Dissertations / Theses on the topic 'Immune environnement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 18 dissertations / theses for your research on the topic 'Immune environnement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Cruard, Jonathan. "Le Myélome Multiple et son environnement immunitaire à l’échelle de la cellule unique." Electronic Thesis or Diss., Nantes Université, 2023. http://www.theses.fr/2023NANU1033.
Full textMultiple myeloma (MM) is a hematological cancer in which the tumor cell is derived from the long-lived plasma cell. This pathology is characterized by strong heterogeneity at various levels. This heterogeneity includes alterations intrinsic and extrinsic to tumors, which have an impact on patient prognosis and response to treatment. The development of single-cell sequencing technologies has enabled us to explore new aspects of this diversity. The work presented here first explores the diversity of response to dexamethasone within the MM.1S cell line of MM. This work shows that within this homo- geneous tumoral population there is a diversity of response to treatment. Secondly, we worked on MM together with its immune environment at the single-cell level. In order to better understand how the immune environment evolves during the course of the disease, but also under the pressure of treatment. This as- pect is even more essential as the most recent treatments directly involve the immune environment by redirecting it against the tumor. A better characterization of the immune environment could therefore enable us to better predict the response to treatments, as well as their consequences for the immune environment
Becht, Etienne. "Transcriptomic analysis of the immune microenvironment of non-hematopoietic human tumors." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015PA05T029/document.
Full textTumors grow within a complex microenvironment composed of immune cells, fibroblasts, endothelial cells and other non-malignant cells. The study of the composition of tumor microenvironments has led to classifications with prognostic and theranostic values, as well as the discovery of treatments modulating the composition and the functional orientation of the microenvironment. Concurrently, molecular classifications of tumors have proposed taxonomies within cancers that define groups of patients with different prognoses and are associated with response to treatments. Recent evidence suggest that the phenotype of the malignant cell is a critical determinant in the shaping of its microenvironment, suggesting potential correlations between immune and molecular classifications. The goal of this PhD project was therefore to analyze the microenvironment of molecularly-classified human tumors. Colorectal cancer represents a paradigm for tumor immunology, as it is the humancancer in which it was exemplified that an adaptive immune response can control tumor Growth and metastasis. Conversely, clear-cell renal cell carcinoma represents an exception in tumor immunology, as an extensive adaptive immune response is associated with more aggressive diseases. Molecular transcriptomic classifications were recently proposed for both of these apparently immunologically contrasted cancers. In this work, I propose a methodology that enables the characterization of the tumor microenvironment using transcriptomic data, and apply it to describe the immune contexture of molecular subgroups of colorectal and clear-cell renal cell carcinomas. These analyses argue in favor of the unification of molecular and immune classifications of human cancers, challenge our current views of the relationship between the composition of the tumor microenvironment and patient’s prognosis, and suggest immunotherapeutic approaches that could benefit subgroups of patients in these two cancers
Dechavanne, Célia. "Construction de la réponse anticorps spécifique du paludisme chez le jeune enfant : étude combinée de l’hôte, du parasite et de leur environnement." Thesis, Paris 5, 2012. http://www.theses.fr/2012PA05P608/document.
Full textFour epidemiological studies showed that infants born from mothers with Plasmodium falciparum placental malaria at delivery present a higher susceptibility to plasmodial infections than others. In connection with this observation, we hypothesized that i) the infants’ P. falciparum specific antibody responses are different according to presence or absence of placental malaria at delivery in their mothers and ii) susceptibility could only be induced by antigens that bring the same polymorphisms as those found in infected mothers. Another project consisted to develop a new methodology to distinguish maternal and neonatal antibodies in order to measure accurately neo-synthesized antibodies in the first months of life. A birth cohort of 620 newborns was established in an area endemic for malaria. Infants were followed-up until 18 months of age and their antibody responses specific for 7 P. falciparum antigens were quarterly measured. The emergence of the immune maturation process was observed in 18-months-infants. The acquisition of specific antibody responses was not impacted by placental malaria. The new methodological approach leading to distinguish maternal and neonatal antibodies was validated. The genetic characterization of the parasite antigen polymorphisms in mothers at delivery and their infants during the follow-up, in link to environmental data, led partially to the validation of the immune tolerance hypothesis
Petitprez, Florent. "Integrated analysis and clinical impact of immune and stromal microenvironments in solid tumors Quantitative analyses of the tumor microenvironment composition and orientation in the era of precision medicine Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies Tumor microenvironment quantification tool draws a comprehensive map of the tumor microenvironment of non-hematologic human cancers The mMCP-counter method to estimate abundance of tissue-infiltrating immune and stromal cell populations using gene expression in murine samples Immune sub-classes in sarcoma predict survival and immunotherapy response Intra-tumoral tertiary lymphoid structures are associated with a low risk of hepatocellular carcinoma early recurrence Association of IL-36γ with tertiary lymphoid structures and inflammatory immune infiltrates in human colorectal cancer Immune-based identification of cancer patients at high risk of progression Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma PD-L1 expression and CD8+ T-cell infiltrate are associated with clinical progression in patients with node-positive prostate cancer Intratumoral classical complement pathway activation promotes cancer progression." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB104.
