mechanisms of flies susceptibility to bacterial infection by comparing the transcriptome landscape of SH flies (Simple Hit: infection only), DH flies (Double Hit: trauma + infection) and control flies (sterile trauma alone) during the early steps. We observed that genes with increased expression in DH flies compared to SH ones are significantly enriched for stress related annotations, including members of the JNK pathway and demonstrate that the JNK pathway plays a central role in the DH phenotype. In addition, the CrebA/Creb3-like transcription factor and its targets are up regulated in SH flies and we show that CrebA is required for mounting the innate immune response. We also investigated the potential role of the TNF receptor grnd in SH and DH flies. Our results reveal its function in innate immune response since flies with reduced grnd function display reduced viability upon infection. Drosophila thus appears as a relevant model to investigate the complex interactions between inflammation and infection and allows to unravel key pathways involved in the acquisition of a hyper-inflammatory state
APA, Harvard, Vancouver, ISO, and other styles
4

Widdrington, John David. "The role of mitochondria in innate immunity and inflammation." Thesis, University of Newcastle upon Tyne, 2016. http://hdl.handle.net/10443/3196.

Full text
Abstract:
Deactivation of blood monocytes during sepsis is associated with increased mortality and susceptibility to secondary infections. Septic monocytes may also have mitochondrial DNA (mtDNA) depletion and mitochondrial respiratory dysfunction. Two principal approaches explored the link between these phenomena in THP-1 cells, a human leukaemia cell line resembling monocytes, to test the hypothesis that mtDNA depletion is important in the pathophysiology of monocytic cell immune deactivation. Firstly, the consequences of immune deactivation for mitochondria was assessed using an endotoxin tolerance model in which repeated exposures to lipopolysaccharide (LPS) trigger diminishing inflammatory responses. In parallel with the induction of endotoxin tolerance, LPS treatment lead to increased mitochondrial respiration due to the activation of mitochondrial biogenesis. These results could not be confirmed in healthy volunteers following inhalation of LPS as this model failed to induce endotoxin tolerance in blood monocytes. Secondly, the effects of depleting mtDNA, by treatment with ethidium bromide or transfection with short-interfering RNA targeted against mitochondrial transcription factor A, on immunity were measured. THP-1 cells with mtDNA depletion displayed the key phenotypic feature of deactivated septic monocytes, a decreased LPS-induced release of the pro-inflammatory cytokine tumour necrosis factor-α. Furthermore, there were significant alterations in the nuclear transcriptome of mtDNA-depleted THP-1 cells, with a particular inhibition of key innate immune signalling pathways and a marked blunting of the transcriptomic response to LPS. These investigations confirm that there are complex but vital links between mitochondria and innate immunity. Compensatory responses following an inflammatory insult include the simultaneous induction of mitochondrial biogenesis and shift to an anti-inflammatory phenotype. Moreover, when sepsis disrupts mitochondrial homeostasis the negative effects of mtDNA depletion on innate immunity may exacerbate monocyte immune deactivation. Further investigations should focus on exploring the fundamental processes coupling mitochondria with immunity and confirming these findings in blood monocytes during sepsis.
APA, Harvard, Vancouver, ISO, and other styles
5

Blohmke, Christoph Johannes. "Innate immunity and inflammation in cystic fibrosis lung disease." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/34559.

Full text
Abstract:
Inflammatory lung disease is the major life-limiting factor of cystic fibrosis (CF) and occurs through a self-sustaining cycle of airway obstruction, infection and inflammation. Although there is no consensus regarding the pathways responsible for the excessive inflammation, reducing lung-damaging pro-inflammatory responses are likely to be beneficial for CF patients. Using CF (IB3-1) and non-CF control (C38) respiratory cells, the host-pathogen interaction between the airway epithelium and the common CF pathogens P. aeruginosa and B. cepacia was investigated. Using purified Toll-like receptor (TLR) ligands and different knock-out strains of P. aeruginosa, TLR5 was identified as the receptor mediating much of the increased inflammatory response to CF pathogens. To validate TLR5 as an anti-inflammatory target, the disease modifying effects of the functionally relevant TLR5 c.1174C>T single nucleotide polymorphism (rs5744168) was analysed in approximately 80% of Canada’s CF population. rs5744168 encodes a premature stop codon and the T allele is associated with 45.5 – 76.3% reduction in flagellin responsiveness. CF patients carrying rs5744168 (CT or TT) had a significantly higher body mass index than CF patients homozygous for the common allele (CC) (p=0.044); however, similar improvements in lung function associated with the T allele were not statistically significant. Since TLR5 mediates much of the excessive inflammation to P. aeruginosa, it is of interest to understand the mechanisms underlying this dysregulated immune response. By combining gene expression arrays with network analyses and biochemical assays, ER stress was identified as a potential mechanism dysregulating p38 MAP kinase activity and leading to potentiated immune responses. Together, this thesis provides data underscoring the importance of TLR5-mediated excessive pro-inflammatory immune response by CF airway cells to P. aeruginosa. The association of the TLR5392STOP SNP with higher BMI in adult CF patients indicates an important role for TLR5 in CF disease severity. Finally, ER stress may potentiate the immune response to flagellin by signalling through p38 MAP kinase, supporting an emerging paradigm in which the imbalance of protein homeostasis can lead to altered signalling events. Strategies to inhibit either TLR5 signalling, ER stress signalling or to improve the cellular protein homeostasis may prove useful in treating life limiting inflammation in CF.
APA, Harvard, Vancouver, ISO, and other styles
6

Mazdai, Goudarz. "The influence of mineral nutrients on immunity and inflammation." Thesis, University of Ulster, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.281215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Croft, Nicholas Michael. "Investigation of gastrointestinal mucosal immunity and inflammation in children." Thesis, University of Edinburgh, 1996. http://hdl.handle.net/1842/21172.

Full text
Abstract:
In this thesis I have introduced a new technique, whole gut lavage (WGL), for the study of gastrointestinal secretory immunity in children. Initially I arranged to collect specimens from control children, undergoing whole gut lavage prior to colonoscopy or surgery, at the Royal Hospital for Sick Children, Edinburgh. Whole gut lavage has been used to treat severe constipation and so I organised a study to look at the effectiveness of this, intending both these groups of children as immunologically normal controls. Analysis of specimens from the first five severely constipated children showed that the total IgA levels in all were very low. I went on to examine reasons for these low IgA levels including mucosal IgA deficiency, degradation and interference by other factors in the bowel lumen. Having collected specimens from control children I then arranged a study of intestinal secretory immunity in children with cystic fibrosis (CF). This was stimulated by a paper in the Lancet suggesting that CF children, taking high dose pancreatic enzyme supplements, had developed strictures of the ascending colon possibly due to direct toxic effects of these medications. As CF children have chronic lung infections I then studied the possible influence of respiratory secretions on assays of whole gut lavage fluid by measuring concentrations of immune factors in sputum. With the data from these patient groups I was able to analyse, in some detail, the clinical aspects of whole gut lavage in children. Although I had established that WGL could be an ethical and useful method for research in children it was clear, for clinical reasons, this could not be used for the study of acute diarrhoeal illness, one of the most common paediatric problems involving the gastrointestinal mucosal immune system. With the help of adult patients, I directly compared outputs of immune factors in faeces and whole gut lavage.
APA, Harvard, Vancouver, ISO, and other styles
8

Phan, Quang Tien. "Innate immune response to tissue-specific infection : notochord infection in the zebrafish embryo." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT082/document.

Full text
Abstract:
Lors des infections bactériennes, selon les tissus infectés, et selon la nature des pathogènes, l’organisme répond en mobilisant différents acteurs. Nous avons décidé d’utiliser le modèle du zebrafish ou Danio rério pour étudier la réponse immunitaire innée dans les situations d’infection bactérienne où les phagocytes professionnels ne peuvent pas venir au contact direct des bactéries. Pour cela, j’ai développé un modèle d’infection de la notochorde del’embryon de zebrafish. Lors de l’injection des bactéries dans ce compartiment, les bactéries se retrouvent protégées par une épaisse gaine de collagènes que les phagocytes ne peuvent pas pénétrer. Alors que les mycobactéries,protégées par la gaine de collagène ne sont pas détectées par les phagocytes, les bactéries E. coli sont immédiatement détectées ce qui déclenche une importante inflammation locale autour de la notochorde. Alors que les bactéries E. coli, bien qu’inaccessibles à la phagocytose sont éliminées dans les première 24 heures qui suivent l’injection, l’inflammation dure plusieurs jours.J’ai étudié les mécanismes qui conduisent à cette inflammation persistante et ses conséquences à long terme sur le développement du poisson. J’ai montré le rôle central de la cytokine IL1b dans ce processus, et j’ai développé une lignée transgénique qui permet d’étudier l’induction de cette cytokine in vivo chez le poisson.J’ai ensuite étudié le rôle des deux principales populations de phagocytes dans l’élimination des bactéries E coli. J’ai montré que les macrophages ne sont pas impliqués dans la disparition des bactéries alors que les neutrophiles, bien qu’incapable de pénétrer à l’intérieur de la gaine de collagène sont nécessaires à l’élimination des bactéries.J’ai ensuite montré que la myelopéroxidase et le monoxyde d’azote ne sont pas impliqués dans l’élimination des bactéries alors que les espèces réactives de l’oxygène produites par les neutrophiles sont nécessaires pour éradiquer l’infection
In bacterial infections, according to the infected tissue and the nature of pathogens, the body responds by mobilizing various actors. I decided to use zebrafish or Danio rerio model to study the innate immune response to bacterial infection in the situations that professional phagocytes cannot come in direct contact with the bacteria. For this, I developed a model of infection in the notochord of zebrafish embryo. Upon injection of bacteria in this compartment, the microbes find themselves protected by the thick collagensheath where the phagocytes cannot penetrate. While mycobacteria are not detected by phagocytes; E. coli bacteria are sensed and a significant local inflammation around the notochord is mounted. The E. coli, although inaccessible to phagocytosis are eliminated within the first 24 hours after injection, the inflammation lasts several days.I studied the mechanisms that lead to this persistent inflammation and its long term consequences on the development of the fish. I showed the central role of the cytokine IL1B in this process, and I developed a transgenic line that allows studying in vivo the induction of this cytokine in fish.I then studied the roles of the two main populations of phagocytes in the elimination of E. coli. I revealed that macrophages are not involved in the removal of bacteria but neutrophils, although unable to penetrate inside the collagen casing, are necessary for the bacterial elimination. I also confirmed that myeloperoxidase and nitrogen monoxide are not involved in the removal of bacteria, rather the reactive oxygen species produced by neutrophils are needed to eradicate the infection
APA, Harvard, Vancouver, ISO, and other styles
9

Ellouze, Mehdi. "Identification des mécanismes anti-inflammatoires de GILZ dans les monocytes/macrophages et de son potentiel thérapeutique dans le choc septique." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS239/document.

