Academic literature on the topic 'Image structure representation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Image structure representation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Image structure representation"
Chen, Yuhao, Alexander Wong, Yuan Fang, Yifan Wu, and Linlin Xu. "Deep Residual Transform for Multi-scale Image Decomposition." Journal of Computational Vision and Imaging Systems 6, no. 1 (January 15, 2021): 1–5. http://dx.doi.org/10.15353/jcvis.v6i1.3537.
Full textRIZO-RODRÍGUEZ, DAYRON, HEYDI MÉNDEZ-VAZQUEZ, and EDEL GARCÍA-REYES. "ILLUMINATION INVARIANT FACE RECOGNITION IN QUATERNION DOMAIN." International Journal of Pattern Recognition and Artificial Intelligence 27, no. 03 (May 2013): 1360004. http://dx.doi.org/10.1142/s0218001413600045.
Full textFu, Y., Y. Ye, G. Liu, B. Zhang, and R. Zhang. "ROBUST MULTIMODAL IMAGE MATCHING BASED ON MAIN STRUCTURE FEATURE REPRESENTATION." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2020 (August 21, 2020): 583–89. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2020-583-2020.
Full textWANG, ZHIYONG, ZHERU CHI, DAGAN FENG, and AH CHUNG TSOI. "CONTENT-BASED IMAGE RETRIEVAL WITH RELEVANCE FEEDBACK USING ADAPTIVE PROCESSING OF TREE-STRUCTURE IMAGE REPRESENTATION." International Journal of Image and Graphics 03, no. 01 (January 2003): 119–43. http://dx.doi.org/10.1142/s0219467803000944.
Full textYu, Siquan, Jiaxin Liu, Zhi Han, Yong Li, Yandong Tang, and Chengdong Wu. "Representation Learning Based on Autoencoder and Deep Adaptive Clustering for Image Clustering." Mathematical Problems in Engineering 2021 (January 9, 2021): 1–11. http://dx.doi.org/10.1155/2021/3742536.
Full textCHEN, XIAOWU, BIN ZHOU, FANG XU, and QINPING ZHAO. "AUTOMATIC IMAGE COMPLETION WITH STRUCTURE PROPAGATION AND TEXTURE SYNTHESIS." International Journal of Software Engineering and Knowledge Engineering 20, no. 08 (December 2010): 1097–117. http://dx.doi.org/10.1142/s0218194010005055.
Full textLi, Wei, Yuxiang Zhang, Na Liu, Qian Du, and Ran Tao. "Structure-Aware Collaborative Representation for Hyperspectral Image Classification." IEEE Transactions on Geoscience and Remote Sensing 57, no. 9 (September 2019): 7246–61. http://dx.doi.org/10.1109/tgrs.2019.2912507.
Full textLi, Zhao, Le Wang, Tao Yu, and Bing Liang Hu. "Image Super-Resolution via Low-Rank Representation." Applied Mechanics and Materials 568-570 (June 2014): 652–55. http://dx.doi.org/10.4028/www.scientific.net/amm.568-570.652.
Full textDong, Bin, Songlei Jian, and Kai Lu. "Learning Multimodal Representations by Symmetrically Transferring Local Structures." Symmetry 12, no. 9 (September 13, 2020): 1504. http://dx.doi.org/10.3390/sym12091504.
Full textBerg, A. P., and W. B. Mikhael. "An efficient structure and algorithm for image representation using nonorthogonal basis images." IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 44, no. 10 (1997): 818–28. http://dx.doi.org/10.1109/82.633439.
Full textDissertations / Theses on the topic "Image structure representation"
Noble, Julia Alison. "Descriptions of image surfaces." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.238117.
Full textYeh, Hur-jye. "3-D reconstruction and image encoding using an efficient representation of hierarchical data structure /." The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu148732651171353.
Full textJeong, Ki Tai. "A Common Representation Format for Multimedia Documents." Thesis, University of North Texas, 2002. https://digital.library.unt.edu/ark:/67531/metadc3336/.