Full textTumors are composed not only of malignant cells but also contain a vast variety of non-malignant cells, notably immune cells forming the tumor microenvironment (TME). The composition of the TME was shown to be associated with clinical outcome for cancer patients, in terms of survival and therapeutic responses. With the relatively recent development of immunotherapies targeting specific elements of the TME, tumor immunology has risen a strong interest and holds a strong therapeutic potential. Several methodologies have been developed to study the composition of the TME with an increased precision. Notably, some methods such as MCP-counter enable the use of the tumor bulk transcriptome to quantify cell populations composing the TME. The methodological aspect of this PhD project consisted in setting up an enhanced version of MCP-counter that can be readily applied to RNA-Seq data, as well as propose an adaptation of the method for mouse models. Using MCP-counter, the TME of large series of tumors can be easily analyzed. The application part of this PhD work consisted of applying MCP-counter to establish an immune-based classification of soft-tissue sarcoma, a rare, aggressive and heterogeneous cancer type. The immune classification notably allowed to identify immune low and high groups, and a group characterized by a strong vasculature. Interestingly, the classification was notably found to be predictive of the patients' response to immunotherapies. It also highlighted an important role of tertiary lymphoid structures (TLS). TLS are lymph-node-like structures composed of T and B cells that form within the tumor or in close proximity. They are a site of formation and maturation of antitumoral immune responses. TLS are raising a growing interest in many malignancies. In most cancer types, a strong infiltration by T cells, in particular CD8+ T cells, is associated with a favorable clinical outcome. However, clear-cell renal cell carcinoma and prostate cancer are exceptions to this general rule. Indeed, in these urological cancers, an increased infiltration by T cells is associated with a decreased patient survival and with earlier relapse and disease progression. In a third part of this thesis, these exceptions are investigated with more details by scrutinizing the TME, and questioning the implication of the complement system. Overall, this thesis presents how the combination of several analysis methods, in silico, in situ and in vivo, can help achieve an extremely precise description of the TME. Knowing accurately what cell populations and what their functional orientation can help guide patients care and improve clinical outcome. Complete description of the TME opens the way towards personalized medicine for cancer patients
Lopès, Amélie. "Infection chronique par les souches Escherichia coli colibactine-positives : impacts sur le micro-environnement immunitaire colique dans le contexte du cancer colorectal." Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAS006/document.