Full text
Abstract:
Le Sepsis et le choc septique, associés à une inflammation systémique sévère et incontrôlée, sont les principales causes de mortalité dans les unités de soins intensifs. Les macrophages jouent un rôle central dans ces pathologies. Ils participent à l'initiation et à la régulation de l'inflammation. Lors d'une infection bactérienne, ils reconnaissent le LPS de la paroi bactérienne par l’intermédiaire du TLR4 ce qui déclenche l’activation des MAPK, des facteurs de transcription NF-kB et AP1 et, in fine, la production des cytokines pro-inflammatoires dont le TNF et l'IL6. L’expression de la protéine GILZ dans les macrophages limite, in vitro, la production d'IL6 et de TNF en réponse au LPS. Cet effet est attribué à une inactivation de NF-kB. D’autre part, l'expression de GILZ décroît dans les macrophages humains et murins après une stimulation par du LPS.Compte tenu des effets régulateurs de GILZ dans les macrophages, les objectifs de notre étude sont 1) de déterminer si l’expression de GILZ est altérée dans les monocytes/macrophages (M/M) au cours du Sepsis, 2) de déterminer si une modulation de l’expression de GILZ dans les M/M est suffisante pour influencer l’inflammation systémique, et 3) d’identifier le mécanisme d'action de GILZ dans les M/M humains.Nous avons mesuré l’expression de GILZ dans les M/M de patients atteints de choc septique ou de syndrome de détresse respiratoire aiguë, et dans un modèle murin d’endotoxémie. Nous avons observé une diminution significative de GILZ dans ces contextes pathologiques chez l’homme et la souris. L'impact de cette altération a été exploré dans des souris transgéniques uniques dont les macrophages surexpriment GILZ de façon non régulable. Nous avons confirmé que la surexpression de GILZ limite la production de TNF et favorise celle de l'IL-10 dans les macrophages stimulés in vitro par du LPS. Nous avons ensuite étudié la réponse inflammatoire et la survie de ces souris dans un modèle d’endotoxémie et de choc septique, et montré que cette surexpression de GILZ restreinte aux macrophages limite la production sérique de cytokines pro-inflammatoires et, par conséquent, l'inflammation systémique en améliorant significativement la survie des souris. Ces résultats mettent en évidence les conséquences, au niveau systémique, de la régulation des macrophages par GILZ.Dans l’optique d’élucider les mécanismes impliqués dans la régulation des macrophages par GILZ, nous avons confirmé que GILZ inhibe NF-kB dans les macrophages humains sans toutefois retrouver l’interaction directe décrite entre GILZ murin et la sous-unité p65 de NF-kB.Ce résultat nous a conforté dans la nécessité de caractériser l’interactome de GILZ dans les macrophages humains. Deux approches complémentaires ont été utilisées. La première est un criblage pan-génomique des interactants de GILZ humain par la technique du double-hybride. La seconde méthode consiste en une purification d'affinité en tandem (TAP-TAG) de la protéine GILZ et de ses interactants, suivie d'une identification de ces protéines par spectrométrie de masse. Ce complexe a été isolé à partir d'extraits nucléaires ou cytoplasmiques de cellules humaines différenciées en macrophages et génétiquement modifiées afin d’exprimer la protéine GILZ flanquée des deux étiquettes nécessaires à sa purification. Ces deux approches ont mis en évidence des interactions nouvelles entre GILZ et des protéines clés de la signalisation du TLR4 dans les macrophages humains ainsi qu'un rôle probable de GILZ comme facteur régulateur de la transcription.Ces résultats montrent que la régulation de la réponse anti-inflammatoire des macrophages par GILZ a un impact sur l’inflammation systémique in vivo et améliore la survie dans un modèle de choc septique sévère. De plus, ces travaux identifient pour la première fois les partenaires cytoplasmiques et nucléaires de GILZ dans les macrophages humains et devraient permettre dans le futur, une meilleure compréhension de cette protéine
Sepsis and septic shock, associated with a severe and uncontrolled systemic inflammation, are the main causes of death in intensive care units. Macrophages play a central role in these pathologies. They are involved in the initiation and regulation of inflammation. They recognize LPS from the bacterial cell wall via TLR4, which triggers the activation of MAPK signaling pathway and transcription factors such as NF-KB and AP1 and ultimately, the production of pro-inflammatory cytokines including TNF and IL6. The expression of the protein GILZ in macrophages limits in vitro the production of IL6 and TNF in response to LPS. This effect is attributed to inactivation of NF-kB. Moreover, GILZ expression decreases in human and mouse macrophages exposed to LPS.Given the regulatory effects of GILZ in macrophages, the objectives of our study were 1) to determine whether GILZ expression is down-regulated in monocytes / macrophages (M/M) in the sepsis, 2) to determine whether the modulation of GILZ expression in M/M is sufficient to influence systemic inflammation, and 3) to identify GILZ mechanism of action in human M/M.GILZ expression was measured in the M/M of patients with septic shock or acute respiratory distress syndrome, and in a murine model of endotoxemia. We observed a significant reduced expression of GILZ in these pathological contexts in human and mice. The impact of this alteration was explored in unique transgenic mouse model in which macrophages stably overexpress GILZ (CD68-GILZ).We confirmed that GILZ overexpression limits TNF production and promotes IL-10 production in in vitro LPS-stimulated macrophages. We further studied the inflammatory response and survival of these mice in models of endotoxemia and septic shock. We showed that GILZ overexpression restricted to macrophages, limits serum pro-inflammatory cytokines production, therefore decreases systemic inflammation and significantly improves mice survival. These results highlight the effects of macrophage polarization by GILZ at a systemic level.This result confirmed the need to characterize GILZ interactome in human macrophages. Two complementary approaches have been used. The first one consists of a pan-genomic double hybrid screening of human GILZ partners. The second method consists of a tandem affinity purification (TAP-TAG) of GILZ protein and its associated partners, followed by the identification of these partners by mass spectrometry. Analyses have been performed independently on nuclear and cytoplasmic extracts from human macrophage cells, genetically engineered to express GILZ protein with the two tags required for purification. This dual approach led us to identify new direct and indirect interactions between GILZ and other key proteins of TLR4 signaling pathway in human macrophages and highlight a likely role of GILZ as a transcription regulatory factor.These results confirm the anti-inflammatory role of GILZ on systemic inflammation and enhancement of lifetime in murine models of endotoxemia and septic shock. Furthermore, this work identifies for the first time the cytoplasmic and nuclear GILZ partners in human macrophages and would allow in the future, a better understanding of GILZ mechanism of action
APA, Harvard, Vancouver, ISO, and other styles
10

Lajunen, T. (Taina). "Persistent Chlamydia pneumoniae infection, inflammation and innate immunity." Doctoral thesis, University of Oulu, 2008. http://urn.fi/urn:isbn:9789514289965.

Full text
Abstract:
Abstract Chlamydia pneumoniae is an obligatory intracellular pathogen that causes upper and lower respiratory tract infections. Like other Chlamydial species, also C. pneumoniae has a tendency to cause persistent infections, which have been associated with different cardiovascular, neurological, and respiratory diseases. In addition, a few studies have reported an association between C. pneumoniae seropositivity and an elevated body mass index (BMI), and it has been shown that C. pneumoniae is capable of infecting preadipocytes and adipocytes. The main aims of this study were to study if certain gene polymorphisms regulate the serum levels of innate immunity and inflammation proteins, and if the polymorphisms are associated with markers of C. pneumoniae infection; to compare different methods in detection of C pneumoniae in atherosclerotic tissue; and to study if serum levels of chlamydial LPS (cLPS) are associated with BMI. The serum levels of inflammatory and innate immunity markers, namely interleukin 6 (IL-6), C-reactive protein (CRP), LPS-binding protein (LBP), and soluble CD14, in apparently healthy individuals were found to correlate with each other and possibly be regulated by the polymorphisms of genes important in inflammation and innate immunity. Especially the serum LBP levels may be regulated by the LBP (rs2232618) and toll-like receptor 4 (rs4986790) polymorphisms. The IL-6 (rs1800795) polymorphism was found to be associated with C. pneumoniae antibody positivity. C. pneumoniae DNA and cLPS could be found from atherosclerotic tissue. A new, cLPS enzyme immunoassay method was developed in this study, and it might provide a standardized, commercial method for the detection of chlamydia in tissue samples, if the sensitivity of the method could be increased e.g. by testing multiple pieces of tissue. In situ hybridization method was found to be complicated by technical problems and the repeatability of polymerase chain reaction was poor. C. pneumoniae IgG positivity and elevated serum cLPS and CRP levels were associated with an elevated BMI. There was also a strong association between cLPS levels and inflammation as measured by CRP levels. The lack of association between serum total endotoxin activity and BMI implies that the association between infection and an elevated BMI may be specific to certain pathogens.
APA, Harvard, Vancouver, ISO, and other styles
11

Campos-Pereira-Da-Cruz-Viana, Joao. "Exercise in chronic kidney disease : impact on immunity and inflammation." Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/9090.

Full text
Abstract:
Chronic kidney disease (CKD) is associated with a complex state of immune dysfunction characterised by immune depression, which predisposes CKD patients to infections, and by immune activation resulting in inflammation, which is associated with cardiovascular disease among these patients. It has been suggested that regular moderate exercise may enhance immune function and exert anti-inflammatory effects. However, such effects are still unclear in CKD. Therefore, we investigated the effects of acute and regular (1-month and 6-months) moderate intensity aerobic exercise (walking) on measures of immunity and inflammation in pre-dialysis CKD patients. A single bout of walking exercise induced an overall immune and inflammatory response that was comparable to that observed in healthy individuals, with no indication of harmful effects to patients underlying state of immune dysfunction. Acute exercise induced a normal pattern of mobilisation of immune cells. Concerning immune cell function, acute exercise had no effect on T lymphocyte and monocyte activation, while it actually improved neutrophil responsiveness to a bacterial challenge in the recovery period. In addition, acute exercise induced a systemic anti-inflammatory environment, evidenced by the marked elevation in plasma IL-10 levels after exercise, which was most likely mediated by the observed increase in plasma IL-6 levels. Regular walking exercise exerted anti-inflammatory effects, with no apparent detrimental effects to patients immune and inflammatory status. Regular exercise led to improvements in the systemic inflammatory status (ratio of pro-inflammatory IL-6 to anti-inflammatory IL-10 cytokine levels) that were accompanied, and most likely mediated, by the observed down-regulation of T lymphocyte (only evident at 6-months) and monocyte activation. In addition, a reduction in IL-6 production in PBMC and whole blood cultures was also observed (only assessed at 1-month). Regular exercise had no effect on circulating immune cell numbers and neutrophil degranulation responses. These findings provide compelling evidence that walking exercise is safe from an immune and inflammatory perspective and has the potential to be an effective anti- inflammatory therapy in pre-dialysis CKD patients.
APA, Harvard, Vancouver, ISO, and other styles
12

Thursfield, Rebecca Marie. "Infection, inflammation & innate immunity in the paediatric CF airway." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/43757.

Full text
Abstract:
This thesis focuses on infection and immunity within the airways in cystic fibrosis (CF), particularly the role of the antimicrobial peptides (part of the innate immune system) and their relationship to vitamin D status. Vitamin D response elements have been identified in the genes encoding the antimicrobial peptides cathelicidin (LL37) and human β defensins (HBD-2) and in-vitro vitamin D significantly induces expression of these peptides in both CF and non-CF bronchial epithelial cells. As innate defence is pivotal to airway health and is one of the proposed ways that vitamin D deficiency contributes to worsening respiratory health, this thesis will consider first immunity of the normal airway and the interactions with vitamin D and then discuss the pathophysiology of CF and the role of vitamin D on the innate immune system within CF. The role of vitamin D on infection and inflammation in the airways of infants with CF is explored and the impact of Vitamin D levels seen immunologically and functionally over the first year of life is described. Finally the role of vitamin D as an immunomodulatory molecule is explored in a greater range of CF disease severity and age. Through the various parameters explored, in different CF patient populations, the conclusion remains the same; vitamin D deficiency is not associated with increased infection, greater inflammation nor a worse clinical outcome. The possible reasons for the lack of any relationship are discussed in the final chapter; either a missed signal because the levels studied were on the low or high flat parts of a 2 sigmoid relationship thus effects seen only in really severe deficiency or because supra-high levels are needed to see any effect, the effect being lost in the inflammation seen within the CF airway or a true lack of relationship.
APA, Harvard, Vancouver, ISO, and other styles
13

Chan, Calvin. "Uncovering an Adipocyte’s Perspective of Inflammation and Immunity in Obesity." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1560866472579872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sermersheim, Matthew Alan. "MG53 is a Novel Regulator of Inflammation and Innate Immunity." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu157121945938419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Srinivasan, N. "The role of inflammasomes in intestinal inflammation." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:04ad577c-a8dd-46eb-811a-79a3980ff806.

