Academic literature on the topic 'Imaging in a neural tissue'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Imaging in a neural tissue.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Imaging in a neural tissue"
KUHAR, M. "Imaging receptors for drugs in neural tissue." Neuropharmacology 26, no. 7 (July 1987): 911–16. http://dx.doi.org/10.1016/0028-3908(87)90069-4.
Full textYadav, Rajiv, Sushmita Mukherjee, Frederick R. Maxfield, Jay K. Jhaveri, Sandhya Rao, Robert A. Leung, E. Darracott Vaughan, Watt W. Webb, and Ashutosh K. Tewari. "IMAGING OF PERIPROSTATIC NEURAL TISSUE WITH MULTIPHOTON MICROSCOPY." Journal of Urology 179, no. 4S (April 2008): 275–76. http://dx.doi.org/10.1016/s0022-5347(08)60801-0.
Full textWu, Ed X., and Matthew M. Cheung. "MR diffusion kurtosis imaging for neural tissue characterization." NMR in Biomedicine 23, no. 7 (July 9, 2010): 836–48. http://dx.doi.org/10.1002/nbm.1506.
Full textNiesner, Raluca, Volker Siffrin, and Frauke Zipp. "Two-Photon Imaging of Immune Cells in Neural Tissue." Cold Spring Harbor Protocols 2013, no. 3 (March 2013): pdb.prot073528. http://dx.doi.org/10.1101/pdb.prot073528.
Full textXuan, Jianhua, Uwe Klimach, Hongzhi Zhao, Qiushui Chen, Yingyin Zou, and Yue Wang. "Improved Diagnostics Using Polarization Imaging and Artificial Neural Networks." International Journal of Biomedical Imaging 2007 (2007): 1–11. http://dx.doi.org/10.1155/2007/74143.
Full textJing, D., Y. Yi, W. Luo, S. Zhang, Q. Yuan, J. Wang, E. Lachika, Z. Zhao, and H. Zhao. "Tissue Clearing and Its Application to Bone and Dental Tissues." Journal of Dental Research 98, no. 6 (April 22, 2019): 621–31. http://dx.doi.org/10.1177/0022034519844510.
Full textRoth, Bradley J., and Peter J. Basser. "Mechanical model of neural tissue displacement during Lorentz effect imaging." Magnetic Resonance in Medicine 61, no. 1 (December 18, 2008): 59–64. http://dx.doi.org/10.1002/mrm.21772.
Full textKlontzas, Michail E., and Alexandros Protonotarios. "High-Resolution Imaging for the Analysis and Reconstruction of 3D Microenvironments for Regenerative Medicine: An Application-Focused Review." Bioengineering 8, no. 11 (November 10, 2021): 182. http://dx.doi.org/10.3390/bioengineering8110182.
Full textZhang, Lechao, Yao Zhou, Danfei Huang, Libin Zhu, Xiaoqing Chen, Zhonghao Xie, Guihua Cui, Guangzao Huang, Shujat Ali, and Xiaojing Chen. "Hyperspectral Imaging Combined with Deep Learning to Detect Ischemic Necrosis in Small Intestinal Tissue." Photonics 10, no. 7 (June 21, 2023): 708. http://dx.doi.org/10.3390/photonics10070708.
Full textSheejakumari, V., and B. Sankara Gomathi. "MRI Brain Images Healthy and Pathological Tissues Classification with the Aid of Improved Particle Swarm Optimization and Neural Network." Computational and Mathematical Methods in Medicine 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/807826.
Full textDissertations / Theses on the topic "Imaging in a neural tissue"
Hui, Sai-kam, and 許世鑫. "Magnetic resonance diffusion tensor imaging for neural tissue characterization." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B42841306.
Full textHui, Sai-kam. "Magnetic resonance diffusion tensor imaging for neural tissue characterization." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B42841306.
Full textEppelheimer, Maggie S. "Identification of Chiari Malformation Type I Brain Morphology and Biomechanics: A Multi-Faceted Approach to Determine Diagnostic and Treatment Criteria." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1595680107882868.
Full textMayerich, David Matthew. "Acquisition and reconstruction of brain tissue using knife-edge scanning microscopy." Texas A&M University, 2003. http://hdl.handle.net/1969.1/563.
Full textAbdeladim, Lamiae. "Large volume multicolor nonlinear microscopy of neural tissues." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX070/document.