Full textKershaw, Helen Elizabeth. "Reconstruction of mechanical properties from surface-based motion data for Digital Image Elasto-Tomography using an implicit surface representation of breast tissue structure." Thesis, University of Canterbury. Mechanical Engineering, 2012. http://hdl.handle.net/10092/7271.
Full textElliott, Desmond. "Structured representation of images for language generation and image retrieval." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/10524.
Full textGay, Joanna. "Structural representation models for multi-modal image registration in biomedical applications." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-410820.
Full textKemp, Jamie L. "Score and structure in ritual representation : meanings of the notational form in Sarum processional images." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/32456.
Full textArts, Faculty of
Art History, Visual Art and Theory, Department of
Graduate
Cui, Yanwei. "Kernel-based learning on hierarchical image representations : applications to remote sensing data classification." Thesis, Lorient, 2017. http://www.theses.fr/2017LORIS448/document.
Full textHierarchical image representations have been widely used in the image classification context. Such representations are capable of modeling the content of an image through a tree structure. In this thesis, we investigate kernel-based strategies that make possible taking input data in a structured form and capturing the topological patterns inside each structure through designing structured kernels. We develop a structured kernel dedicated to unordered tree and path (sequence of nodes) structures equipped with numerical features, called Bag of Subpaths Kernel (BoSK). It is formed by summing up kernels computed on subpaths (a bag of all paths and single nodes) between two bags. The direct computation of BoSK yields a quadratic complexity w.r.t. both structure size (number of nodes) and amount of data (training size). We also propose a scalable version of BoSK (SBoSK for short), using Random Fourier Features technique to map the structured data in a randomized finite-dimensional Euclidean space, where inner product of the transformed feature vector approximates BoSK. It brings down the complexity from quadratic to linear w.r.t. structure size and amount of data, making the kernel compliant with the large-scale machine-learning context. Thanks to (S)BoSK, we are able to learn from cross-scale patterns in hierarchical image representations. (S)BoSK operates on paths, thus allowing modeling the context of a pixel (leaf of the hierarchical representation) through its ancestor regions at multiple scales. Such a model is used within pixel-based image classification. (S)BoSK also works on trees, making the kernel able to capture the composition of an object (top of the hierarchical representation) and the topological relationships among its subparts. This strategy allows tile/sub-image classification. Further relying on (S)BoSK, we introduce a novel multi-source classification approach that performs classification directly from a hierarchical image representation built from two images of the same scene taken at different resolutions, possibly with different modalities. Evaluations on several publicly available remote sensing datasets illustrate the superiority of (S)BoSK compared to state-of-the-art methods in terms of classification accuracy, and experiments on an urban classification task show the effectiveness of proposed multi-source classification approach
Nehme, Raphaela. "The Lens of the Other: Instagram as a Tool to Counter the Unsafe Images of Countries and the Case of Lebanon." Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41040.
Full textRiba, Fiérrez Pau. "Distilling Structure from Imagery: Graph-based Models for the Interpretation of Document Images." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670774.