Full text
Abstract:
Single Nucleotide Polymorphisms (SNPs) in the intracellular pattern recognition receptor gene NLRP3 are associated with susceptibility to Crohn’s disease, a form of inflammatory bowel disease (IBD). Following cell damage or infection, NLRP3 triggers the formation of inflammasomes, a multimolecular protein complex containing NLRP3, ASC and caspase-1, which mediate secretion of IL-1β and IL-18. NLRP3 inflammasome activation in macrophages has been implicated in protection against several pathogens, but whether NLRP3 activation in tissue cells contributes to protective immunity against bacterial pathogens is unknown. We show that upon infection with the attaching/effacing (A/E) intestinal pathogen Citrobacter rodentium, Nlrp3-/- and Asc-/- mice displayed higher bacterial colonization, more weight loss and exacerbated intestinal inflammation. We further show that Nlrp3 inflammasome activation in intestinal epithelial cells (IECs) acts rapidly after infection to limit bacterial replication and penetration, and inhibits the development of inflammatory pathology in the gut. We also show that epithelial Nlrp3-mediated protection is independent of the classical inflammasome cytokines IL-1β and IL-18. Thus an Nlrp3-Asc circuit in IECs regulates early defense against a mucosal pathogen and limits inflammation in the intestine. Nlrp3 inflammasome activation has also been implicated in protection in acute models of experimental colitis, but its role in chronic models of colitis is unknown. We found that Asc signaling is necessary for the development of innate chronic intestinal inflammation driven by Helicobacter hepaticus. Thus while deficient inflammasome signaling in tissue cells increases susceptibility towards enteric pathogens, excessive inflammasome activation can drive chronic intestinal inflammation.
APA, Harvard, Vancouver, ISO, and other styles
16

Lensmar, Catarina. "Early airway inflammation in allergic asthma : aspects of pulmonary innate immunity /." Stockholm, 2000. http://diss.kib.ki.se/2000/91-628-4463-6/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bordon, Yvonne. "The role of the D6 chemokine receptor in immunity and inflammation." Thesis, University of Glasgow, 2007. http://theses.gla.ac.uk/6552/.

Full text
Abstract:
D6 is a novel chemokine receptor, homologous to other members of the CC-chemokine receptor family, which recognises a number of inflammatory CC-chemokines with high affinity. The aims of this thesis were to further our understanding of the biology of D6, chiefly through characterisation of immune responses in D6-deficient animals. Firstly, as described in Chapter 3, I analysed the cellular composition of lymphoid tissues of D6 KO mice. These studies revealed higher proportions of CD11c+ and F4/80+ cells in the D6 KO spleen compared with WT controls, suggesting that increased accumulation of myeloid lineage cells was occurring at this site. In Chapter 4, I examined the role of D6 in myeloid cell responses, by comparing monocyte recruitment to the inflamed peritoneum and dendritic cell development from bone-marrow (BM) cultures. I found that while the accumulation of inflammatory monocytes/macrophages appeared quantitatively similar in WT and D6 KO animals, D6 KO cells expressed greater levels of CD11c, suggesting preferential accumulation of DC-like cells in the inflamed peritoneum. D6 may influence the development and function of myeloid lineage cells. As D6 is expressed at high levels in the small and large intestine, I next investigated both tolerogenic and inflammatory intestinal responses in D6 KO animals. As detailed in Chapter 5 of this thesis, the induction of oral tolerance in response to a high dose feeding protocol was normal in D6 KO mice. However, D6 KO mice showed increased resistance to experimental colitis. As described in Chapter 6, various D6 KO populations displayed differential chemokine receptor profiles compared with their WT counterparts. The results suggest a role for D6 in the normal development of leukocytes populations, with absence of this atypical receptor leading to the dysregulated expression of other chemokine receptors. Taken together, my data suggest that the biological functions of D6 may be more complicated than previously appreciated. Indeed, I found no evidence for a decoy role of D6 in vivo, but D6-deficient animals were characterised by altered leukocyte development, aberrant chemokine receptor expression and increased resistance to experimental colitis induction.
APA, Harvard, Vancouver, ISO, and other styles
18

Blackshaw, Sasha. "The manipulation of inflammation, immunity and infection by novel derivatives of halichlorine." Thesis, Manchester Metropolitan University, 2017. http://e-space.mmu.ac.uk/618825/.

Full text
Abstract:
Halichlorine 1 is a marine spirocyclic alkaloid, which has shown to exhibit anti-inflammatory properties.1 Due to the complexity of this structure, and the low abundance in nature, the development of total and partial syntheses of this compound have become of interest to the organic chemist. This project aimed to evaluate the therapeutic potential of this class of compounds by producing a library of simplified halichlorine derivatives by addition of Grignard reagents onto a key spironitrone that maps onto the core structure of halichlorine and thence to monitor potential bioactivity by conducting a series of biological assays to determine what effects these compounds have on human U937 cells. Addition of a wide range of Grignard reagents to spironitrone 128 was successful and generally proceed with high diastereoselectivity. In addition, reductive cleavage of the resulting N-hydroxyspirocycles with Zn/AcOH provided a host of N-acetyl-C7-substiuted spirocyclic derivatives 167-172. Reduction with indium provided free amines 173-181. As additions to spironitrone 128 proceeded with undesired stereoselectivity attempts were made to access O-protected spironitrone 204 by oxidation of spiroamines such as 199. This strategy was unsuccessful. In order to explore alternative spirocyclic derivatives, synthetic studies were also directed in attempts to access un-substituted derivatives by ring closing metathesis (RCM) of diene precursors 222-224. While RCM substrates were accessed cyclisation of these did not proceed. It was discovered that heating 6,5-spiroisoxazolidine 102 under pressure in a microwave reactor provided access to the corresponding 6,6-isomer 164 which maps onto the core structure of the amphibian toxin histrionicotoxin (HTX). Oxidation to 6,6-spironitrone 192, as followed by conversion to cycloadducts 193-195, which represent new analogues of the HTX family of alkaloids. Grignard additions to this nitrone, did not proceed in general. Biological screenings using undifferentiated and LPS activated U937 cells helped to identify a number of biologically active derivatives, when tested in the NO and growth and viability assays. The NO assay using LPS activated cells, identified that the adducts containing larger alkyl or aryl chains, particularly the pentyl, hexyl and benzyl adducts, expressed significant differences in NO inhibition at both 10-4 M and 10-5 M concentrations tested, compared to the untreated cells.
APA, Harvard, Vancouver, ISO, and other styles
19

Yuan, Ruoxi. "Dynamic Programming of Innate Immunity in Health and Disease." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82925.

Full text
Abstract:
Whether innate immune cells may be adapted into potential memory states has becoming an important question in the field of immunity. Although previous conceptual paradigm failed to acknowledge this important question, emerging clinical and basic observations have started to shed intriguing clues to shake the previous dogma regarding innate immunity of being "simple", "raw", "first-line defense with no memory". We have aimed to further address this fundamental issue in this dissertation work, under the close guidance of Dr. Liwu Li. We have chosen to use the model system of Toll-Like-Receptor (TLR) signaling networks within primary monocytes. TLRs play fundamental roles in sensing pathogen-associated molecular patterns (PAMPs) and modulation of innate immunity. Lipopolysaccharide (LPS), an endotoxin found on the cell membrane of gram-negative bacteria, is the ligand of TLR4 and induces a range of inflammatory as well as anti-inflammatory responses. Higher dosages of LPS were known to cause robust yet transient expression of pro-inflammatory mediators. On the other hand, the effects of super-low dose LPS, commonly manifested in humans with adverse health conditions, have been largely ignored in the basic research field. Super-low dose LPS may skew host immune environment into a mild non-resolving pro-inflammatory state, which is a risk factor for inflammatory diseases such as atherosclerosis, compromised wound healing, and elevated risks for sepsis. Our central hypothesize is that monocytes may be adapted by super-low dose LPS into a non-resolving low-grade inflammatory state conducive for the pathogenesis of inflammatory diseases. We have employed both in vitro cell culture system as well as in vivo disease models to test this hypothesis. For the in vitro system, we have cultured primary murine monocytes with increasing signal strength of LPS. Monocyte phenotypes such as the expression of key inflammatory mediators including cytokines, chemokines, and cellular surface markers were studied. Potential molecular and cellular mechanisms were examined. We revealed a novel low-grade inflammatory monocyte phenotype termed ML adapted by super-low dose LPS, mediated through IRF5. For the in vivo system, we have employed both acute and chronic models of inflammation. For the chronic model, we have tested the effects of super-low dose LPS on monocyte polarization in vivo, as well as its contribution to the pathogenesis of atherosclerosis. Furthermore, we have tested the effects of programmed monocytes on wound healing. For the acute model, we have tested the effects of pre-conditioning with super-low dose LPS on the subsequence risks of sepsis elicited by cecal ligation and puncture. We have demonstrated aggravated atherosclerosis, compromised wound healing, and increased sepsis mortality in mice pre-conditioned with super-low dose LPS. Taken together, our findings reveal that monocytes can be differentially programmed into distinct states, depending on the signal strength of LPS. The differential programming and adaptation of monocytes can occur both in vitro and in vivo, and may bear profound pathological consequences.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
20

Philipson, Casandra Washington. "Systems analysis and characterization of mucosal immunity." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/74392.

Full text
Abstract:
During acute and chronic infectious diseases hosts develop complex immune responses to cope with bacterial persistence. Depending on a variety of host and microbe factors, outcomes range from peaceful co-existence to detrimental disease. Mechanisms underlying immunity to bacterial stimuli span several spatiotemporal magnitudes and the summation of these hierarchical interactions plays a decisive role in pathogenic versus tolerogenic fate for the host. This dissertation integrates diverse data from immunoinformatics analyses, experimental validation and mathematical modeling to investigate a series of hypotheses driven by computational modeling to study mucosal immunity. Two contrasting microbes, enteroaggregative Escherichia coli and Helicobacter pylori, are used to perturb gut immunity in order to discover host-centric targets for modulating the host immune system. These findings have the potential to be broadly applicable to other infectious and immune-mediated diseases and could assist in the development of antibiotic-free and host-targeted treatments that modulate tolerance to prevent disease.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
21

Roberts, Morgan. "The role of the Lyn tyrosine kinase in innate immunity and intestinal inflammation." Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/54079.

Full text
Abstract:
The full abstract for this thesis is available in the body of the thesis, and will be available when the embargo expires.
Science, Faculty of
Microbiology and Immunology, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
22

Iracheta-Vellve, Arvin. "Innate Immunity As Mediator of Cell Death and Inflammation in Alcoholic Liver Disease." eScholarship@UMMS, 2017. https://escholarship.umassmed.edu/gsbs_diss/960.