Full textMultiple evidences show the role of microbiota in colorectal cancer (CRC) development and anti-tumor drug responses. Various independent studies demonstrated that Escherichia coli strains with specific invasive properties and virulence factors abnormally colonize CRC patient mucosa. More than half of these strains harboring the pks pathogenic island coding for the synthesis of a genotoxin named colibactin. This genotoxin can impair directly DNA synthesis or cellular cycle and provokes genomic instability. Many different studies highlighted others bacteria-associated mechanisms leading to colorectal carcinogenesis as crosstalk between immune responses, inflammatory events, and/or cell senescence induction. However, the mechanisms by which CRC-associated E. coli promote colorectal carcinogenesis are diverse and some-what specific to the animal models and the microbial status of the animals (germ-free or Specific Pathogen Free). However, modulation of immune response and inflammation seems to play a central role in these mechanisms.The aim of this work was to evaluate the impact of chronic infection by colibactin-positive E. coli in a CRC reference model, the APCMin/+ mice colon focusing on inflammation and immune cells. First, we developed and validated an innovative method to quantify immune cells in APCMin/+ mice, based on immunostainings and digital image analysis. Thanks to the machine learning approach, we succeeded to precisely discriminate, quantify and localize these cells in three regions of interest: mucosa, lymphoid follicle and tumor. After the complete validation of this new method, we accurately examined the impact of a chronic infection with a colibactin-positive E. coli strain isolated from a CRC patient, on the APCMin/+ colon immune microenvironment. Particularly, we demonstrated the induction of a pro-carcinogenic environment by these bacteria in vivo, in a colibactin dependent manner, with both an increase of the pro-inflammatory neutrophil enzyme (myeloperoxydase) and cells, and a decrease of anti-inflammatory cytokines. This carcinogenesis-associated context is emphasized by the decrease of anti-tumor T cells in colon mucosa and tumor. This phenomenon is equally observed in CRC patients, with a decrease of T cells in patient tumors, which are harboring the colibactin-positive E. coli. Finally, we demonstrated for the first time that colibactin-positive E. coli infection induce resistance to an anti-tumor immunotherapy treatment based on PD-1 immune checkpoint blockade. Our results suggest that the decrease of T cells induce by colibactin-positive E. coli chronic infection could lead to the impairment of an immunotherapy response. To conclude, this thesis work confirms the crosstalk between some specific bacteria from intestine microbiota and the immune system in carcinogenesis and anti-tumor drug efficacy. In longer term, these results suggest that the colibactin-positive E. coli presence could be used as a poor prognosis biomarker in CRC and particularly to predict response to anti-PD-1 immunotherapy
Dechavanne, Célia. "Construction de la réponse anticorps spécifique du paludisme chez le jeune enfant : étude combinée de l'hôte, du parasite et de leur environnement." Phd thesis, Université René Descartes - Paris V, 2012. http://tel.archives-ouvertes.fr/tel-00856581.
Full textLeruste, Amaury. "Immune context of malignant rhabdoid tumors : description and identification of new therapeutic targets." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS050.
Full textRhabdoid tumors (RT) are highly undifferentiated cancers occurring in infancy and early childhood, with a median age at diagnosis about 20 months. These tumors are characterized by the biallelic inactivation of SMARCB1 tumor suppressor gene, core member of the SWI/SNF complex, one major chromatin remodeling actor, in an otherwise highly stable genome. The prognosis of RT is dismal with overall survival hardly reaching 30% in most series, despite particularly aggressive conventional treatment. Immunotherapy approaches has gained a striking success within some adult cancer types and recent analyses of immune cell content of pediatric cancers don’t reveal a high rate of infiltrated tumors, except in few tumor types such as intracranial rhabdoid tumors. Then, we conducted a comprehensive analysis of the immune context of both human RT cohorts and a mouse RT model, including at single cell level. We identified a high recurrence of infiltrated tumors, in a RT-subgroup related manner, composed of both myeloid cells including cells with immune suppressive phenotypes, and T cells with notably a tissue resident memory phenotype demonstrating a high clonal expansion highly suggestive of immunogenicity. We identified common targetable immune populations between human and mouse RTs, and found that targeting both T and myeloid infiltrating cells was able to induce complete anti-tumor response with induced memory, confirming the immunogenic properties of RTs, and identifying new therapeutic strategies of clinical relevance. We finally identified that RTs were the site of SMARCB1-dependent endogenous retroviruses reexpression, with subsequent activation of interferon signaling, likely triggering the immune response in the context of RT, and providing a basis of non-coding genome-driven immunogenicity for these tumors
Czerwińska, Urszula. "Unsupervised deconvolution of bulk omics profiles : methodology and application to characterize the immune landscape in tumors Determining the optimal number of independent components for reproducible transcriptomic data analysis Application of independent component analysis to tumor transcriptomes reveals specific and reproducible immune-related signals A multiscale signalling network map of innate immune response in cancer reveals signatures of cell heterogeneity and functional polarization." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB075.