Full textLa comunidad que investiga el reconocimiento de patrones y la visión por computador ha reconocido la importancia de aprovechar la información estructural de las imágenes. Los grafos se han seleccionado como el marco adecuado para representar este tipo de información a causa de su flexibilidad y poder de representación capaz de codificar los componentes, los objetos, las entidades y sus relaciones. Aunque los grafos se han aplicado con éxito a una gran variedad de tareas –como resultado de su naturaleza simbólica y relacional–, siempre han sufrido algunas limitaciones comparados con los métodos estadísticos. Esto se debe al hecho que algunas operaciones matemáticas triviales no tienen una equivalencia en el dominio de los grafos. Por ejemplo, en la base de la mayoría de aplicaciones de reconocimiento de patrones hay la necesidad de comparar objetos. No obstante, esta operación trivial no está debidamente definida por grafos cuando consideramos vectores de características. Durante la investigación, el principal dominio de aplicación se basa en el Análisis y Reconocimiento de Imágenes de Documentos. Este es un subcampo de la Visión por Computador que tiene como objetivo comprender imágenes de documentos. En este contexto la estructura -particularmente la representación en forma de grafo- proporciona una dimensión complementaria al contenido de la imágen. En Visión por Computador la primera dificultad que nos encontramos se basa en construir una representación significativa de grafos que sea capaz de codificar las características relevantes de una imagen. Esto se debe a que es un proceso que tiene que encontrar un equilibrio entre la simplicidad de la representación y la flexibilidad, para representar las diferentes deformaciones que aparecen en cada dominio de la aplicación. Hemos estudiado este tema en la aplicación de la búsqueda de palabras, dividiendo los diferentes trazos en grafemas –las unidades más pequeñas de un alfabeto manuscrito–. Tambien, hemos investigado diferentes metodologías para acelerar el proceso de comparación entre grafos para que la búsqueda de palabras o, incluso, de forma más general, la aplicación de búsqueda de grafos, pueda incluir grandes colecciones de documentos. Estas metodologías han estado principalmente dos: (a) un sistema de indexación de grafos combinado con un sistema de votación en el ámbito de los nodos capaces de eliminar resultados improbables y (b) usando representaciones jerárquicas de grafos que llevan a término la mayoría de las comparaciones en una versión reducida del grafo original mediante comparativas entre los niveles más abstractos y los más detallados. Asimismo, la representación jerárquica también ha demostrado obtener una representación más robusta que el grafo original, además de lidiar con el ruido y las deformaciones de manera elegante. Así pues, proponemos explotar esta información en forma de codificación jerárquica del grafo que permita utilizar técnicas estadísticas clásicas. Los nuevos avances en el aprendizaje profundo geométrico han aparecido como una generalización de las metodologías de aprendizaje profundo aplicadas a dominios no Euclidianos –como grafos y variedades– y han promovido un gran interés en la comunidad científica por estos esquemas de representación. Proponemos una distancia de grafos capaz de obtener resultados comparables al estado del arte en diferentes tareas aprovechando estos nuevos desarrollos, pero considerando las metodologías tradicionales como base. También hemos realizado una colaboración industrial con la finalidad de extraer información automática de las facturas de la empresa (con datos anónimos). El resultado ha sido el desarrollo de un sistema de detección de tablas en documentos administrativos. Así pues, las redes neuronales basadas en grafos han demostrado ser aptas para detectar patrones repetitivos, los cuales, después de un proceso de agregación, constituyen una tabla.
From its early stages, the community of Pattern Recognition and Computer Vision has considered the importance on leveraging the structural information when understanding images. Usually, graphs have been selected as the adequate framework to represent this kind of information due to their flexibility and representational power able to codify both, the components, objects or entities and their pairwise relationship. Even though graphs have been successfully applied to a huge variety of tasks, as a result of their symbolic and relational nature, graphs have always suffered from some limitations compared to statistical approaches. Indeed, some trivial mathematical operations do not have an equivalence in the graph domain. For instance, in the core of many pattern recognition application, there is the need to compare two objects. This operation, which is trivial when considering feature vectors, is not properly defined for graphs. Along this dissertation the main application domain has been on the topic of Document Image Analysis and Recognition. It is a subfield of Computer Vision aiming at understanding images of documents. In this context, the structure and in particular graph representations, provides a complementary dimension to the raw image contents. In computer vision, the