Academic literature on the topic 'Imagerie par résonance magnétique – Interprétation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Imagerie par résonance magnétique – Interprétation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Imagerie par résonance magnétique – Interprétation"
Dunogué, B., P. Cohen, B. Terrier, J. Marmursztejn, D. Duboc, O. Vignaux, and L. Guillevin. "Interprétation diagnostique et pronostique des anomalies cardiaques détectées par imagerie par résonance magnétique au cours de la granulomatose éosinophilique avec polyangéite. Une étude rétrospective de 42 observations." La Revue de Médecine Interne 35 (June 2014): A33. http://dx.doi.org/10.1016/j.revmed.2014.03.018.
Full textGamondès, Delphine. "Imagerie par résonance magnétique." Revue du Podologue 9, no. 49 (January 2013): 22–24. http://dx.doi.org/10.1016/j.revpod.2012.12.006.
Full textGarel, Catherine, Guy Sebag, Patricia Hornoy, Monique Elmaleh, and Max Hassan. "Imagerie par résonance magnétique fœtale." EMC - Radiologie et imagerie médicale - Génito-urinaire - Gynéco-obstétricale - Mammaire 1, no. 1 (January 2006): 1–7. http://dx.doi.org/10.1016/s1879-8543(06)73980-5.
Full textMonnier-Cholley, L., and L. Arrivé. "Imagerie par résonance magnétique thoracique." EMC - Pneumologie 2, no. 1 (February 2005): 1–8. http://dx.doi.org/10.1016/j.emcpn.2004.09.001.
Full textRoy, C. "Imagerie par résonance magnétique du rein." EMC - Néphrologie 1, no. 1 (January 2006): 1–9. http://dx.doi.org/10.1016/s1762-0945(09)49040-5.
Full textNaggara, N., and P. Y. Brillet. "Imagerie par résonance magnétique du thorax." EMC - Radiologie et imagerie médicale - Cardiovasculaire - Thoracique - Cervicale 7, no. 2 (May 2012): 1–10. http://dx.doi.org/10.1016/s1879-8535(12)52728-5.
Full textBazot, M., C. Bornier, A. Cortez, S. Uzan, and E. Daraï. "Imagerie par résonance magnétique et endométriose." EMC - Gynécologie 2, no. 1 (January 2007): 1–9. http://dx.doi.org/10.1016/s0246-1064(07)44640-0.
Full textVignaux, Olivier. "Imagerie par résonance magnétique (IRM) cardiaque." La Presse Médicale 33, no. 13 (July 2004): 891–95. http://dx.doi.org/10.1016/s0755-4982(04)98779-9.
Full textRodrigo, S., M. C. Henry-Feugeas, C. Oppenheim, M. Verny, J. F. Meder, and D. Fredy. "Imagerie des démences par résonance magnétique." La Presse Médicale 33, no. 15 (September 2004): 1027–33. http://dx.doi.org/10.1016/s0755-4982(04)98832-x.
Full textKoob, Mériam, and Jean-Louis Dietemann. "Imagerie par résonance magnétique de l'encéphale." La Presse Médicale 36, no. 3 (March 2007): 492–95. http://dx.doi.org/10.1016/j.lpm.2006.11.004.
Full textDissertations / Theses on the topic "Imagerie par résonance magnétique – Interprétation"
Frindel, Carole. "Imagerie par résonance magnétique du tenseur de diffusion (IRM-TD) en imagerie cardiaque humaine : traitements et premières interprétations." Lyon, INSA, 2009. http://theses.insa-lyon.fr/publication/2009ISAL0098/these.pdf.
Full textThe motivation of this thesis is the study of the spatial organization of cardiac muscle fibers from a series of three-dimensional images acquired by Diffusion Tensor MRI (DT-MRI). This organization is a fundamental property underlying the heart contractile function. However it is very difficult to obtain considering the difficulties inherent to cardiac and respiratory motion. Our goal is to develop new approaches that can cope with physiological motion and noise sensititvity, for the estimation, the analysis and the visualization of myocardial fibers. My work is composed of three main axis. The first compares, in the context of ex vivo clinical studies, the main regularization approaches that operate either on diffusion weighted images or on diffusion tensors. The differences are small enough to conclude that the quality of our DT-MRI data is sufficient to consider all regularization methods as equivalent. The second concerns a new tractography method especially designed for cardiac specificity. It is guided by a global cost functional which allows automatic estimation of cardiac fibers in one shot, without using any initialization points. The latest axis consists in distinguishing a cardiac fibre population into clusters. It is based on the comparison of two classification methods (geometrical and topological type) using three different fibre representation modes. Our results establish that classification may allow automatic identification of myocardial regions from DT-MRI images, which could greatly ease analysis and comparison of these images towards the design of patient-specific therapies
Frindel, Carole. "Imagerie par résonance magnétique du tenseur de diffusion (IRM-TD) en imagerie cardiaque humaine : traitements et premi`eres interprétations." Phd thesis, INSA de Lyon, 2009. http://tel.archives-ouvertes.fr/tel-00473031.