Full textTumors are engulfed in a complex microenvironment (TME) including tumor cells, fibroblasts, and a diversity of immune cells. Currently, a new generation of cancer therapies based on modulation of the immune system response is in active clinical development with first promising results. Therefore, understanding the composition of TME in each tumor case is critically important to make a prognosis on the tumor progression and its response to treatment. However, we lack reliable and validated quantitative approaches to characterize the TME in order to facilitate the choice of the best existing therapy. One part of this challenge is to be able to quantify the cellular composition of a tumor sample (called deconvolution problem in this context), using its bulk omics profile (global quantitative profiling of certain types of molecules, such as mRNA or epigenetic markers). In recent years, there was a remarkable explosion in the number of methods approaching this problem in several different ways. Most of them use pre-defined molecular signatures of specific cell types and extrapolate this information to previously unseen contexts. This can bias the TME quantification in those situations where the context under study is significantly different from the reference. In theory, under certain assumptions, it is possible to separate complex signal mixtures, using classical and advanced methods of source separation and dimension reduction, without pre-existing source definitions. If such an approach (unsupervised deconvolution) is feasible to apply for bulk omic profiles of tumor samples, then this would make it possible to avoid the above mentioned contextual biases and provide insights into the context-specific signatures of cell types. In this work, I developed a new method called DeconICA (Deconvolution of bulk omics datasets through Immune Component Analysis), based on the blind source separation methodology. DeconICA has an aim to decipher and quantify the biological signals shaping omics profiles of tumor samples or normal tissues. A particular focus of my study was on the immune system-related signals and discovering new signatures of immune cell types. In order to make my work more accessible, I implemented the DeconICA method as an R package named "DeconICA". By applying this software to the standard benchmark datasets, I demonstrated that DeconICA is able to quantify immune cells with accuracy comparable to published state-of-the-art methods but without a priori defining a cell type-specific signature genes. The implementation can work with existing deconvolution methods based on matrix factorization techniques such as Independent Component Analysis (ICA) or Non-Negative Matrix Factorization (NMF). Finally, I applied DeconICA to a big corpus of data containing more than 100 transcriptomic datasets composed of, in total, over 28000 samples of 40 tumor types generated by different technologies and processed independently. This analysis demonstrated that ICA-based immune signals are reproducible between datasets and three major immune cell types: T-cells, B-cells and Myeloid cells can be reliably identified and quantified. Additionally, I used the ICA-derived metagenes as context-specific signatures in order to study the characteristics of immune cells in different tumor types. The analysis revealed a large diversity and plasticity of immune cells dependent and independent on tumor type. Some conclusions of the study can be helpful in identification of new drug targets or biomarkers for immunotherapy of cancer
Gonçalves, Maia Maria João. "Le syndrome Xeroderma Pigmentosum : Un nouveau modèle pour l’étude du rôle des fibroblastes dans la modulation de la réponse immunitaire innée contre les cellules cutanées cancéreuses." Electronic Thesis or Diss., Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR4037.
Full textSkin cancer etiology is related to genetic mutations arising after ultraviolet (UV) sun exposure. The propagation of cancer cells is also dependent of a crosstalk with cells present in the surrounding microenvironment, mainly cancer associated fibroblasts (CAF) and immune cells. Xeroderma pigmentosum (XP) is a genetic disease that comprises seven groups of genetic complementation (XP-A to XP-G). XP patients present a default in the mechanism responsible for the repair of UV-induced DNA lesions. They are prone to develop skin cancers with high frequencies early in their life. XP-C is the most represented complementation group in Europe and in XP-C patients squamous cell carcinoma (SCC) are more frequent than basal cell carcinoma (BCC) (ratio 5:1). SCC have high metastatic potential compared to BCC. Previous studies suggested that the immune responses in XP patients could be altered with defects in their NK lytic activity and a decrease in the levels of circulating T lymphocytes. The main