first challenge we face is how to build a meaningful graph representation that is able to encode the relevant characteristics of a given image. This representation should find a trade off between the simplicity of the representation and its flexibility to represent the deformations appearing on each application domain. We applied our proposal to the word spotting application where strokes are divided into graphemes which are the smaller units of a handwritten alphabet. We have investigated different approaches to speed-up the graph comparison in order that word spotting, or more generally, a retrieval application is able to handle large collections of documents. On the one hand, a graph indexing framework combined with a votation scheme at node level is able to quickly prune unlikely results. On the other hand, making use of graph hierarchical representations, we are able to perform a coarse-to-fine matching scheme which performs most of the comparisons in a reduced graph representation. Besides, the hierarchical graph representation demonstrated to be drivers of a more robust scheme than the original graph. This new information is able to deal with noise and deformations in an elegant fashion. Therefore, we propose to exploit this information in a hierarchical graph embedding which allows the use of classical statistical techniques. Recently, the new advances on geometric deep learning, which has emerged as a generalization of deep learning methods to non-Euclidean domains such as graphs and manifolds, has raised again the attention to these representation schemes. Taking advantage of these new developments but considering traditional methodologies as a guideline, we proposed a graph metric learning framework able to obtain state-of-the-art results on different tasks. Finally, the contributions of this thesis have been validated in real industrial use case scenarios. For instance, an industrial collaboration has resulted in the development of a table detection framework in annonymized administrative documents containing sensitive data. In particular, the interest of the company is the automatic information extraction from invoices. In this scenario, graph neural networks have proved to be able to detect repetitive patterns which, after an aggregation process, constitute a table.
Books on the topic "Image structure representation"
Cervel, M. Sandra Peña. Topology and cognition: What image-schemas reveal about the metaphorical languages of emotions. Muenchen: Lincom Europa, 2003.
Find full textNeretina, Tat'yana, and Tat'yana Orehova. Formation at students of pedagogical profile "image of the parent" in the process of professional training at the University. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1043103.
Full textChung, Simone Shu-Yeng, and Mike Douglass, eds. The Hard State, Soft City of Singapore. NL Amsterdam: Amsterdam University Press, 2020. http://dx.doi.org/10.5117/9789463729505.
Full textGrenander, Ulf, and Michael I. Miller. Pattern Theory. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780198505709.001.0001.
Full textKuppers, Petra. Dancing Disabled. Edited by Rebekah J. Kowal, Gerald Siegmund, and Randy Martin. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199928187.013.55.
Full textAsada, Minoru. Proprioception and body schema. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0018.
Full textde Vignemont, Frédérique. Taxonomies of Body Representations. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198735885.003.0009.
Full textRothermel, Dennis. Becoming-Animal Cinema Narrative. Edinburgh University Press, 2018. http://dx.doi.org/10.3366/edinburgh/9781474422734.003.0014.
Full textClüver, Claus. Ekphrasis and Adaptation. Edited by Thomas Leitch. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199331000.013.26.
Full textBirtwistle, Andy. Meaning and Musicality. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190469894.003.0009.
Full textBook chapters on the topic "Image structure representation"
Wang, Zhiyong, Zheru Chi, Dagan Feng, and S. Y. Cho. "Adaptive Processing of Tree-Structure Image Representation." In Advances in Multimedia Information Processing — PCM 2001, 989–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45453-5_133.
Full textCai, Yu, Jinshan Pan, and Zhixun Su. "Blind Image Deblurring via Salient Structure Detection and Sparse Representation." In Image and Video Technology, 283–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-92753-4_23.
Full textDe Floriani, Leila. "A Triangle Based Data Structure For Multiresolution Surface Representation." In Image Analysis and Processing II, 277–85. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1007-5_30.
Full textRadstake, Niels, Peter J. F. Lucas, Marina Velikova, and Maurice Samulski. "Critiquing Knowledge Representation in Medical Image Interpretation Using Structure Learning." In Knowledge Representation for Health-Care, 56–69. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18050-7_5.
Full textRocca, Luigi, and Enrico Puppo. "A Virtually Continuous Representation of the Deep Structure of Scale-Space." In Image Analysis and Processing – ICIAP 2013, 522–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41184-7_53.