Full textThibeau-Sutre, Elina. "Reproducible and interpretable deep learning for the diagnosis, prognosis and subtyping of Alzheimer’s disease from neuroimaging data." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS495.
Full textThe goal of this PhD was the validation of the existence and the discovery of new subtypes of Alzheimer’s disease, the first cause of dementia worldwide. Indeed, despite its discovery more than a century ago, this disease is still not well defined and existing treatments are only weakly effective, possibly because several phenotypes exist within the disease. In order to explore its heterogeneity, we employed deep learning methods applied to a neuroimaging modality, structural magnetic resonance imaging.However, the discovery of important methodological biases in many studies in our field, as well as the lack of consensus regarding deep learning interpretability, partly changed the main objective of the PhD to focus more on issues of validation, robustness and interpretability of deep learning. Then, to correctly assess the ability of deep learning to detect Alzheimer’s disease, three experimental studies were conducted. The first one is a study of deep learning methods for Alzheimer’s classification and allowed a fair comparison of the methods. The second study found a lack of robustness of classification with deep learning in terms of atrophy patterns discovered using interpretability methods. Finally, the last study proposed a subtype discovery method aided by data augmentation. Although it works on synthetic data, it does not generalize to real data.Experimental results of this PhD were obtained thanks to ClinicaDL, one major contribution of this PhD. It is an open source Python library that was used to improve the reproducibility of deep learning experiments
Troalen, Thomas. "IRM quantitative de la perfusion myocardique par marquage de spins artériels = Quantitative myocardial perfusion MRI using arterial spin labeling." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM5006/document.
Full textMyocardial blood flow is an important factor of tissue viability and function. Diffuse changes in microcirculation preceding heart failure are involved in various cardiac pathologies. This work aim at improving existing techniques allowing quantitative and non-invasive myocardial perfusion assessment using arterial spin labeling. The first step of my work was to design an alternative approach to quantify myocardial blood flow in mice. The so called steady-pulsed ASL (spASL) is based on a regularly repeated pulsed labeling in order to build up a stationary regime of the magnetization under the influence of perfusion. The associated theoretical model has been developed in parallel to quantify tissue blood flow. We have shown that spASL allows to obtain similar results than the previously employed techniques, with the additional advantages of an increased sensitivity to the perfusion signal and a reduced acquisition time. A transfer towards clinical imaging for human applications was then undertaken. The spASL labeling scheme has been preserved while adapting the readout module to the specificities of cardiac MRI when applied to free-breathing human acquisitions. A dedicated post-processing, which includes a retrospective motion correction, has emerged subsequently to improve the robustness of our measurements. In parallel to the developments made for human studies, some optimization of the spASL technique when applied to rodent have been carried out depending on the conducted studies
Trillaud, Hervé. "Imagerie fonctionnelle du rein par résonance magnétique." Bordeaux 2, 1996. http://www.theses.fr/1996BOR28439.
Full textVignaux, Olivier. "Imagerie tissulaire myocardique par résonance magnétique nucléaire." Paris 5, 2002. http://www.theses.fr/2002PA05CD05.
Full textMagnetic Resonance Imaging of myocardical tissue. In patients with known or suspected cardiac desease, an "all-in-one" cardiac imaging modality should theoretically include morphological and functional analysis of the heart, but also information on myocardical tissue in order to detect its infiltration by abnormal tissues or substances and to study its perfusion and viability in ischemic disease. The specific magnetic properties with changes of relaxations times (and thereby increased or decreased signal intensities) induced by some tissues such as fatty infiltration, fibrosis, edema or inflammation allow a characterization of the myocardical tissue. Magnetic Resonance (MR) imaging also offers the potential for a complete functional study of the myocardium including contractility as well as perfusion and viability using cotrasts agents (Gadolinium-DTPA). The aim of this work was to demonstrate the ability of MR imaging to non-invasively characterize myocardical tissue and to assess its function. MR capacities of imaging the myocardical tissue have been applied to myocardical ischemia and to some specific cardiomyopathies
Kuhne, Francois. "Tumeurs choroïdiennes et imagerie par résonance magnétique." Bordeaux 2, 1988. http://www.theses.fr/1988BOR25277.