objective of this thesis was to identify microenvironment factors that could contribute to the progression of aggressive skin cancers using XP-C disease cells as a model of skin cancer susceptibility. Comparative transcriptomic analysis of WT and XP-C dermal patient’s fibroblasts revealed that CLEC2A, a ligand of the activating NK receptor NKp65 implicated in the activation of the innate immune system, is expressed in WT fibroblasts and absent in XP-C fibroblasts. Additional work showed that CLEC2A level is decreased in WT fibroblasts during replicative senescence, is absent in CAF and SCC, and is down regulated by soluble factors secreted by SCC cells. These results suggest that the loss of CLEC2A may induce a deficit of NK cell activation in the tumor microenvironment of SCC and in the dermis of XP-C patients. Elaboration of 3D skin culture models including NK cells and, in the presence or absence of blocking anti-CLEC2A antibody, allowed us to show that CLEC2A/NKp65 interaction regulates SCC cells invasion through a crosstalk between fibroblasts and NK cells. Our results suggest that the expression of CLEC2A in fibroblasts contributes to skin immune surveillance while, conversely, its absence under yet unidentified factors, favors the development of aggressive cancers in XP-C patients. CLEC2A could be a potential target in the fight against SCC progression
Wierz, Marina. "Characterization of the Tumor Microenvironment in Chronic Lymphocytic Leukemia by Mass Cytometry : Implications for Immunotherapy Dual PD1/LAG3 Immune Checkpoint Blockade Limits Tumor Development in a Murine Model of Chronic Lymphocytic Leukemia High-dimensional Mass Cytometry Analysis Revealed Microenvironment Complexity in Chronic Lymphocytic Leukemia." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASL020.
Full textChronic lymphocytic leukemia (CLL), the most frequent leukemia in adults, is characterized by the accumulation of mature B lymphocytes in peripheral blood and lymphoid tissues. The progression of CLL is highly dependent on complex interactions within the tumor microenvironment (TME) and despite recent advances in CLL treatment targeting the TME, CLL remains an incurable disease. Therefore, we wanted to deeply characterize the immune landscape in the TME in murine and human CLL to identify novel potential targets for an immunotherapeutic approach. For this purpose, we performed a comprehensive and extensive characterization by high-dimensional mass cytometry to establish an extensive cartography of immune cell subsets. We demonstrated that relevant changes in the immune cell composition, especially the expansion of specific lymphoid and myeloid immune cell subsets, are associated with strong immune suppression thereby contributing to an escape phenotype in CLL. These CLL-associated changes can be restored in preclinical models by a dual PD1/LAG3 immune checkpoint blockade. Moreover, we demonstrated a high T cell heterogeneity between patients that can be stratified according to their T cell profile, and the correlation of specific T cell subsets with time to initial treatment, highlighting their potential prognostic value. In conclusion, with this first CyTOF study in CLL, we expanded the current knowledge of the phenotypic complexity of the TME. We demonstrated that dual targeting of immune checkpoints efficiently controlled CLL development in preclinical models and therefore could have potential benefits in CLL to restore a functional anti-tumor immunity
Deligny, Christophe. "Caractéristiques des maladies auto-immunes et systémiques aux Antilles-Guyane dans leur environnement." Thesis, Antilles, 2015. http://www.theses.fr/2015ANTI0001/document.
Full textAuto-immunes and systemic diseases are priorities for researchers since 15 years. This is related to the emergence of biological therapies, associated to great efficacy. Although, these diseases are heterogeneous, depending of different parameters such as ethnicity or geography. In the African descent population, we encounter unusual or particular manifestations of these diseases. Also, the knowledge of epidemiology and population based descriptions are crucial to properly initiate works on these populations, but also to understand a particularly complex physiopathology by using differences between populations. We describe in this work the population based characteristics of pure cutaneous lupus and systemic lupus, including an epidemiology of the incidence of the lowest incidence ever found in a population of African heritage. We also describe a population based series of anti-synthetase syndrome, confirming that the presentation is totally different compared to caucasians, and allows in Martinique the incidence, never explored before. We also provide the first evaluation of Kikuchi-Fujimoto disease in a population of African origin, and the first incidence ever