Full text
Abstract:
Central driving forces in the pathogenesis of liver disease are hepatocyte death and immune cell-driven inflammation. The interplay between outcomes, stemming from these two major cell types, is present from the earliest ethanol exposure, and are both determinants in advanced stages of liver disease particularly in alcoholic liver disease (ALD). The complexities associated with advanced ALD are many and therapies are limited. Due to the liver’s role in ethanol metabolism and filtering gut-derived products, it is becoming increasingly clear that innate immunity plays a central role in triggering activation of cell death and inflammatory pathways in ALD. We identified interferon regulatory factor 3 (IRF3) activation as a mediator of hepatocyte death as the first event after ethanol exposure, and the inflammasome as a protein complex responsible for the subsequent inflammatory cascade, driven by the NLRP3 inflammasome. Our novel findings in murine samples and human patients with alcoholic hepatitis demonstrate that ethanol-induced inflammasome activity results in Caspase-1-mediated pyroptosis and extracellular ASC aggregates in the liver and circulation. Pyroptosis can be abrogated by therapeutic inhibition of inflammasome components, NLRP3 or Caspase-1. Taken together, the event leading to mtDNA release into the cytoplasm is the inception of the pathogenesis of ALD, triggering hepatocyte death, culminating in a pro-inflammatory cascade driven by the NLRP3 inflammasome and pyroptotic release of ASC.
APA, Harvard, Vancouver, ISO, and other styles
23

Liu, Yi-Hsia. "Novel functions of Tribbles 1 in macrophages." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/8159.

Full text
Abstract:
Tribbles (Trib) protein was first described in Drosophila as a regulator of proliferation, later being implicated as a G2/M modulator. In mammalian systems, three Trib gene family members have been identified, which share a conserved motif similar to the catalytic domain of serine/threonine kinases. However, they lack several conserved residues in the ATP-binding pocket and the core motif of the catalytic domain necessary for catalytic function. Tribbles 1 (Trib1) is involved in inflammation through its ability to regulate MAPK, NF-κB and the CCAAT Enhancer Binding Protein (C/EBP). Moreover, Trib1 is associated with human disease, such as atherosclerosis and acute myeloid leukaemia. In this thesis, I investigated the functional role of Trib1 in Toll-like Receptor (TLR)-induced inflammatory responses together with pro- or anti-inflammatory cytokines. The RAW264.7 myeloid cell line was stimulated with TLR2/9 ligands in the presence or absence of IFN-γ or IL-10. I observed a high level of Trib1 expression in the presence of IFN-γ and TLR2 ligands, but weak Trib1 expression following treatment with IL-10 and TLR9 ligands. In gene knock-down experiments using small interfering RNAs (siRNA) to reduce Trib1 expression, C/EBPβ was up-regulated in both stimulated (by IFN-γ and TLR2 ligands) and resting macrophage populations. TNF-α production was increased following Trib1 knockdown after treatment with IFN-γ and/or TLR2 ligands but IL-6 secretion remained unchanged. Furthermore, ERK1/2 expression was reduced in Trib1 siRNA-treated cells and failed to induce chemokinesis in macrophages. Finally, Trib1 was demonstrated to act as a modulator of cell cycle (G2/M) transition and displays a delayed apoptotic phenotype. The work in this thesis demonstrates that mammalian Trib1 contributes to the pro-inflammatory response and functions as a regulator of the ERK1/2 and C/EBPβ pathways following TLR ligand-mediated activation. Its novel functions include acting as a modulator of G2/M arrest and suppressing macrophage migration.
APA, Harvard, Vancouver, ISO, and other styles
24

Chan, James. "Upregulation of early inflammation to enhance fracture repair." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:19ccec9a-ea37-4ece-b083-0f339d7178ed.

Full text
Abstract:
Fractures of bone are very common, affecting 2% of the population per annum. Whilst the majority heal uneventfully, 10-15% exhibit delayed or non-union. These complications tend to occur in patients who have sustained high-energy open fractures, which are limb-threatening injuries, or low-energy osteoporotic fractures, which are associated with high morbidity and mortality rates. Enhancement or acceleration of fracture repair would confer significant benefit to these patients as well as reduce the public health burden. Inflammation represents the earliest response following trauma and initiates a cascade of downstream events crucial for wound healing. However, the mechanism by which this occurs remains poorly defined. A detailed understanding of how these upstream events initiate fracture healing is a necessary step in the development of therapeutics to enhance this process. Our group previously reported that addition of low dose recombinant human TNF (rhTNF) at the fracture site accelerated fracture repair in a murine tibial fracture model. Here I show that local rhTNF treatment is only effective when administered within 24 hours of injury, when neutrophils represent the major inflammatory cell infiltrate. Endogenous TNF was expressed at the fracture site initially by neutrophils and after 3 days by monocytes/macrophages. Systemic administration of anti-TNF resulted in impaired fracture healing. The addition of rhTNF to the fracture environment in an air pouch model enhanced neutrophil recruitment, and promoted the recruitment of monocytes through CCL2 production. Conversely, inhibition of either neutrophils or the chemokine receptor CCR2 resulted in significantly impaired fracture healing. Fragility fractures represent a major unmet medical need and they are associated with permanent disability and premature death. Using a murine model of fragility fractures, rhTNF treatment improved fracture healing during the early phase of repair. Translated clinically, accelerated healing would permit earlier load bearing and reduce the morbidity and mortality associated with delayed patient mobilisation.
APA, Harvard, Vancouver, ISO, and other styles
25

Ambrose, Timothy James William. "Serine hydrolase activity and roles for monoacylglycerol lipase in innate immunity and intestinal inflammation." Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:f7a12796-ae8f-4121-ab1a-26778261ac78.

Full text
Abstract:
Detection of evolutionarily conserved pathogen motifs by pattern recognition receptors (PRRs), particularly on dendritic cells (DCs), is crucial for adequate immune responses. Defects in DC function are known to be associated with inflammatory bowel disease (IBD). The endocannabinoid system (ECS) is the system through which exocannabinoids such as Δ9-tetrahydrocannabinol and cannabidiol signal. Regarding inflammation, cannabinoids generally exert anti-inflammatory effects, including on experimental colitis. However, most work has been performed in animal models and less is known about the function of this system in human immune cells, particularly DCs. Monoacylglycerol lipase (MGLL) is the key enzyme for hydrolysis of the endocannabinoid 2-arachidonoylglycerol, and a member of the serine hydrolase enzyme superfamily. This thesis defines the activity of serine hydrolase enzymes for the first time in human DCs upon stimulation by NOD2/TLR2 ligands using activity-based protein profiling (ABPP). MGLL is shown to be ubiquitously upregulated upon stimulation of DCs and in monocyte-derived macrophages. Through pharmacological inhibition studies, MGLL is demonstrated to regulate cellular and secreted lipids, not limited to endocannabinoids. However, overall DC function is independent of this enzyme suggesting that the effects of lipid modulation may be on bystander cells. Challenging the current literature, MGLL inhibition with a novel inhibitor worsens murine Citrobacter rodentium colitis. Finally, ABPP demonstrates a rich serine hydrolome in colonic tissue from human IBD with many enzymes previously undefined in this disease. Gene expression of ECS components suggests the enzymes ABHD12 and DAGLα/β may be potential markers of field change in IBD.
APA, Harvard, Vancouver, ISO, and other styles
26

Klarquist, Jared. "Type I IFN control of sterile inflammation: Uncovering mechanisms behind autoimmunity and antitumor immunity." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1467988023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kowalski, Elizabeth Ashley. "Toll-Interacting Protein Regulation of Low-grade Non-resolving Inflammation." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/78340.

Full text
Abstract:
Innate leukocytes manifest dynamic and distinct inflammatory responses upon challenges with rising dosages of pathogen associated molecular pattern molecules (PAMPs) such as lipopolysaccharide (LPS). To differentiate signal strengths, innate leukocytes may utilize distinct intra-cellular signaling circuitries modulated by adaptor molecules. Toll-interacting protein (Tollip) is one of the critical adaptor molecules in Toll-like receptor 4 (TLR4) signaling and potentially playing key roles in modulating the dynamic adaptation of innate leukocytes to varying dosages of external stimulants. While Tollip may serve as a negative regulator of NFkB signaling pathway in cells challenged with higher dosages of LPS, it acts as a positive regulator for low-grade chronic inflammation in leukocytes programmed by subclinical low-dosages of LPS. We aim to show recent progress in our understanding of complex innate leukocyte dynamics and its relevance in the pathogenesis of resolving versus non-resolving chronic inflammatory diseases.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
28

Zhao, Junjie. "MECHANISMS OF SINGLE IG IL-1-RELATED RECEPTOR MEDIATED SUPPRESSION OF COLON TUMORIGENESIS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1459761067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Maurer, Kirk J. "A systematic evaluation of the role of infection, immunity and inflammation in cholesterol gallstone pathogenesis." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/39917.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Biological Engineering Division, 2007.
Includes bibliographical references.
Cholesterol gallstones are exceptionally common and cost nearly 10 billion U.S. dollars annually. Despite a half-century of basic and clinical research questions still remain about cholesterol gallstone pathogenesis. The purpose of the study presented herein is to analyze the roles of infection, and immunity in cholelithogenesis. The first two aims of this work were to analyze the role of enterohepatic Helicobacter spp. and the human gastric pathogen H. pylori in cholesterol gallstone formation. To test this, we prospectively infected C57UJ mice with a variety of Helicobacter spp. and fed infected and uninfected mice a lithogenic diet for eight weeks and analyzed biliary phenotype. Mice infected with H. bilis or coinfected with H. hepaticus and H. rodentium and fed a lithogenic diet developed cholesterol gallstones at 80% prevalence compared with approximately 10% in uninfected controls (P<0.05). Monoinfections with H. hepaticus, H. cinaedi, H. rodentium, and H. pylori gave a cholesterol gallstone prevalence of 40% (P<0.05), 30%, 20% and 20%, respectively; with the exception of H. hepaticus, cholesterol gallstone formation in these groups did not differ significantly from uninfected animals.
(cont.) These findings suggest that some Helicobacter spp. play a role in the cholesterol gallstone formation in mice and perhaps humans. We further hypothesized that inflammation and immunity were important in cholesterol gallstone formation and that cholelithogenic bacteria were promoting gallstones through immune stimulation. To test this we utilized BALB/c and isogenic Rag2-/- mice. When fed a lithogenic diet for eight-weeks, wild-type mice developed cholesterol gallstones (27-80% prevalence) significantly more than Rag2-/- mice (~5%, P<0.05). Transfer of functional splenocytes, or T-lymphocytes to Rag2-/- mice markedly increased cholesterol gallstone formation (26% and 40% respectively, P<0.05) whereas transfer of B-cells did not (13%). The presence of T-cells and solid cholesterol monohydrate crystals induced proinflammatory cytokine expression in the gallbladder. These studies indicate that T-cells are critical in murine cholelithogenesis and function by promoting gallbladder inflammation. In summary, these results illustrate that microbial pathogens can influence cholesterol gallstone formation; this most likely occurs by modulating the immune response with T-cells being a critical component in this immunomodulation.
by Kirk J. Maurer.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
30

Berlanga-Taylor, Antonio Jorge. "Impact of genetic variation on gene regulatory effects of vitamin D in immunity and inflammation." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:0f4679e7-7ef6-49e6-ab04-5fc280f1d680.