Full textMultiphoton microscopy has transformed neurobiology since the 1990s by enabling 3D imaging of thick tissues at subcellular resolution. However the depths provided by multiphoton microscopy are limited to a few hundreds of micrometers inside scattering tissues such as the brain. In the recent years, several strategies have emerged to overcome this depth limitation and to access larger volumes of tissue. Although these novel approaches are transforming brain imaging, they currently lack efficient multicolor and multicontrast modalities. This work aims at developing large-scale and deep-tissue multiphoton imaging modalities with augmented contrast capabilities. In a first chapter, we present the challenges of high-content large-volume brain imaging, with a particular emphasis on powerful multicolor labeling strategies which have so far been restricted to limited scales. We then introduce chromatic serial multiphoton (Chrom-SMP) microscopy, a method which combines automated histology with multicolor two-photon excitation through wavelength-mixing to access multiple nonlinear contrasts across large volumes, from several mm3 to whole brains, with submicron resolution and intrinsic channel registration. In a third chapter, we explore the potential of this novel approach to open novel experimental paradigms in neurobiological studies. In particular, we demonstrate multicolor volumetric histology of several mm3 of Brainbow-labeled tissues with preserved diffraction-limited resolution and illustrate the strengths of this method through color-based tridimensional analysis of astrocyte morphology, interactions and lineage in the mouse cerebral cortex. We further illustrate the potential of the method through multiplexed whole-brain mapping of axonal projections labeled with distinct tracers. Finally, we develop multimodal three-photon microscopy as a method to access larger depths in live settings
Channappa, Lakshmi [Verfasser], and Thomas [Akademischer Betreuer] Euler. "Electrical Imaging of Aberrant Activity in Neural Tissues Using High Density Microelectrode Arrays / Lakshmi Channappa ; Betreuer: Thomas Euler." Tübingen : Universitätsbibliothek Tübingen, 2016. http://d-nb.info/1199615544/34.
Full textRambani, Komal. "Thick brain slice cultures and a custom-fabricated multiphoton imaging system: progress towards development of a 3D hybrot model." Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/22702.
Full textWellen, Jeremy W. "Characterization of soft-tissue response to mechanical loading using nuclear magnetic resonance (NMR) and functional magnetic resonance imaging (fMRI) of neuronal activity during sustained cognitive-stimulus paradigms." Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-0430103-140128.
Full textBernal, Moyano Jose. "Deep learning for atrophy quantification in brain magnetic resonance imaging." Doctoral thesis, Universitat de Girona, 2020. http://hdl.handle.net/10803/671699.
Full textLa cuantificación de la atrofia cerebral es fundamental en la neuroinformática ya que permite diagnosticar enfermedades cerebrales, evaluar su progresión y determinar la eficacia de los nuevos tratamientos para contrarrestarlas. Sin embargo, éste sigue siendo un problema abierto y difícil, ya que el rendimiento de los métodos tradicionales depende de los protocolos y la calidad de las imágenes, los errores de armonización de los datos y las anomalías del cerebro. En esta tesis doctoral, cuestionamos si los métodos de aprendizaje profundo pueden ser utilizados para estimar mejor la atrofia cerebral a partir de imágenes de resonancia magnética. Nuestro trabajo muestra que el aprendizaje profundo puede conducir a un rendimiento de vanguardia en las evaluaciones transversales y competir y superar los métodos tradicionales de cuantificación de la atrofia longitudinal. Creemos que los métodos transversales y longitudinales propuestos pueden ser beneficiosos para la comunidad investigadora y clínica
Killich, Markus. "Tissue Doppler Imaging." Diss., lmu, 2007. http://nbn-resolving.de/urn:nbn:de:bvb:19-67089.
Full textBooks on the topic "Imaging in a neural tissue"
Brandt, Roland, and Lidia Bakota. Laser scanning microscopy and quantitative image analysis of neuronal tissue. New York: Humana Press, 2014.
Find full textBilston, Lynne E., ed. Neural Tissue Biomechanics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-13890-4.
Full textBilston, Lynne E. Neural Tissue Biomechanics. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textMaeda, Nobuaki. Neural proteoglycans, 2007. Trivandrum, India: Research Signpost, 2007.
Find full textD, Murphey Mark, ed. Imaging of soft tissue tumors. 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2006.
Find full textVanhoenacker, Filip M., Paul M. Parizel, and Jan L. Gielen, eds. Imaging of Soft Tissue Tumors. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46679-8.
Full textKang, Heung Sik, Sung Hwan Hong, Ja-Young Choi, and Hye Jin Yoo. Oncologic Imaging: Soft Tissue Tumors. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-287-718-5.
Full textDe Schepper, Arthur M., Paul M. Parizel, Luc De Beuckeleer, and Filip Vanhoenacker, eds. Imaging of Soft Tissue Tumors. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-07856-3.