realized. We do the same evaluation of the epidemiology of Behcet’s disease in a black origin population that shows that this disease was at a similar frequency in Martinique and in Europe. Micropolyangeitis, polyarteritis, eosinophilic granulomatosis with polyangeitis and Granulomatosis with polyangeitis were evaluated in an epidemiologic study in Martinique, with addition of some cases from other French American region for a more powerful characteristics description. These diseases seem less frequent than in Europe, associated with less severity except for micropolyangeitis. EUROLUPUS, a protocol with low dose IV cyclophosphamide and low dose steroids, used to treat proliferative nephritis of systemic lupus is shown to have the same efficacy in Martinique than in patients of European origin. Primary Sjögren syndrome, evaluated in Martinique, is very similar in expression than what is found in Europe. The decrease overtime of aseptic osteonecrosis, a steroid side effect, is a witness of better control of systemic lupus activity with less usage permitted by protocols and new immunosuppressive drugs such as mycophenolate. Systemic sclerosis is described as very close to African American in a population based study in Martinique and Guadeloupe. We finally show that the rare ENT involvement of idiopathic inflammatory myositis is frequent in our population, associated with poor outcome, and surprisingly frequently related to systemic lupus and necrotizing myositis associated to SRP antibody but not to inclusion body myositis. To conclude, we allow an amount of description of these diseases in our region, including pioneer studies. This works tends to be the basis for studies to be continued in a more fundamental way in our countries
Girard, Pauline. "Pathophysiologie des pDCs et des Lymphocytes Tγδ en contexte de mélanome, et potentiel de leur interaction pour le développement de nouvelles thérapies The features of circulating and tumor-infiltrating gdT cells in melanoma patients display critical perturbations with prognostic impact on clinical outcome Potent Bidirectional Cross-Talk Between Plasmacytoid Dendritic Cells and γδT Cells Through BTN3A, Type I/II IFNs and Immune Checkpoints." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALV042.
Full textBoth pDCs and γδT cells harbor critical roles in immune responses induction and orientation. Their unique features, high functional plasticity and ability to interact with many immune cell types allow them to bridge innate and adaptive immunity. They actively contribute to protective and pathogenic immune responses, which render them very attractive both as targets and vectors for cancer immunotherapy. Yet, γδT cells have not been extensively explored in melanoma, and despite strategic and closed missions, cross-talks between pDCs and γδT cells have not been deciphered yet, neither in healthy context nor in cancers, especially in melanoma where the long-term control of the tumor still remains a challenge. We provided here a detailed investigation of the phenotypic and functional properties of circulating and tumor-infiltrating γδT cells in melanoma patients, as well as their impact on clinical evolution. We also characterized the bidirectional cross-talks between pDCs and γδT cells both from healthy donor’s blood, patient’s blood and tumor micro-environment. Our study highlighted that melanoma hijacked γδT cells to escape from immune control, and revealed that circulating and tumor-infiltrating γδT cell features are promising potential biomarkers of clinical evolution. We also demonstrated crucial bidirectional interactions between these key potent immune players though type I and II IFN and BTN3A that are dysfunctional in the context of melanoma. Reversion of the dysfunctional bidirectional cross-talks in melanoma context could be achieved by specific cytokine administration and immune checkpoint targeting. We also revealed an increased expression of BTN3A on circulating and tumor-infiltrating pDCs and γδT cells from melanoma patients but stressed out its potential functional impairment.Thus, our study uncovered that melanoma hijacked pDCs/ γδT cells bidirectional interplay to escape from immune control, and pointed out BTN3A dysfunction. Such understanding will help harnessing and synergizing the power of these potent immune cells to design new therapeutic approaches exploiting their antitumor potential while counteracting their skewing by tumors to improve patient outcomes. Our findings pave the way to manipulate these potent and promising cell partners to design novel immunotherapeutic strategies and restore appropriate immune responses in cancers, infections and autoimmune diseases
Jary, Marine. "Analyse du microenvironnement et de l'oncogenèse des cancers colorectaux surexprimant l’Angiopoiétine 2." Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCE016.