Full text
Abstract:
Genome-wide association studies in multifactorial diseases have contributed to our understanding of genetic risk and defined specific disease-associated loci in particular populations. However, risk cannot be fully explained by genetics and evidence points to both genetic and environmental factors being important in causation and pathophysiology. The role of vitamin D in calcium homeostasis is well established. Over the last 30 years it has become clear that vitamin D has a wider role in physiology and disease, notably in autoimmune, cancer and infectious conditions. However, the molecular mechanisms and possible causal role of these associations are poorly understood. Here I propose that the role of vitamin D in immune and inflammatory responses is significant, that genetic variation partly determines the response to vitamin D and that integrative analysis can yield important insights for disease mechanisms. For this I investigate the relationship between vitamin D and genetic risk involving the immune system by focusing on multiple sclerosis and sepsis, conditions classically defined as autoimmune and inflammatory respectively. I describe data resolving genetic variation associated with autoimmune diseases in vitamin D receptor binding sites; the association to multiple sclerosis of a genetic variant lying within a VDR binding site; the correlation of plasma vitamin D with genotype and cell specific transcriptomes in healthy volunteers; and the extent of vitamin D deficiency in severe sepsis and septic shock, its association with survival, correlation with gene expression and use in sub-classification to identify patients at higher risk of death. The limitations of each study and future work are discussed. Integrating epidemiological and clinical observations with genetic and functional genomics techniques has the potential to reveal interactions in population specific disease susceptibility that may lead to an improved understanding of disease mechanisms and clinical translation. The work I present here bridges molecular analysis, candidate and genome- wide, with phenotypic observations that are important in our understanding of disease.
APA, Harvard, Vancouver, ISO, and other styles
31

Jangalwe, Sonal. "Regulation of Alloreactive CD8 T Cell Responses by Costimulation and Inflammation." eScholarship@UMMS, 2017. https://escholarship.umassmed.edu/gsbs_diss/907.

Full text
Abstract:
CD8 T lymphocytes are a crucial component of the adaptive immune system and mediate control of infections and malignancy, but also autoimmunity and allograft rejection. Given their central role in the immune system, CD8 T cell responses are tightly regulated by costimulatory signals and cytokines. Strategies targeting signals that are critical for T cell activation have been employed in a transplantation setting to impede alloreactive T cell responses and prevent graft rejection. The goal of my thesis is to understand how costimulatory signals and inflammation regulate alloreactive CD8 T cell responses and how to target these pathways to develop more effective tools to prevent graft rejection. Costimulation blockade is an effective approach to prolong allograft survival in murine and non-human primate models of transplantation and is an attractive alternative to immunosuppressants. I describe a novel murine anti-CD40 monoclonal antibody that prolongs skin allograft survival across major histocompatibility barriers and attenuates alloreactive CD8 T cell responses. I find that the pro-apoptotic proteins Fas and Bim function concurrently to regulate peripheral tolerance induction to allografts. Activation of the innate immune system by endogenous moIecules released during surgery or infections in transplant recipients can modulate T cell responses. However, the direct impact of inflammation on alloreactive CD8 T cell responses is not clear. Using a T cell receptor (TCR) transgenic mouse modeI, I demonstrate that inflammatory stimuli bacterial lipopolysaccharide (LPS) and the viral dsRNA mimetic poly(I:C) differentially regulate donor-reactive CD8 T cell responses by generating distinct cytokine milieus. Finally I demonstrate the role of pro-inflammatory cytokines stem cell factor (SCF), granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) in improving human B cell development in humanized NOD-scid IL2Rγnull (NSG) mice.
APA, Harvard, Vancouver, ISO, and other styles
32

Patel, Rajen. "Dendritic Cells Mediate Protective Immunity Against Salmonella Typhimurium by Regulating Antigen Presentation, Inflammation and Cell Death." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34307.

Full text
Abstract:
Salmonella enterica serovar Typhimurium (ST) is an intracellular bacterium that resides within the phagosome of infected cells. ST is the causative agent of gastroenteritis in humans and typhoid like disease in mice. ST infects epithelial cells and phagocytic cells such as dendritic cells (DCs), which are immune sentinels that have been regarded as the most critical antigen-presenting cell (APC). I evaluated the role of CD8α DCs, a subset of DCs capable of antigen presentation of phagosomal pathogens to activate CD8+ T cells. Furthermore, I assessed the role of key cytokines such as the group of classical anti-viral cytokines known as Interferon-I (IFN-I), on licensing CD8+ T cells. Interestingly, IFN-I signalling was necessary for production of inflammatory cytokines and induction of cell death, which activated CD8+ T cells and clearance of ST. Lastly, I examined the role of key cell death pathways in innate immune protection against ST. In particular, I addressed how signalling pathways in necroptosis and pyroptosis are critical for the production of IL-1beta and IL-18 which mediate immune protection against ST. Determining the mechanisms of which DCs engage innate and adaptive immune responses against phagosomal bacteria is the central question of my study and is addressed by examining critical roles of DC function, inflammation and cell death.
APA, Harvard, Vancouver, ISO, and other styles
33

Yuan, Kai. "Metabolic inflammation and immunomodulation in dairy cows." Diss., Kansas State University, 2014. http://hdl.handle.net/2097/17294.

Full text
Abstract:
Doctor of Philosophy
Department of Animal Sciences and Industry
Barry J. Bradford
The transition period in dairy cows is characterized by dramatic increases in nutrient requirements for lactation and substantial metabolic stress. The disturbed metabolic balance, coupled with suppressed immune function, contributes to markedly elevated incidence of health disorders. Several lines of evidence suggest that increased inflammation is common during the transition period. Unlike the classical inflammation associated with acute infection, the postpartum inflammatory state is low-grade and often of metabolic origin. This metabolic inflammation plays a key role in numerous disorders; an improved understanding of inflammatory pathways in transition cows may improve our ability to predict and prevent disorders. To mimic metabolic inflammation, in Experiment 1, we administered low amounts of recombinant bovine tumor necrosis factor-α (rbTNFα), a pro-inflammatory cytokine, to early lactation cows, and evaluated whether rbTNFα affects milk production, metabolism, and health. We found that rbTNFα administration increased systemic inflammation, decreased feed intake and milk yield, and increased incidence of disorders. Conversely, preventing excessive inflammation has the potential to improve productivity and health of dairy cows. To identify nutritional strategies that could enhance metabolism and immunity, we evaluated the efficacy of several feed additives. In Experiment 2, we evaluated effects of chromium propionate, rumen-protected lysine and methionine, or both on metabolism and immunity in lactating dairy cows, and found that supplementation of these nutrients may enhance neutrophil function. In Experiment 3, we determined whether supplementation of yeast product to transition cows could enhance production, metabolism, and immunity, and found that yeast product modulated feeding behavior, metabolism, immunity, and uterine inflammation. Overall, a greater understanding of the role of metabolic inflammation in the transition period and the nutritional strategies that could modulate these signals may improve the production and health of dairy cows.
APA, Harvard, Vancouver, ISO, and other styles
34

Wachholz, Kristina Lora Catherine. "Placental Infection by Salmonella Typhimurium in a Murine Model: The Role of Innate Immune Mediators in Cell Death at the Fetal-Maternal Interface." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34190.

Full text
Abstract:
Maternal tolerance during pregnancy increases the risk of infection with certain intracellular pathogens such as Salmonella enterica serovar Typhimurium (S.Tm). Systemic S.Tm infection during pregnancy in normally resistant 129X1/SvJ mice, with a functional natural resistance-associated macrophage protein-1 (Nramp1), leads to severe placental infection followed by fetal and maternal death. We hypothesized infection-induced inflammatory trophoblast cell death contributes to adverse pregnancy outcomes. We therefore investigated the kinetics of systemic and oral S.Tm infection in wild-type and gene deficient mice with defects in specific inflammatory pathways. Systemic infection with S.Tm resulted in preferential placental replication compared to other tissues in Nramp1+/+ mice. At 24 hours, <25% of individual placentas per mouse were infected, progressively increasing to >75% by 72 hours which correlated with a steady increase in resorption rates. Moreover, placental infection was associated with increased neutrophils, macrophages and natural killer cells whereas neutrophil numbers in the spleen remained unchanged, suggesting dichotomous modulation of inflammation in the systemic compartment compared to the feto-maternal interface. Oral infection resulted in systemic dissemination of the bacteria, substantial placental colonization and fetal loss five days post-infection in C57BL/6J mice. Systemic infection in pregnant cell death deficient Rip3-/-Nramp1+/+ mice (with defective necroptosis) resulted in decreased fetal demise relative to Nramp1+/+ and Caspase-1,11-/-Nramp1+/+ mice (with defective pyroptosis) suggesting a role for necroptotic inflammation. This study provides insight into the kinetics and mechanism of inflammation and cell death during placental S.Tm infection. Such studies may assist in the rational management of foodborne pathogens contracted during pregnancy.
APA, Harvard, Vancouver, ISO, and other styles
35

Wu, Salene M. "Relationship of General and Health-related Anxiety and Worry to Markers of Inflammation in Women with Advanced Cancer." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1356624916.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wiggins, Kimberley Anne. "Novel proteases that regulate interleukin-1 alpha activity during inflammation and senescence." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273664.

Full text
Abstract:
Interleukin-1 alpha (IL-1a) is a powerful inflammatory cytokine that modulates both innate and adaptive immunity. As such, IL-1a is implicated in the development of multiple inflammatory and autoimmune diseases including atherosclerosis, arthritis and cancer. Therefore, understanding the mechanisms that regulate IL-1a activity is extremely important. For many years, pro-IL-1a was considered to be a fully active alarmin. However, we have previously shown that the removal of the pro-domain by calpain, a protease that is activated upon necrosis, significantly increases IL-1a bioactivity. The work presented in this thesis demonstrates that multiple proteases from diverse biological systems cleave and activate IL-1a. We therefore suggest that IL-1a is an important signalling hub that integrates diverse proteolytic danger signals to alert the immune system. In particular we have identified the inflammatory caspase, caspase-5, as a novel and potent activator of IL-1a. We show that caspase-5 directly cleaves pro-IL-1a during the activation of the non-canonical inflammasome by cytosolic LPS, which mimics intracellular bacterial infection. We also demonstrate that caspase-5-cleaved IL-1a mediates the senescence-associated secretory phenotype (SASP), which drives the deleterious effects of senescent cells in multiple age-related diseases. Therefore, therapeutically targeting caspase-5 may be of interest for pathologies mediated by the non-canonical inflammasome and/or senescent cells. Finally we find that rs17561, a common IL1A polymorphism, reduces active IL-1a release. We find that blood from minor allele homozygotes releases significantly less IL-1a than major allele homozygotes upon LPS stimulation. Therefore, genotyping patients under consideration for anti-IL-1a therapy could predict who would be likely to respond well to the treatment. In conclusion, the work presented in this thesis enhances our understanding of how IL-1a activity is regulated. The identification of both the caspase-5-mediated pathway of IL-1a activation and the defect conferred by the rs17561 SNP could have important clinical implications for the treatment of multiple inflammatory diseases.
APA, Harvard, Vancouver, ISO, and other styles
37

Janczy, John Roger. "Mechanisms for activation and inhibition of inflammasomes." Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/1643.