Full textDe Schepper, Arthur M., Paul M. Parizel, Frank Ramon, Luc De Beuckeleer, and Jan E. Vandevenne, eds. Imaging of Soft Tissue Tumors. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-07859-4.
Full textHiger, H. Peter, and Gernot Bielke, eds. Tissue Characterization in MR Imaging. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-74993-3.
Full textBook chapters on the topic "Imaging in a neural tissue"
Huisman, H. J., and J. M. Thijssen. "Application of Artificial Neural Networks in Ultrasonic Tissue Characterization." In Acoustical Imaging, 355–58. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4419-8772-3_57.
Full textVu, Tania Q., and Sujata Sundara Rajan. "Quantum Dot Imaging of Neural Cells and Tissue." In Nanotechnology for Biology and Medicine, 151–68. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-31296-5_7.
Full textLi, Baowang, and Ralph D. Freeman. "Noninvasive Neural Imaging and Tissue Oxygenation in the Visual System." In Neurovascular Coupling Methods, 97–122. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0724-3_6.
Full textRector, D. M., G. R. Poe, and R. M. Harper. "Fiber Optic Imaging of Subcortical Neural Tissue in Freely Behaving Animals." In Advances in Experimental Medicine and Biology, 81–86. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-2468-1_9.
Full textZhang, Fan, Junlin Yang, Nariman Nezami, Fabian Laage-gaupp, Julius Chapiro, Ming De Lin, and James Duncan. "Liver Tissue Classification Using an Auto-context-based Deep Neural Network with a Multi-phase Training Framework." In Patch-Based Techniques in Medical Imaging, 59–66. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00500-9_7.
Full textAlzyadat, Tariq, Stephan Praet, Girija Chetty, Roland Goecke, David Hughes, Dinesh Kumar, Marijke Welvaert, Nicole Vlahovich, and Gordon Waddington. "Automatic Segmentation of Achilles Tendon Tissues Using Deep Convolutional Neural Network." In Machine Learning in Medical Imaging, 444–54. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59861-7_45.
Full textLi, Dongyu, Yanjie Zhao, Chao Zhang, and Dan Zhu. "In vivo skull optical clearing for imaging cortical neuron and vascular structure and function." In Handbook of Tissue Optical Clearing, 351–68. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003025252-21.
Full textNegahdar, Mohammadreza. "Automatic Grading of Emphysema by Combining 3D Lung Tissue Appearance and Deformation Map Using a Two-Stream Fully Convolutional Neural Network." In Machine Learning in Medical Imaging, 181–90. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-21014-3_19.
Full textIsogai, Yoh, Douglas S. Richardson, Catherine Dulac, and Joseph Bergan. "Optimized Protocol for Imaging Cleared Neural Tissues Using Light Microscopy." In Methods in Molecular Biology, 137–53. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-6688-2_11.
Full textPati, Pushpak, Guillaume Jaume, Lauren Alisha Fernandes, Antonio Foncubierta-Rodríguez, Florinda Feroce, Anna Maria Anniciello, Giosue Scognamiglio, et al. "HACT-Net: A Hierarchical Cell-to-Tissue Graph Neural Network for Histopathological Image Classification." In Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis, 208–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60365-6_20.
Full textConference papers on the topic "Imaging in a neural tissue"
Jaswal, Rajeshwer S., Mohammad A. Yaseen, Buyin Fu, David A. Boas, and Sava Sakadžic. "High-spatial-resolution mapping of the oxygen concentration in cortical tissue (Conference Presentation)." In Neural Imaging and Sensing, edited by E. Duco Jansen and Qingming Luo. SPIE, 2016. http://dx.doi.org/10.1117/12.2212716.
Full textBlodgett, David W., Carissa Rodriguez, Austen Lefebvre, Grace Hwang, Marek Mirski, Eyal Bar-Kochba, Aaron Criss, et al. "Brain imaging for neural tissue health assessment." In Micro- and Nanotechnology Sensors, Systems, and Applications X, edited by M. Saif Islam, Achyut K. Dutta, and Thomas George. SPIE, 2018. http://dx.doi.org/10.1117/12.2305789.
Full textOrnelas, Danielle, Md Hasan, Oscar Gonzalez, Giri Krishnan, Jenny I. Szu, Timothy Myers, Koji Hirota, Maxim Bazhenov, Devin K. Binder, and Boris H. Park. "Optical changes in cortical tissue during seizure activity using optical coherence tomography (Conference Presentation)." In Neural Imaging and Sensing, edited by Qingming Luo and Jun Ding. SPIE, 2017. http://dx.doi.org/10.1117/12.2253415.