Full textColorectal cancer (CRC) is a severe and frequent disease, with important survival improvement due to therapeutic new approaches and surgical methods, even in metastatic setting. It is an heterogeneous entity, and personalized strategies are mandated, whereas few predictive and prognostic biomarkers are available in practical care. Molecular classifications are useful to better understand CRC biological characteristics, but they do not have predictive values, and seem to be inadequate for metastatic setting. Seric biomarkers are attractive since they could recapitulate tumor features, while being simpler and less expansive. There is a need to investigate surrogacy biomarkers illustrating intra tumoral microenvironment, in order to adapt treatment strategies.This thesis is about the clinical and molecular characterization of Angiopoietin 2 (ANGPT2) associated colorectal cancer. Assessment of microenvironment and peripheral immune Th1 response are performed and correlated with this entity.Prognostic value of ANGPT2 in metastatic colorectal cancer was studied in the first part of the manuscript. We described that ANGPT2 plasmatic levels were associated with a worst overall survival in metastatic setting. In the second part, using the open source transcriptomic tools, we decided to define the specific molecular signaling pathways correlated to ANGPT2 expression in CRC and its prognostic value in localized CRC. A specific signature was drawn, combining genes associated with stroma, invasion, angiogenesis, and chemo-resistance. Looking for associated secreted proteins, we could identify a seric signature (combining STC1, CD138 and ANGPT2), predictive for chemo-resistance. An negative correlation was observed between ANGPT2 signature and immune response. The last part of the thesis then explored the prognostic value of anti TERT peripheral immune Th1 response in metastatic colorectal cancer (Epitopes-CRC02 study), and validated its beneficial role for predicting OS. A negative correlation was confirmed, in seric measurement between CD4 immune response and ANGPT2.This work paves the way for individualized treatments in tumors harboring ANGPT2 associated characteristics', targeting the stromal and immune microenvironment. This immune and stromal biomonitoring is feasible and have to be associated to futures clinical studies. Future prognostic scores should probably assess the place of these biomarkers in order to improve their discriminant values
Grandal, Rejo Beatriz. "Beyond Breast Cancer : The Interplay of Immunity, Comedications, and Comorbidities in Treatment Response and Outcomes." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASL063.
Full textCancer caused almost 10 million deaths in 2020 and is predicted to affect nearly 24.5 million people by 2035 due to lifestyle changes, aging, and environmental factors. Breast cancer (BC) is the most frequent cancer diagnosis and the first cause of oncology mortality among females. The incidence of BC escalates with increasing âge, paralleling the rising prevalence of co-existing conditions (comorbidities) and chronic médication prescriptions (comedications), reported in roughly half of ail cancer patients. Administering chemotherapy prior to surgery (NAC) allows clinicians to evaluate in vivo tumor chemosensitivity. The objective of this thesis is to perform a comprehensive analysis to investigate the intricate relationships among tumor-infiltrating lymphocytes (TILs), checkpoints, genetic déterminants, breast cancer subtypes, comedications, comorbidities, treatment response, and oncological outcomes in patients with breast cancer. This objective will be achieved via an intégrative examination of datasets from real-world evidence (RWE) and a post-hoc analysis of randomized controlled trials (RCTs). The opening section of this thesis provides a comprehensive review of the neoadjuvant treatment paradigm in breast cancer, focusing on the interconnectedness of tumor biology, TILs,chemosensitivity, and survival. This research offers valuable insights into the intricate network that governs treatment outcomes. The subséquent segment seeks to study the rôle of comedications in cancer treatment by examining the associations between comedication use, comorbidities, immune infiltration, and treatment response. This chapter aims to identify unsuspected interactions that may improve patient outcomes by discovering novel therapeutic applications for existing drugs (drug repurposing). Moreover, we undertake an in-depth examination of the effects of regularly prescribed concomitant médications on BC survival using data from the French National Health Data System (SNDS). We endeavor to delineate a detailed map of potential interactions between concomitant médications and survival in the context of the entire French population. In conclusion, BC epitomizes a complex network of tumor and microenvironment interactions, with numerous influencing factors yet to be fully elucidated. Neoadjuvant settings and vast database intégration can identify novel therapeutic targets and drug-drug interactions, which are vital for advancing cost-effective, safe précision medicine
Thomas, Audrey. "Effet sur le microenvironnement tumoral d’une modulation pharmacologique du stress oxydant." Thesis, Paris 5, 2012. http://www.theses.fr/2012PA05T086/document.