Full text
Abstract:
Activation of the cysteine protease caspase-1 and the subsequent processing and secretion of the pro-inflammatory cytokines IL-1Β and IL-18 is central to the inflammatory response as well as the induction of adaptive immune responses. Caspase-1 is activated as a part of a high-molecular weight multi-protein complex termed the inflammasome. The NLRP3 inflammasome is by far the best studied of these complexes, and it is the most promiscuous in terms of activating signals. The diversity of NLRP3 activating signals makes it likely that NLRP3 does not recognize each agonist directly, rather it detects a molecule that is generated, revealed, or altered by cellular stress. Recent studies have indicated that mitochondrial dysfunction is crucial for NLRP3 inflammasome activation, yet the activating ligand has not yet been identified. Appropriate and timely activation of this inflammatory pathway is required for host immunity to a variety of pathogens, however dysregulated activation leads to autoinflammation and potentially autoimmunity. Hence it is important to identify mechanisms for inflammasome activation and regulation. Therefore, this dissertation has focused on investigating the mechanisms for activation and regulation of the NLRP3 inflammasome, and the biological consequences of these changes. We show that the mitochondrial lipid cardiolipin is required for NLRP3 inflammasome activation. We have also identifying a novel mechanism by which inflammasome activation is regulated. Data presented in this dissertation shows that IgG immune complexes effectively suppress inflammasome activation and the subsequent processing and secretion of IL-1Α and IL-1Β. Furthermore we show that immunization with IgG immune complexes suppresses both Th2 and Th17 immune responses. Together these data provide novel insights into the activating and regulatory pathways of both the innate and adaptive immune systems.
APA, Harvard, Vancouver, ISO, and other styles
38

Gicquel, Thomas. "Implication des récepteurs purinergiques dans l'activation de l'inflammasome NLRP3 dans les macrophages." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1B012/document.

Full text
Abstract:
L’inflammasome NLRP3 est très impliqué dans de nombreuses pathologies inflammatoires comme la fibrose pulmonaire, la polyarthrite rhumatoïde, la goutte ou la maladie de Crohn. Cette voie de signalisation permet la libération de la cytokine pro-inflammatoire IL-1β après activation par des signaux de danger comme l’ATP ou les cristaux d’acide urique (MSU). L’objectif de cette étude est de mieux comprendre le rôle des récepteurs purinergiques dans l’activation de l’inflammasome NLRP3 dans les macrophages humains. Nous montrons ici que le MSU ou les analogues de l’ATP (ATPγS ou BzATP) induisent la libération d’IL-1β dans des macrophages pré-activés par du LPS. Ces macrophages proviennent de la différenciation de monocytes issus de poches de sang périphérique (buffy coat) obtenues à l’EFS (Rennes). Nous observons que des antagonistes du récepteur purinergique P2X7, des inhibiteurs de la cathepsine B ou de la caspase-1 et des siRNA ciblant les récepteurs P2X7 et P2Y2 sont capables de réduire la libération d’IL-1β par les macrophages activés. De plus, dans cette étude nous mettons en évidence le rôle des récepteurs purinergiques dans la sécrétion d’autres cytokines pro-inflammatoires comme l’IL-1α ou l’IL-6. Ce travail suggère que la voie d’activation de l’inflammasome NLRP3 par les récepteurs purinergiques représente une nouvelle cible thérapeutique dans le traitement des pathologies inflammatoires
NLRP3-inflammasome pathway activation appears as the corner stone of manyinflammatory diseases including pulmonary fibrosis, rheumatoid arthritis, gout and Crohn disease. This pathway is known to be activated by danger signals such as ATP or Monosodium urate (MSU) leading to the pro-inflammatory cytokine IL-1β release. The aim of this study is to investigate the role of purinergic receptors in the activation of NLRP3-inflammasome pathway in human macrophages. We found here that MSU or analogs of ATP (ATPγS or BzATP) induced the release of IL-1β from LPS-primed MDM obtained from buffy coat (EFS, Rennes). We observed that purinergic P2X7 receptor antagonists, cathepsin B or caspase-1 inhibitors, siRNA targeting P2Y2R or P2X7R were able to reduce the release of IL-1β from activated macrophages. Furthermore we studied the role of purinergic receptors in pro-inflammatory cytokines release, such as IL-1α or IL-6. This study suggests that P2 receptors-NLRP3 inflammasome pathway represents a novel potential therapeutic target to control inflammation in inflammatory diseases
APA, Harvard, Vancouver, ISO, and other styles
39

Lemaitre, Julien. "Heterogeneity of polymorphonuclear neutrophils in HIV-1 infection. Study of SIV-infected cynomolgus macaque model." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS267.

Full text
Abstract:
La persistance du VIH-1 est associée au maintien de l’inflammation chronique chez les patients infectés, malgré la mise en place de combinaison de traitements antirétroviraux. L’inflammation chronique est associée à un risque augmenté de développer des comorbidités, non associées au SIDA. Les polynucléaires neutrophiles (PNN) sont des cellules myéloïdes qui ont été impliqués dans de multiples maladies inflammatoires chroniques. Néanmoins, leur rôle dans l’infection par le VIH-1 est moins bien connue. Afin de pallier ce manque de connaissances, nous avons évalué l’hétérogénéité des PNNs dans le modèle macaque cynomolgus infecté par le SIVmac251. L’analyse phénotypique par cytométrie de masse a révélé la circulation de PNNs immatures en phase chronique de l’infection. En caractérisant l’hétérogénéité des PNNs au cours de l’infection par le SIV, nous avons observé une augmentation des fréquences des neutrophiles immatures et activés dans le sang dès la primo-infection. En phase chronique, les PNNs immatures et activés étaient toujours significativement augmentés dans le sang et la moelle osseuse. Au cours de l’infection, les PNNs avaient une fonction immunostimulatrice envers la prolifération et la sécrétion cytokinique des lymphocytaire T. L’initiation d’un traitement antirétroviral précoce a permis de restaurer le phénotype des PNNs. Les PNNs sont des cellules à fort potentiel pro-inflammatoire abondantes qui devraient être ainsi considérés comme de nouveaux effecteurs de l’inflammation chronique associée au VIH-1
Even under combinational antiretroviral treatments (cART), HIV-1 persistence is associated with chronic inflammation in infected patients, leading to an increased risk of non-AIDS-related comorbidities. Polymorphonuclear neutrophils (PMN), have been less studied in HIV infection whereas they were associated with chronic inflammation diseases. To evaluate PMN heterogeneity in SIVmac251 nonhuman primate infection model, we first performed multiparameter single-cell phenotyping by mass cytometry giving a global vision of the immune system. This analysis demonstrated circulation of immature PMN with impaired during chronic infection. Then, we characterized neutrophils heterogeneity in the course of SIV infection. In primary infection, there was an increased frequency of CD10- immature and CD62L-low primed PMNs in peripheral blood. In chronic phase, CD10- immature PMNs were significantly higher in bone marrow and blood, maintaining a primed profile. During SIV infection, PMNs demonstrated variable immunomodulatory function against T cells proliferation and cytokine production. Early cART allowed to restore PMN phenotype. In this study, we provide unprecedented insight into PMN heterogeneity in the course of SIV infection. Since PMN represent 40-70% of circulating leukocytes and primed PMN are more potent to release pro-inflammatory cytokines and to transmigrate, they should be considered as a new player in HIV-1 chronic inflammation
APA, Harvard, Vancouver, ISO, and other styles
40

Cammarata-Mouchtouris, Alexandre. "Régulation des voies NF-KB au cours de la réponse immunitaire innée." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAJ118.

Full text
Abstract:
Le système immunitaire inné est un mécanisme de défense commun à tous les métazoaires. Son activation peut être délétère lorsqu'elle est incontrôlée. L'étude des mécanismes qui sous-tendent cet équilibre entre l'activation ou non de la réponse immunitaire innée est à la base de mes travaux de thèse. La similarité entre les voies moléculaires - comme la voie NF-KB - relayant la réponse immunitaire innée chez les insectes et les mammifères fait de la drosophile un excellent modèle pour explorer la réponse immune. Après une stimulation immunitaire, l'arrêt des voies moléculaires de l'immunité est nécessaire pour éviter le développement de maladies auto-immunes ou du cancer. Mon premier projet s'est attaché à comprendre un mode de régulation original dépendant du temps, dans une des voies NF-KB de la drosophile. Mon deuxième projet··concerne l'activation de la réponse immunitaire. Une· protéine nucléaire contrôle l'implication de machinerie épigénétique dans le contrôle de l'expression d'une des voies NF-KB de la drosophile. Le tout permet de mieux saisir la dynamique de régulation de la réponse innée
The innate immune system is a defense mechanism common to all metazoans. lts activation can be deleterious when it is uncontrolled. The study of the mechanisms underlying this balance between the activation or not of the innate immune response is the basis of my thesis work. The similarity of the molecular pathways - such as the NF-KB pathway - relaying the innate immune response in insects and mammals makes Drosophila an excellent model for exploring the immune response.After immune stimulation, stopping the molecular pathways of immunity is necessary to prevent the development of autoimmune diseases or cancer. My first project focused on understanding a time-dependent mode of regulation in one of Drosophila's NF-KB pathways. My second project concerns the activation of the immune response. A nuclear protein contrai the involvement of epigenetic machinery in controlling the expression of one of Drosophila's NF-KB pathways. Ali this makes it possible to better grasp the dynamics of regulation of the innate response
APA, Harvard, Vancouver, ISO, and other styles
41

Lansink, Lianne Ida Maria. "Blood-stage Plasmodium parasite control by antibody-mediated inhibition and impaired maturation in response to host inflammation in vivo." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/228523/1/Lianne%20Ida%20Maria_Lansink_Thesis.pdf.

Full text
Abstract:
This thesis examined the molecular mechanisms that are at the basis of parasite-host interactions during malaria infection, specifically focussing on antibody function and interactions during inflammation. Plasmodium parasites were recently discovered to grow slower during acute infection. This project built on that evidence and identified a role for inflammation as well as detected an initial response by the parasite to inflammation.
APA, Harvard, Vancouver, ISO, and other styles
42

Sävykoski, née Huittinen T. (Tiina). "Chlamydia pneumoniae infection, inflammation and heat shock protein 60 immunity in asthma and coronary heart disease." Doctoral thesis, University of Oulu, 2003. http://urn.fi/urn:isbn:9514269853.

Full text
Abstract:
Abstract Chlamydia pneumoniae is a common respiratory pathogen worldwide. It does not only cause acute respiratory infections, but is also associated with chronic inflammatory diseases, such as asthma and coronary heart disease (CHD). Chlamydial heat shock protein 60 (Hsp60) is associated with the development of immunopathological damage following C. trachomatis infections, but the role of Hsp60 in C. pneumoniae infections is unclear. A slightly elevated level of C-reactive protein (CRP), as a marker of systemic inflammation, predicts cardiovascular events, but its role in asthma has not been studied. The aim of this study was to develop an EIA method for the measurement of Hsp60 antibodies and for studying the host immune responses to C. pneumoniae and chlamydial and human Hsp60 proteins, CRP levels and their interactions in asthma and CHD. Elevated levels of serum IgA antibodies to the Hsp60 protein of C. pneumoniae were associated with asthma and decreased pulmonary function. CRP levels were also higher in the asthma patients than in the controls. The patients with moderate asthma had higher CRP levels than those with mild asthma. The patients with a CRP level over 2 mg/l had higher levels of serum IgA antibodies to C. pneumoniae and chlamydial Hsp60 than the patients with lower CRP levels. A prospective nested case-control study was carried out, to study the role of Hsp60 antibodies as coronary risk predictors, and their association with C. pneumoniae infection and inflammation. The participants were obtained from the Helsinki Heart Study: 241 myocardial infarctions or coronary deaths occurred during the 8.5-year period among dyslipidemic middle-aged men. An elevated level of human Hsp60 IgA antibodies in baseline serum predicted the occurrence of a coronary event several years later, especially when present simultaneously with a high C. pneumoniae IgA antibody level and an elevated CRP level. Further studies showed that only persistently, not transiently, elevated levels predicted coronary events. The risk associated with elevated antibody levels increased markedly in the presence of an elevated CRP level, and vice versa. In conclusion, these results suggest that chlamydial Hsp60 is involved in the association between C. pneumoniae infection and asthma, while autoimmunity to human Hsp60 is implicated in the association between C. pneumoniae infection and CHD. Inflammation evidently plays an important role in these associations. It can also be concluded that IgA antibodies, compared to IgG antibodies, against C. pneumoniae and Hsp60 are better markers of chronicity, especially when they are persistently elevated.
APA, Harvard, Vancouver, ISO, and other styles
43

Bonnay, François. "Caractérisation des mécanismes de régulation de la voie IMD au cours de la réponse immunitaire chez Drosophila melanogaster." Thesis, Strasbourg, 2014. http://www.theses.fr/2014STRAJ019/document.