Full textSerres-Cousiné, Olivier. "Imagerie par résonance magnétique de l'endométriose pelvienne." Montpellier 1, 1990. http://www.theses.fr/1990MON11003.
Full textBlondiaux, Eléonore. "Détection cellulaire en imagerie cardiaque par résonance magnétique." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112054.
Full textObjectives: Cardiac regenerative therapies have grown considerably over the past 10 years. Despite positive effects demonstrated in animals, the clinical benefits obtained in humans are still relatively modest. The objective of this work was to better understand the factors associated with implantation of stem cells through the cell detection techniques in magnetic resonance imaging (MRI) and to improve cardiac stem cell therapy in a murine model of myocardial infarction.Materials and methods: A protocol for cell detection with gradient echo T2* sequences in cardiac MRI in vivo and a method for detection of microvessels in cardiac MRI ex vivo with high resolution Susceptibility Weighted Imaging sequences (SWI) were developed and implemented for the study of vectorization of intravenously injected endothelial progenitors cells (EPC) and the integration and evaluation of the impact of mesenchymal stem cells (MSC) administered via cellularized fibrin patches. A permanent ligation of the left anterior coronary artery was performed in adult rats. The stem cells were magnetically labeled with iron oxide nanoparticles by endocytosis.Results: Cell detection imaging showed no cell implantation in the myocardium and no improvement in cardiac functional parameters after intravenous injection of EPC, despite the aid of magnetic vectorization (n = 16 rats). With a local administration of MSC via cardiac patches (n = 37 rats), the left ventricular ejection fraction (LVEF) was improved in cellularized patches groups compared to controls. Microvascular density was increased in the infarcted and peri – infarcted areas in cellularized patches groups compared to controls in immunohistochemistry and in MRI on SWI sequences. The MRI showed no migration of cells into the myocardium from the patch, as confirmed by immunohistochemistry and Perls staining. The persistence of MSCs on the epicardial surface at D21 after implantation and flow cytometry profiling of cytokines and growth factors produced by MSC argue for cell therapy effectiveness related to the secretion of paracrine factors by stem cells.Conclusion: Susceptibility imaging allows: (1) to study myocardial vessels on SWI sequences ex vivo and (2) to assess the implementation of stem cells on gradient echo sequences T2 * in vivo. These techniques have shown that cardiac patches act as a reservoir of soluble mediators which paracrinally target the angiogenesis in the treatment of heart failure in a murine model. This is in favor of a move towards “cell free” biomaterials containing only molecules of interest such as cytokines or growth factors to circumvent immunogenic and teratogenic constraints related to the use of stem cells
Wagner, Mathilde. "Carcinome hépatocellulaire : diagnostic et caractérisation par imagerie par résonance magnétique." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC101.
Full textImaging allows HCC diagnosis without histological examination in case of typical imaging appearance (association of hypervascularization and washout). However this appearance is not sensitive for the diagnosis of early HCC. We showed the potential of functional imaging for characterization of nodules in the cirrhotic liver. In a rat model of multinodular cirrhosis, the diffusion MRI technique with oscillating gradients (OGSE), performed ex vivo, showed potential for identification of high grade dysplastic nodules and well differentiated HCC. The classic diffusion technique with pulsed gradients (PGSE) was able to separate HCC according to histological grade. The viscoelastic properties of HCC, evaluated by magnetic resonance elastrography in the same rat model and in patients, are different from those of the cirrhotic liver. The increase of loss modulus in HCC only in vivo suggests the importance of perfusion in determining mecanical properties. We have also shown that the delayed venous phase allowed superior washout detection compared to the portal venous phase in HCC explored by MRI. The inter-observer agreement was moderate. Finally, we have shown that viable tumor regions within liver tumors could be differentiated from fibrotic and necrotic regions by measuring the pure diffusion coefficient D, but not the apparent diffusion coefficient ADC, suggesting the applicability of D in tumor characterization and monitoring after treatment
Books on the topic "Imagerie par résonance magnétique – Interprétation"
A, Cabanis E., Effenterre R. van, and Guiraud Chaumeil B, eds. Imagerie par résonance magnétique. London: Libbey, 1988.
Find full textDominique, Doyon, ed. IRM, imagerie par résonance magnétique. 4th ed. Paris: Masson, 2004.
Find full textD, Doyon, ed. IRM: Imagerie par résonance magnétique. 4th ed. Paris: Masson, 2001.