Full textKong, Zhenglun, Ting Li, Junyi Luo, and Shengpu Xu. "Automatic tissue image segmentation based on image processing and deep learning." In Neural Imaging and Sensing 2018, edited by Qingming Luo and Jun Ding. SPIE, 2018. http://dx.doi.org/10.1117/12.2293481.
Full textZhong, Qiuyuan, Chen-Yuan Dong, Xinlei Fu, Xiayi Xu, and Shih-Chi Chen. "Fast drug screening platform for cancer treatment based on live tissue culturing and high-speed 3D imaging." In Neural Imaging and Sensing 2022, edited by Qingming Luo, Jun Ding, and Ling Fu. SPIE, 2022. http://dx.doi.org/10.1117/12.2609938.
Full textSalas, Matthias, Johanna Gesperger, Antonia Lichtenegger, Michael Niederleithner, Laurin Ginner, Adelheid Woehrer, Bernhard Baumann, Tilman Schmoll, Wolfgang Drexler, and Rainer A. Leitgeb. "Multi-scale investigation of Alzheimer’s disease brain tissue using 1060 nm swept source optical coherence tomography (Conference Presentation)." In Neural Imaging and Sensing 2020, edited by Qingming Luo, Jun Ding, and Ling Fu. SPIE, 2020. http://dx.doi.org/10.1117/12.2544765.
Full textZhu, Jun, Hercules Freitas, Izumi Maezawa, Lee-Way Jin, and Vivek J. Srinivasan. "1700 nm optical coherence microscopy enables minimally invasive, volumetric, deep tissue optical biopsy of the mouse brain in vivo." In Neural Imaging and Sensing 2021, edited by Qingming Luo, Jun Ding, and Ling Fu. SPIE, 2021. http://dx.doi.org/10.1117/12.2577001.
Full textTurovets, S. I., and D. M. Tucker. "NIR Imaging of Labeled Human Neural Tissue: Computational Feasibility Studies." In Biomedical Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/biomed.2008.bmd18.
Full textBuhmann, Julia M., Stephan Gerhard, Matthew Cook, and Jan Funke. "Tracking of microtubules in anisotropic volumes of neural tissue." In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016). IEEE, 2016. http://dx.doi.org/10.1109/isbi.2016.7493275.
Full textStrenge, Paul, Birgit Lange, Wolfgang Draxinger, Christian Hagel, Christin Grill, Veit Danicke, Dirk Theisen-Kunde, et al. "Demarcation of brain and tumor tissue with optical coherence tomography using prior neural networks." In Optical Coherence Imaging Techniques and Imaging in Scattering Media, edited by Maciej Wojtkowski, Yoshiaki Yasuno, and Benjamin J. Vakoc. SPIE, 2023. http://dx.doi.org/10.1117/12.2670907.
Full textReports on the topic "Imaging in a neural tissue"
Diebold, Gerald J. Electroacoustic Tissue Imaging. Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada456398.
Full textDiebold, Gerald J. Electroacoustic Tissue Imaging. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada435025.
Full textDiebold, Gerald J. Electroacoustic Tissue Imaging. Fort Belvoir, VA: Defense Technical Information Center, April 2003. http://dx.doi.org/10.21236/ada415818.
Full textBao, Gang. Multifunctional Magnetic Nanoparticle Probes for Deep-Tissue Imaging. Fort Belvoir, VA: Defense Technical Information Center, June 2005. http://dx.doi.org/10.21236/ada434280.
Full textSubhash, Ghatu. Cavitation Induced Structural and Neural Damage in Live Brain Tissue Slices: Relevance to TBI. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada612616.
Full textFasching, G. E., W. J. Loudin, D. E. Paton, and N. S. Jr Smith. Use of neural networks in the capacitance imaging system. Technical note. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/10121969.
Full textDiebold, Gerald J. High Resolution X-ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, June 2008. http://dx.doi.org/10.21236/ada488612.
Full textDiebold, Gerald J. High Resolution X-Ray Phase Contrast Imaging With Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, June 2006. http://dx.doi.org/10.21236/ada457700.
Full textDiebold, Gerald J. High Resolution X-Ray Phase Contrast Imaging with Acoustic Tissue-Selective Contrast Enhancement. Fort Belvoir, VA: Defense Technical Information Center, June 2007. http://dx.doi.org/10.21236/ada472126.
Full textPeehl, Donna M. Discovery of Hyperpolarized Molecular Imaging Biomarkers in a Novel Prostate Tissue Slice Culture Model. Fort Belvoir, VA: Defense Technical Information Center, June 2013. http://dx.doi.org/10.21236/ada580953.
Full text