Full textWang, Yong, Xiaohui Zhao, Xiuling Mo, and Yuqing Wang. "Image Quality Assessment Based on Complex Representation of Structure Information." In Electrical, Information Engineering and Mechatronics 2011, 769–74. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2467-2_91.
Full textIslam, Mobarakol, Lalithkumar Seenivasan, Lim Chwee Ming, and Hongliang Ren. "Learning and Reasoning with the Graph Structure Representation in Robotic Surgery." In Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 627–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59716-0_60.
Full textAl-Dujaili, Abdullah, François Merciol, and Sébastien Lefèvre. "GraphBPT: An Efficient Hierarchical Data Structure for Image Representation and Probabilistic Inference." In Lecture Notes in Computer Science, 301–12. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18720-4_26.
Full textQiao, Gang, Shangwei Liu, Qun Wei, Luting Wei, and Yingjie Wang. "Research on Block Segmentation and Assembly Technology of 3D Printing Structure." In Advances in 3D Image and Graphics Representation, Analysis, Computing and Information Technology, 31–39. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3867-4_4.
Full textKaur, Barleen, Paul Lemaître, Raghav Mehta, Nazanin Mohammadi Sepahvand, Doina Precup, Douglas Arnold, and Tal Arbel. "Improving Pathological Structure Segmentation via Transfer Learning Across Diseases." In Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data, 90–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33391-1_11.
Full textConference papers on the topic "Image structure representation"
Hu, Junjie, and Terumasa Aoki. "NON-rigid structure from motion via sparse self-expressive representation." In 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017. http://dx.doi.org/10.1109/icip.2017.8297141.
Full textJanssen, H. "Image representation in hypercolumnar structure by means of associative memory." In Close-Range Photogrammetry Meets Machine Vision. SPIE, 1990. http://dx.doi.org/10.1117/12.2294377.
Full textZhang, Deming, Chang Lu, Xiaobo Lu, and Han Xue. "A Local Adaptive Structure Sparse Representation Algorithm for Image Reconstruction." In 2018 37th Chinese Control Conference (CCC). IEEE, 2018. http://dx.doi.org/10.23919/chicc.2018.8484007.
Full textBennstrom, C. F., and J. R. Casas. "Object representation using colour, shape and structure criteria in a binary partition tree." In rnational Conference on Image Processing. IEEE, 2005. http://dx.doi.org/10.1109/icip.2005.1530599.
Full textLiu, Yang, Haixu Liu, Chenyu Liu, and Xueming Li. "Structure-constrained low-rank and partial sparse representation for image classification." In 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014. http://dx.doi.org/10.1109/icip.2014.7026057.
Full textQuan, Siwen, Jie Ma, Fangyu Hu, Bin Fang, and Tao Ma. "Local voxelized structure for 3D local shape description: A binary representation." In 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017. http://dx.doi.org/10.1109/icip.2017.8296793.
Full textZhang, Min, Yifan Li, and Yu Chen. "Completely Blind Image Quality Assessment Using Latent Quality Factor from Image Local Structure Representation." In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019. http://dx.doi.org/10.1109/icassp.2019.8682159.
Full textZhang, M. C., and S. Chen. "A Binary Image Representation Scheme Using Irredundant Translation Invariant Data Structure." In 1989 Symposium on Visual Communications, Image Processing, and Intelligent Robotics Systems, edited by William A. Pearlman. SPIE, 1989. http://dx.doi.org/10.1117/12.970044.
Full textHan, Ping, Xiaohong Yu, Xiaoguang Lu, and Hai Li. "PolSAR image speckle reduction based on sparse representation and structure characteristics." In ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014. http://dx.doi.org/10.1109/icassp.2014.6855188.
Full textLiu, Fan, Jinhui Tang, Yan Song, Xinguang Xiang, and Zhenmin Tang. "Local structure based sparse representation for face recognition with single sample per person." In 2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014. http://dx.doi.org/10.1109/icip.2014.7025143.
Full textReports on the topic "Image structure representation"
Yan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.
Full text