Find full textOlivier, Vigneaux, ed. Imagerie cardiaque: Scanner et IRM. Issy-les-Moulineaux: Masson, 2005.
Find full textComité consultatif des services médicaux et des services en établissement (Canada). Sous-comité sur les guides relatifs aux programmes institutionnels. Imagerie par résonance magnétique: Guide pour l'établissement de normes régissant les services spéciaux dans les hôpitaux. Ottawa, Ont: Direction des services de la santé, 1986.
Find full textVion-Dury, Jean. Cours de résonance magnétique: Spectroscopie et imagerie : de la structure magnétique de la matière à la physiologie. Paris: Ellipses, 2002.
Find full textGerhardt, Paul. Atlas de corrélations anatomiques en tomodensitométrie et imagerie par résonance magnétique. Paris: Flammarion, 1988.
Find full textmilieu, Canada Direction de l'hygiène du. Lignes directrices sur l'exposition aux champs électromagnétiques provenant d'appareils cliniques à résonance magnétique. Ottawa, Ont: Direction de l'hygiène du milieu, 1987.
Find full textMöller, Torsten B. Atlas de poche d'anatomie en coupes sériées: Tomodensitométrie et imagerie par résonance magnétique. 2nd ed. Paris: Flammarion Médecine-sciences, 2001.
Find full textEmil, Reif, and Bourjat Pierre Trad, eds. Atlas de poche d'anatomie en coupes sériées: Tomodensitométrie et imagerie par résonance magnétique : Tête et cou. 3rd ed. Paris: Flammarion médecine-sciences, 2008.
Find full textBook chapters on the topic "Imagerie par résonance magnétique – Interprétation"
Bradač, Gianni Boris, Ron Ferszt, and Brian E. Kendall. "Imagerie par résonance magnétique." In Les méningiomes intracrâniens, 25–35. Paris: Springer Paris, 1991. http://dx.doi.org/10.1007/978-2-8178-0871-0_5.
Full text"Imagerie par résonance magnétique." In Pathologies Musculosquelettiques Douloureuses, 19–21. Elsevier, 2012. http://dx.doi.org/10.1016/b978-2-294-71429-0.00006-6.
Full textGalanaud, D. "Imagerie par résonance magnétique cérébrale." In Imagerie en réanimation, 81–91. Elsevier, 2007. http://dx.doi.org/10.1016/b978-2-84299-821-9.50004-7.
Full textAnstett, P. "Techniques d'angiographie par résonance magnétique." In Neuro-Imagerie Diagnostique, 145–78. Elsevier, 2018. http://dx.doi.org/10.1016/b978-2-294-75394-7.00004-7.
Full text"Imagerie par résonance magnétique (IRM)." In Méga Guide STAGES IFSI, 1110–11. Elsevier, 2015. http://dx.doi.org/10.1016/b978-2-294-74529-4.00346-3.
Full textAlexandre, J., A. Balian, L. Bensoussan, A. Chaïb, G. Gridel, K. Kinugawa, F. Lamazou, et al. "Imagerie par résonance magnétique (IRM)." In Le tout en un révisions IFSI, 1010–11. Elsevier, 2009. http://dx.doi.org/10.1016/b978-2-294-70633-2.50338-3.
Full textHallouët, Pascal. "Imagerie par résonance magnétique (IRM)." In Mémo-guide infirmier, 451. Elsevier, 2010. http://dx.doi.org/10.1016/b978-2-294-71154-1.50094-9.
Full textHallouët, Pascal. "Imagerie par résonance magnétique (IRM)." In Méga Mémo IFSI, 334–35. Elsevier, 2016. http://dx.doi.org/10.1016/b978-2-294-74924-7.50044-0.
Full text"13 Imagerie par résonance magnétique." In Mathématiques pour l’imagerie médicale, 191–206. EDP Sciences, 2021. http://dx.doi.org/10.1051/978-2-7598-2496-0.c014.
Full textKastler, B., D. Vetter, and Z. Patay. "Artéfacts en imagerie par résonance magnétique." In Comprendre L'IRM, 209–35. Elsevier, 2011. http://dx.doi.org/10.1016/b978-2-294-71044-5.00012-9.
Full textConference papers on the topic "Imagerie par résonance magnétique – Interprétation"
Gossiome, C., F. Rufino, G. Herve, M. Benassarou, P. Goudot, V. Descroix, and G. Lescaille. "Découverte fortuite d’une lésion mandibulaire, un cas de kyste anévrismal." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206603020.
Full text