Full text
Abstract:
Le système immunitaire inné est un mécanisme de défense commun à tous les métazoaires. Chez l’Homme comme chez la drosophile, son activation peut être délétère lorsqu’elle est incontrôlée. L’étude des mécanismes qui sous-Tendent cet équilibre entre l’activation ou non de la réponse immunitaire innée est à la base de mes travaux de thèse. En utilisant le modèle Drosophila melanogaster, j’ai caractérisé la protéine Big-Bang comme un acteur important de la balance immunitaire intestinale. Mes résultats démontrent que Big-Bang est un constituant des jonctions obturantes de l’épithélium intestinal. Son absence provoque une rupture de tolérance immunitaire envers la flore bactérienne endogène et d’autre part une sensibilité accrue aux pathogènes invasifs. Mes travaux de thèse ont également permis de caractériser Akirine, une protéine nucléaire qui agit au niveau des facteurs NF-ΚB de la drosophile à l’Homme. Mes résultats démontrent qu’Akirine est un sélecteur qui agit de concert avec le complexe de remodelage de la chromatine SWI/SNF et NF-ΚB pour transcrire un sous-Ensemble de gènes pro-Inflammatoires
The innate immune response is required by all metazoan to defend themselves against microorganisms. When abnormally activated however, innate immune responses cause deleterious chronic inflammation. The study of the fragile equilibrium between immune responses and tolerance has fundamentally shaped the projects of my PhD work.First, using Drosophila melangoaster as a model, I characterized Big-Bang as a major player of the immune balance in the gut. I could show that Big-Bang is a bona fide component of midgut epithelium septate junctions. Consequently, big-Bang deficient flies have an impaired tolerance against commensal microorganisms and are susceptible to invasive gut pathogens, ultimately leading to a premature death of flies.I focused the second part of my PhD work on the characterization of Akirin, a nuclear protein required for the activation of NF-ΚB response from Drosophila to humans. My results showed that Akirin is a selector molecule, acting together with NF-ΚB and the SWI/SNF chromatin-Remodeling complex to sustain the transcription of a subset of pro-Inflammatory genes
APA, Harvard, Vancouver, ISO, and other styles
44

Patrick, Christopher. "Cereal Induced Autoimmune Diabetes is Associated with Small Intestinal Inflammation, Downregulated Anti-Inflammatory Innate Immunity and Impaired Pancreatic Homeostasis." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/30391.

Full text
Abstract:
Background: Intestinal inflammation elicited by environmental determinants including dietary proteins and microbes is implicated in type 1 diabetes (T1D) pathogenesis. Also, intrinsic pancreatic abnormalities could precede classic insulitis, contributing to T1D. Materials and Methods: Spontaneous rat T1D models were used for in situ analyses of gut and pancreas to explore novel disease pathways using immunohistochemistry and detailed morphometry, gene expression studies, and molecular screening analyses. Results: In BBdp rats, feeding a cereal diet stimulated T1D under germ-free or specific pathogen-free (SPF) conditions compared with a protective hydrolyzed casein (HC) diet. Cereal-induced T1D was paralleled by increased gut T cell infiltration and TH1-associated pro-inflammatory transcription. HC-fed rats displayed an increased number of anti-inflammatory CD163+ M2 macrophages compared with cereal-fed rats. Cereal-associated promotion of T1D in Lewis diabetes-prone (LEW-DP) rats, a different rat model, similarly featured gut T cell infiltration in conjunction with decreased immunoregulation. The Camp gene was induced in diet-protected HC-fed BBdp rats. Camp encodes the cathelicidin antimicrobial peptide (CAMP), a pleiotropic immunomodulatory host defence factor. Intestinal CAMP was enriched in CD163+ M2 macrophages and could represent a novel marker of these tolerogenic innate immune cells. CAMP expression was also discovered in pancreatic lymph nodes (PLN) and islets, indicating a novel role for this factor in target tissue homeostasis. There was a positive correlation between pancreatic CAMP and total islet number. Also, islet-associated CAMP+ cells were increased in rats with islet inflammation, suggesting upregulation in parallel with insulitis. Exogenous CAMP/LL-37 injections increased the abundance of T1D-protective probiotic bacteria and promoted islet neogenesis in BBdp rats. A prospective partial pancreatectomy (PPx) study was performed to obtain pre-diabetic pancreas biopsies from iii pre-insulitic BBdp rats. The number of endothelium-associated CD68+ macrophages was increased in pre-diabetic pancreata, indicating that perivascular inflammation was an early lesion in the animals. In addition, pre-diabetic pancreata featured enhanced regenerative Reg3a and Reg3b gene expression, indicating abnormal islet expansion preceding insulitis. Conclusions: Small intestinal inflammation paired with deficits in local immunoregulation parallels T1D development. CAMP represents a novel factor in T1D that could have several pleiotropic functions including regulation of commensal microbes, intestinal homeostasis, and pancreatic homeostasis. In addition, target tissue abnormalities precede insulitis and T1D. This research focused on the integrative biology of T1D pathogenesis in spontaneous rat models. This work provides a novel working model that incorporates key roles for gut lumen antigens, intestinal immunity, and the role of islets and altered regenerative capacity in T1D. This research could lead to new therapeutic opportunities for T1D treatment.
APA, Harvard, Vancouver, ISO, and other styles
45

Fang, Youjia. "The Novel Role of Interleukin-1 Receptor-Associated Kinase 1 in the Signaling Process Controlling Innate Immunity and Inflammation." Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/32331.

Full text
Abstract:
Obesity-induced chronic inflammation plays a key role in the pathogenesis of insulin resistance and the metabolic syndrome. Proinflammatory cytokines can cause insulin resistance in adipose tissue, skeletal muscle and liver by inhibiting insulin signaling transduction. Interleukin-1 receptor-associated kinase-1 (IRAK-1) is a serine/threonine kinase functioning in Toll-like Receptor signaling pathways, and plays an important role in inflammation and immune response. In our studies, we demonstrated that IRAK-1 is involved with the negative regulation of PI3K-Akt dependent signaling pathway induced by insulin and TLR 2&4 agonists. Out data also indicate that IRAK-1 can interact with IRS-1 protein both in vivo and in vitro. The binding sites for the IRAK1-IRS1 biochemical interaction are IRS-1â s PH domain and IRAK-1â s proline-rich LWPPPP motif. Our studies also indicate that IRAK-1 is involved with the negative regulation of glycogen synthesis through inhibiting PI3K-Akt signaling pathway and thus releasing GSK3βâ s inhibitory effect on glycogen synthase. Moreover, our studies also suggest that IRAK-1 is involved in the activation of transcription factors CREB and ATF-1 by stimulating CREB-Ser133 and ATF-1 phosphorylation. CREB transcription factor family induces genes involved in cellular metabolism, gene transcription, cell cycle regulation, cell survival, as well as growth factor and cytokine genes. That may partially explain our finding that IRAK-1 may be also involved with cell proliferation and survival pathway.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
46

Liu, Chia-Fang. "The role of surfactant protein D in the Der p allergen-induced inflammation in the innate immunity of lung." Toulouse 3, 2008. http://thesesups.ups-tlse.fr/580/.

Full text
Abstract:
L'asthme allergique est une maladie inflammatoire. La protéine D du surfactant pulmonaire (SP-D) est une collectine capable de lier divers motifs sucrés de micro-organismes ainsi que des allergènes aériens et elle joue un rôle important dans la défense des poumons. Der p : un allergène majeur issu d'une espèce d'acariens rencontrés dans les poussières domestiques: Dermatophagoides pteronyssinus, responsable en grande partie des manifestations d'asthme allergique chez l'enfant. En résumé nous avons trouvé que (1) la SP-D a des effets thérapeutiques sur une inflammation bronchique due aux allergènes dans le modèle murin de l'asthme. (2) L'activation des macrophages alvéolaires par des allergènes d'acariens est médiée par CD14 et TRL4 et peut être inhibée par un prétraitement à la SP-D. (3) L'allergène Der p active les médiateurs pro-inflammatoires dépendant de NF-?B et bloque la production d'IL-12 et de T-bet induite par les endotoxines suite à la co-activation des TLR2 et 4 dans des cellules de macrophages alvéolaires murins. (4) la SP-D peut inhiber la voie de signalisation de l'inflammation activée par Der p, la production de médiateurs inflammatoires, et réguler l'expression de DC-SIGN en agissant comme un inhibiteur de la réponse inflammatoire induite par Der p. En conclusion, SP-D est une molécule importante de l'immunité innée des poumons et elle peut réguler l'inflammation pulmonaire induite par des allergènes. Nos résultats suggèrent que les mécanismes moléculaires du rôle régulateur de SP-D sont soit directs à travers son interaction avec CD14 à la surface cellulaire, liaison qui prévient l'activation du macrophage par der p ; soit indirects en régulant l'expression de DC-SIGN qui inhibe les réponses inflammatoires induites par Der p. .
Allergic asthma is a disease of chronic airway inflammation. Dermatophagoides pteronyssinus (Der p) is among the most prominent and important allergens that cause allergic asthma around the world. However, the mechanism of Der p-induced inflammation in the innate immunity of lung is not fully understood. Surfactant protein D (SP-D) plays an important role in the first-line defense of the lung. In summary, we found that (1) SP-D had a therapeutic effect on allergen-induced bronchial inflammation in the murine model of asthma. (2) Mite allergen-induced alveolar macrophage activation was mediated by CD14 /TLR4 and TLR2 and could be inhibited by SP-D pretreatment. (3) Der p allergen induced NF-?B-dependent pro-inflammatory mediators production, and prevented endotoxin-induced IL-12 and T-bet production through TLR2/4 co-activation in mouse alveolar macrophage cell line, and (4) SP-D inhibited Der p-induced inflammatory signaling pathway and inflammatory mediators production through regulating DC-SIGN expression in acting as an inhibitory signal to inhibit Der p-induced inflammatory response. In conclusion, SP-D, as an important molecule of innate immunity of lung, can regulate allergen-induced pulmonary inflammation. .
APA, Harvard, Vancouver, ISO, and other styles
47

Listopad, Joanna Jadwiga. "HO-1 induction by Co-PPIX suppresses experimental skin inflammation, T cell immunity and dendritic cell maturation and function." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2007. http://dx.doi.org/10.18452/15601.