Full textSeveral reports have demonstrated the involvement of reactive oxygen species (ROS) in carcinogenesis, through promotion of cancer cell proliferation and invasion. But ROS could also have consequences on non cancerous cells which are part of the tumor microenvironment, such as immune cells. Therefore, a pharmacological modulation of oxidative stress can induce a cytotoxic effect on tumor cells but its consequences on microenvironment are unknown. The aim of our studies was to evaluate the effects of a pharmacological modulation of oxidative stress on immune cells from the tumor microenvironment. At low dose, Arsenic trioxide (As203), an oxidative stress modulator, was shown to exert antitumor effects in colon tumor-bearing mice. We observed that this effect was related to As203-induced regulatory T cells (Tregs) -selective depletion in vitro and in vivo and was mediated by oxidative and nitrosative bursts. The differential effect of As203 on Tregs versus other CD4 cells was related to difference in the cells’redox status. We also observed that vinorelbine, an anticancer agent, could interfere with the antitumor immune response. We showed that vinorelbine could alter the function of immune cells surrounding tumor cells by a bystander toxic effect against tumor effector cells. In vivo experiment in A549 tumor bearing nude mice showed that adoptive transfer of A549 immune splenocytes was not able to delay tumor growth when vinorelbine-pretreated A549 cells were used for immunization. This effect was mediated by ROS and was inhibited by an oxidative stress modulator, mangafodipir, which restored antitumor immune function. Therefore, our work showed that oxidative stress modulators can influence tumor microenvironment and more specifically, immune cells. They could be used to restore antitumor immune response
Bichet, Coraline. "Ecologie évolutive de la malaria aviaire : effets des caractéristiques de l'hôte et de l'environnement." Phd thesis, Université de Bourgogne, 2012. http://tel.archives-ouvertes.fr/tel-00907956.
Full textGaland, Claire. "Etude de la présence et du rôle des lymphocytes Th17 dans le micro-environnement des lymphomes B murins." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00650093.
Full textAnna, François. "Développement d'une immunothérapie anti-tumorale basée sur un récepteur antigénique chimérique (CAR) ciblant le point de contrôle immunitaire HLA-G : implications pour les tumeurs et leur microenvironnement." Thesis, Université de Paris (2019-....), 2019. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=4021&f=26655.
Full textOver the last decade, anti-tumor immunotherapies have been a breakthrough in the oncology field following the clinical successes obtained with immune checkpoint inhibitors (ICPs) or chimeric antigenic receptors (CAR) based therapies. However, they are less effective against solid tumors, especially because of the lack of tumor specific antigen and of a tumor microenvironment capable of inhibiting the immune response favoring the tumor expansion. The HLA-G molecule is an immunosuppressive protein originally exclusively demonstrated to be involved in maternal-fetal tolerance but whose function has been hijacked by tumors to inhibit and escape from immune responses. HLA-G is now identified as an exquisite tumor associated antigen and its inhibition is crucial to restore the anti-tumor immune responses. Yet, no immunotherapy directed against HLA-G has been developed to date.The lack of effective treatment against or targeting HLA-G is related to the inefficiency to induce antibodies against this complex protein since HLA-G could be expressed through several isoforms that are immunosuppressives. In the first part of this study, thanks to an original immunization method based on the use of lentiviral vectors, we demonstrate the possibility to generate antibodies which are capable to recognize the HLA-G interaction domain with its receptors and are expected to inhibit the ICP function of HLA-G. The second part describes a CAR-T cell immunotherapy targeting HLA-G for its TAA properties. We first focused on the regulation and on the expression of the CAR chain at the transcriptional level. This approach was meant to limit the side effects caused by CAR therapies such as continuous activation of the CAR-T cells or elimination of healthy cells expressing the targeted antigen. We then generated two new 3rd generation CARs demonstrated to specifically recognize major HLA-G isoforms expressed by tumor cells and to eradicate HLA-G expressing tumor cells in vitro and in vivo. Several optimizations were carried out on the CAR chain structure to increase CAR-T cells cytotoxic function and to control their persistence through the insertion of the iC9 suicide gene. Given the results presented here, we provide the first vitro and vivo proofs of concept that a CAR therapy directly targeting HLA-G, and more generally an ICP is strikingly efficient.Finally, we discussed the potential for both anti-HLA-G blocking monoclonal antibodies and CAR-T cells immunotherapies against solid tumors and its implication against the tumor microenvironment and possible combinations with other immunotherapies