Full text
Abstract:
Die Hämoxygenase 1 (HO-1) ist ein Stressprotein mit antientzündlichen, immunsupprimierenden und zytoprotektiven Eigenschaften, welche in vielen Tiermodellen nachgewiesen wurden. Die zugrunde liegenden Mechanismen sind wenig bekannt. Diese Arbeit demonstriert erstmalig, dass die physiologische Induktion von HO-1 wichtig für die Limitierung von T-Zell-abhängigen Hautentzündungen ist. So führt der HO-1-Inhibitor, Zinn-Protoporphyrin IX (Sn-PPIX), zu einer verstärkten Hautentzündung im Mausmodell. Die pharmakologische Induktion von HO-1 durch Kobalt-Protoporphyrin IX, Co-PPIX, hemmt dagegen die Entzündung in DNFB- bzw. TMA-induzierten murinen Kontaktallergiemodellen sowohl bei Verabreichung von Co-PPIX während der Sensibilisierung als auch vor der Auslösung. Bemerkenswerterweise hemmt eine Co-PPIX-Behandlung die Antigen-induzierte T-Zellproliferation ex vivo in Milzzellen von behandelten Mäusen und in vitro in humanen mononukleären Zellen des peripheren Blutes. Da eine HO-1-Induktion durch Co-PPIX nur in Monozyten und in aus Monozyten abgeleiteten myloischen Dendritischen Zellen (MDDC), nicht aber in T-Zellen, beobachtet wurde, fokussierten alle weiteren Untersuchungen auf Antigen-präsentierende Zellen. HO-1-Induktion durch Co-PPIX reduziert die Expression von MHC-Klasse II und akzessorischen Molekülen und steigert die Phagozytose und den oxidativen Burst von Monozyten. Die immunphänotypische Differenzierung und Maturierung von MDDC wird gehemmt. Funktionsteste zeigen eine Reduktion der Expression und Sekretion von proinflammatorischen und immunstimulatorischen Zytokinen, während die Sekretion des antientzündlichen Zytokins IL-10 gesteigert ist. Die Fähigkeit der MDDC zur Antigenpräsentation gegenüber T-Helferzellen ist für Allo- und Recallantigene stark herabgesetzt. Mittels adenoviraler HO-1-Transduktion von MDDC konnte die Spezifität der Effekte bestätigt werden. Diese Daten zeigen, dass eine verstärkte HO-1-Aktivität die Dendritischen Zellen zu einem unreifen und immunkompromittierten Phänotyp verändert und weisen darauf hin, dass die HO-1-Induktion einen wichtigen Ansatz für die Hemmung der zellulären Immunität und für die Behandlung von T-Zell-abhängigen Hautentzündungen darstellt.
Heme oxygenase 1 (HO-1) is an antiinflammatory stress protein. Its immunosuppressive and cytoprotective activities have been demonstrated in several animal models. The underlying mechanisms, however, are poorly understood. This study demonstrates for the first time that the physiological induction of HO-1 is important for the limitation and resolution of T cell-dependent skin inflammation. So, the HO-1 inhibitor, tin protoporphyrin IX (Sn-PPIX), augments cutaneous inflammation in mouse model. Moreover, pharmacologic HO-1 induction by the potent HO-1 inducer, cobaltic protoporphyrin IX (Co-PPIX), inhibits inflammation when applied around sensitization or before challenge in murine DNFB- and TMA-induced contact hypersensitivity models. Remarkably, Co-PPIX treatment inhibits antigen-driven T cell proliferation both ex vivo in murine splenocytes and in vitro in human peripheral blood mononuclear cells. Since induction of HO-1 mRNA and protein was found in monocytes and monocyte-derived myeloid dendritic cells (MDDC) but not T cells, further investigations focused on antigen-presenting cells. HO-1 induction by Co-PPIX depresses monocytic MHC class II and accessory molecule expression whereas phagocytosis and respiratory burst activities are augmented. Moreover, HO-1 induction inhibits the immunophenotypic differentiation and maturation of MDDC. Functional analysis revealed a decreased proinflammatory cytokine production whereas secretion of the antiinflammatory cytokine IL-10 is increased. Remarkably, the antigen-presenting capacity of MDDC for T-helper cells is diminished both for allo- and for recall-antigens. Adenoviral HO-1 transduction of MDDC confirmed that the effects are mediated by HO-1. These data indicate that an enhanced HO-1 activity switches myeloid DCs to an immature and functionally compromised phenotype and suggest that HO-1 induction represents an important approach for depressing T cell immunity and for the treatment of T cell-dependent skin inflammation.
APA, Harvard, Vancouver, ISO, and other styles
48

Baigrie, Robert John. "Cytokine and other components of the integrated host response to injury." Thesis, University of Cape Town, 1992. http://hdl.handle.net/11427/26464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Long, Matthew Eugene. "Manipulation of the innate immune response and evasion of macrophage host defense mechanisms by Francisella tularensis." Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/1683.

Full text
Abstract:
Tularemia is a potentially fatally illness caused by the facultative intracellular Gram-negative bacterium Francisella tularensis. Virulent strains of F. tularensis can cause a fatal disease after inhalation of a few as ten organisms. Due to the highly pathogenic features of Francisella, it has been designated as a Tier 1 select agent, meaning that its possession and handling is highly restricted. Macrophages are phagocytes that play a central role in the innate immune response to infection that can be used by certain pathogens, including Francisella, as a niche for bacterial replication and dissemination during infection. After infection of macrophages Francisella escapes from the phagosome and replicates in the cytosol, however the bacterial factors required for these aspects of virulence are incompletely defined. Here we describe the isolation and characterization of F. tularensis subspecies tularensis strain Schu S4 mutants in iglI, iglJ, and pdpC, three genes located in the Francisella Pathogenicity Island. Our data demonstrate that these mutants were unable to replicate in macrophages due to a defect in phagosome escape. However, a small percentage of pdpC mutants were able to reach the cytosol and replicate moderately. Both iglJ and pdpC mutants were highly attenuated for virulence in a mouse intranasal infection model, however pdpC but not iglJ mutants, were able to disseminate from the lung before eventual clearance. These data demonstrated that the FPI genes tested were essential for F. tularensis Schu S4 virulence, but suggest that they may have different functions due to the unique phenotype observed for pdpC mutants. Our studies also characterized the role of F. tularensis O-antigen and capsule to facilitate interactions with components of the serum complement system; demonstrating that the O-antigen is required for binding of IgM to the bacteria in order to initiate complement opsonization. IgM dependent complement opsonization of both F. tularensis Schu S4 and LVS strains facilitated enhanced phagocytosis of the bacteria by complement receptors 3 and 4 of human macrophages. In addition, we examined the mechanisms of macrophage cytotoxicity and proinflammatory cytokine secretion that was induced after infection with a Schu S4 LPS O-antigen and capsule mutant. The response to the mutant was dependent on phagosome escapes, suggesting a cytosolic pattern recognition receptor was involved in recognition of the bacteria. We found that the cytotoxic and proinflammatory responses had both similar and distinct requirements between human and murine macrophages. Infection with the O-antigen mutant induced robust proinflammatory cytokine secretion that was dependent on caspase-1, cathepsin B, and ASC while cytotoxicity was partially dependent on these molecules. Importantly, we demonstrated that wild-type Schu S4 predominately activated apoptotic caspases, and not inflammatory caspases, during infection and had a blunted cytotoxic response. This was in contrast to the robust cytotoxicity and activation of inflammatory caspases after infection with the non-virulent strain LVS. Together, these studies demonstrated that the Schu S4 LPS O-antigen and capsule are required for evasion of macrophage cytosolic host defense mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
50

Harbort, Christopher. "Regulation of innate immunity by DNA damage signaling." Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17791.

Full text
Abstract:
Neutrophile sind Zellen des Immunsystems von Säugetieren. Ihre zerstörerische Kraft spielt eine essentielle Rolle bei der Bekämpfung von Mikroorganismen, birgt aber auch das Potential erheblicher Kollateralschäden. Um chronische Entzündungen zu vermeiden, müssen diese Zellen streng reguliert werden. Die Neutrophilen selber nehmen an dieser Regulierung durch das Freisetzen von pro- und antiinflammatorischen Signalen Teil, unter anderem produzieren sie Zytokine oder initiieren rechtzeitig die Apoptose. Ein Eckpfeiler der Regulierung dieser Funktionen ist der oxidative Burst, bei dem Neutrophile reaktive Sauerstoffspezies (ROS) bilden. Die molekularen Ziele von ROS, welche diese Mechanismen regulieren, sind nicht alle identifiziert. Wir haben ataxia-telangiectasia mutated (ATM) Kinase, ein Regulator der DNA-Schadensantwort (DDR), als einen ROS-abhängigen Modulator von Neutrophilen identifiziert. Mutationen in ATM führen zu der Erkrankung Ataxia Telangiectasia (AT). AT Patienten leiden nicht nur unter den Folgen der fehlerhaften DNA-Reparatur sondern zeigen auch inflammationsassoziierte Krankheitserscheinigungen. Diese Beobachtung veranlasste uns, die Neutrophilen von AT Patienten genauer zu untersuchen. Wir zeigen, dass Neutrophile von AT Patienten erhöhte Menge an Zytokinen produzieren und Apoptose verzögern. Wir zeigen auch, dass DNA Schaden die Zytokinproduktion unterdrückt und Apoptose durch einen Mechanismus, der ATM, p38, und Chk2 verwendet initiiert. ROS sind notwendig für die endogene Regulierung dieser Prozesse. Diese Arbeit enthüllt einen neuartigen Mechanismus der Regulierung von Neutrophilen und etabliert die DDR als ein Ziel der ROS-gesteuerten Immunmodulation. Im Zusammenhang wird auch gezeigt, dass dysregulierte Neutrophilenaktivitäten einem inflammatorischen Phänotyp in AT zugrundeliegen könnte. Wir glauben, dass Entzündung eine treibende Kraft hinter Teilen der Pathologie von AT sein könnte und somit ein Ziel für klinische Intervention darstellt.
Neutrophils are cells of the mammalian innate immune system whose inflammatory functions are essential for microbial clearance but cause collateral tissue damage. Inflammation is regulated by both pro- and anti-inflammatory signals, including cytokine production and initiation of apoptosis. A cornerstone of the regulation of these functions is the oxidative burst, by which neutrophils generate reactive oxygen species (ROS). The downstream targets of ROS responsible for regulating these functions are not fully identified. We have identified ataxia telangiectasia mutated (ATM) kinase, a master regulator of the DNA damage response (DDR), as a ROS-dependent modulator of neutrophil responses. Mutations in ATM cause the disease Ataxia-telangiectasia (AT). In addition to disorders resulting from defective DNA repair, AT patients suffer from symptoms linked to inflammation, leading us to examine their neutrophil responses. We report that neutrophils from AT patients overproduce pro-inflammatory cytokines and delay apoptosis. We further show that DNA damage in neutrophils suppresses cytokine production and can initiate apoptosis via a mechanism involving ATM, p38, and Chk2. Furthermore, the oxidative burst was required for activation of ATM to regulate these processes.. This work reveals a novel mechanism for the regulation of neutrophil functions, establishing the DDR as a mediator of immune regulation by ROS. Furthermore, it indicates that neutrophil dysregulation may underlie chronic inflammation in AT patients. We propose that inflammation may be a driving force behind some of the pathology of AT, providing a potential target for clinical intervention for some symptoms of this currently untreatable disease.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography