Journal articles on the topic 'III-V compound semiconductor nanostructures'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'III-V compound semiconductor nanostructures.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
John Chelliah, Cyril R. A., and Rajesh Swaminathan. "Current trends in changing the channel in MOSFETs by III–V semiconducting nanostructures." Nanotechnology Reviews 6, no. 6 (November 27, 2017): 613–23. http://dx.doi.org/10.1515/ntrev-2017-0155.
Full textDubrovskii V. G. "Limiting factors for the growth rate of epitaxial III-V compound semiconductors." Technical Physics Letters 49, no. 4 (2023): 77. http://dx.doi.org/10.21883/tpl.2023.04.55886.19512.
Full textXu, Bo, Z. G. Wang, Y. H. Chen, P. Jin, X. L. Ye, and Feng Qi Liu. "Controlled Growth of III-V Compound Semiconductor Nano-Structures and Their Application in Quantum-Devices." Materials Science Forum 475-479 (January 2005): 1783–86. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.1783.
Full textKim, Jong Su, Im Sik Han, Sang Jun Lee, and Jin Dong Song. "Droplet Epitaxy for III-V Compound Semiconductor Quantum Nanostructures on Lattice Matched Systems." Journal of the Korean Physical Society 73, no. 2 (July 2018): 190–202. http://dx.doi.org/10.3938/jkps.73.190.
Full textZhao, Zuoming, Kameshwar Yadavalli, Zhibiao Hao, and Kang L. Wang. "Direct integration of III–V compound semiconductor nanostructures on silicon by selective epitaxy." Nanotechnology 20, no. 3 (December 16, 2008): 035304. http://dx.doi.org/10.1088/0957-4484/20/3/035304.
Full textNoh, Joo-Hyong, Hajime Asahi, Seong-Jin Kim, Minori Takemoto, and Shun-ichi Gonda. "Scanning Tunneling Microscopy/Scanning Tunneling Spectroscopy Observation of III–V Compound Semiconductor Nanostructures." Japanese Journal of Applied Physics 35, Part 1, No. 6B (June 30, 1996): 3743–48. http://dx.doi.org/10.1143/jjap.35.3743.
Full textДубровский, В. Г. "Лимитирующие факторы скорости роста при эпитаксии полупроводниковых соединений III-V." Письма в журнал технической физики 49, no. 8 (2023): 39. http://dx.doi.org/10.21883/pjtf.2023.08.55137.19512.
Full textKang, M., J. H. Wu, S. Huang, M. V. Warren, Y. Jiang, E. A. Robb, and R. S. Goldman. "Universal mechanism for ion-induced nanostructure formation on III-V compound semiconductor surfaces." Applied Physics Letters 101, no. 8 (August 20, 2012): 082101. http://dx.doi.org/10.1063/1.4742863.
Full textZanotti, Simone, Momchil Minkov, Shanhui Fan, Lucio C. Andreani, and Dario Gerace. "Doubly-Resonant Photonic Crystal Cavities for Efficient Second-Harmonic Generation in III–V Semiconductors." Nanomaterials 11, no. 3 (February 28, 2021): 605. http://dx.doi.org/10.3390/nano11030605.
Full textMi, Zetian. "III-V compound semiconductor nanostructures on silicon: epitaxial growth, properties, and applications in light emitting diodes and lasers." Journal of Nanophotonics 3, no. 1 (January 1, 2009): 031602. http://dx.doi.org/10.1117/1.3081051.
Full textCai, Yu, Chengbao Yao, and Jie Yuan. "Enhancement of Photoelectrochemical Performance of Ag@ZnO Nanowires: Experiment and Mechanism." Journal of Nanomaterials 2020 (March 20, 2020): 1–9. http://dx.doi.org/10.1155/2020/6742728.
Full textHadia, Nomery, Santiago Garcia-Granda, and Jose Garcia. "Nanocrystalline Oxides: CdS nanowires synthesized by solvothermal method." Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C1414. http://dx.doi.org/10.1107/s2053273314085854.
Full textWitt, Elena, Jürgen Parisi, and Joanna Kolny-Olesiak. "Selective Growth of Gold onto Copper Indium Sulfide Selenide Nanoparticles." Zeitschrift für Naturforschung A 68, no. 5 (May 1, 2013): 398–404. http://dx.doi.org/10.5560/zna.2013-0016.
Full textSchmidt, W. G. "III-V compound semiconductor (001) surfaces." Applied Physics A: Materials Science & Processing 75, no. 1 (July 1, 2002): 89–99. http://dx.doi.org/10.1007/s003390101058.
Full textAlonso-González, P., L. González, D. Fuster, J. Martín-Sánchez, and Yolanda González. "Surface Localization of Buried III–V Semiconductor Nanostructures." Nanoscale Research Letters 4, no. 8 (May 9, 2009): 873–77. http://dx.doi.org/10.1007/s11671-009-9329-3.
Full textPaiman, S., H. J. Joyce, J. H. Kang, Q. Gao, H. H. Tan, Y. Kim, X. Zhang, J. Zou, and C. Jagadish. "ChemInform Abstract: III-V Compound Semiconductor Nanowires." ChemInform 42, no. 43 (September 29, 2011): no. http://dx.doi.org/10.1002/chin.201143202.
Full textReznik R. R., Gridchin V. O., Kotlyar K. P., Khrebtov A. I., Ubyivovk E. V., Mikushev S. V., Li D., et al. "Formation of InGaAs quantum dots in the body of AlGaAs nanowires via molecular-beam epitaxy." Semiconductors 56, no. 7 (2022): 492. http://dx.doi.org/10.21883/sc.2022.07.54653.16.
Full textCipriano, Luis A., Giovanni Di Liberto, Sergio Tosoni, and Gianfranco Pacchioni. "Quantum confinement in group III–V semiconductor 2D nanostructures." Nanoscale 12, no. 33 (2020): 17494–501. http://dx.doi.org/10.1039/d0nr03577g.
Full textLee, Jeong-Oh, Jong-Wook Lee, Kwan-Hyi Lee, Won-Young Jeung, and Jong-Yup Lee. "Electrochemical Formation of III-V Compound Semiconductor InSb." Journal of the Korean Electrochemical Society 8, no. 3 (August 1, 2005): 135–38. http://dx.doi.org/10.5229/jkes.2005.8.3.135.
Full textHeinrich, M., C. Domke, Ph Ebert, and K. Urban. "Charged steps on III-V compound semiconductor surfaces." Physical Review B 53, no. 16 (April 15, 1996): 10894–97. http://dx.doi.org/10.1103/physrevb.53.10894.
Full textPearton, S. J. "Critical issues of III–V compound semiconductor processing." Materials Science and Engineering: B 44, no. 1-3 (February 1997): 1–7. http://dx.doi.org/10.1016/s0921-5107(96)01744-8.
Full textCoelho, J., G. Patriarche, F. Glas, I. Sagnes, and G. Saint-Girons. "Stress-engineered orderings of self-assembled III-V semiconductor nanostructures." physica status solidi (c) 2, no. 4 (March 2005): 1245–50. http://dx.doi.org/10.1002/pssc.200460413.
Full textKohl, P. A., and F. W. Ostermayer. "Photoelectrochemical Methods for III-V Compound Semiconductor Device Processing." Annual Review of Materials Science 19, no. 1 (August 1989): 379–99. http://dx.doi.org/10.1146/annurev.ms.19.080189.002115.
Full textGAO, Q., H. J. JOYCE, S. PAIMAN, J. H. KANG, H. H. TAN, Y. KIM, L. M. SMITH, et al. "III-V COMPOUND SEMICONDUCTOR NANOWIRES FOR OPTOELECTRONIC DEVICE APPLICATIONS." International Journal of High Speed Electronics and Systems 20, no. 01 (March 2011): 131–41. http://dx.doi.org/10.1142/s0129156411006465.
Full textHughes, R. C. "III-V Compound Semiconductor Superlattices For Infrared Photodetector Applications." Optical Engineering 26, no. 3 (March 1, 1987): 263249. http://dx.doi.org/10.1117/12.7974058.
Full textXia, W., S. A. Pappert, B. Zhu, A. R. Clawson, P. K. L. Yu, S. S. Lau, D. B. Poker, C. W. White, and S. A. Schwarz. "Ion mixing of III‐V compound semiconductor layered structures." Journal of Applied Physics 71, no. 6 (March 15, 1992): 2602–10. http://dx.doi.org/10.1063/1.351079.
Full textHill, D. M., F. Xu, Zhangda Lin, and J. H. Weaver. "Atomic distributions across metal–III-V-compound-semiconductor interfaces." Physical Review B 38, no. 3 (July 15, 1988): 1893–900. http://dx.doi.org/10.1103/physrevb.38.1893.
Full textGerischer, H. "Physics and Chemistry of III—V Compound Semiconductor Interfaces." Electrochimica Acta 31, no. 12 (December 1986): 1680. http://dx.doi.org/10.1016/0013-4686(86)87096-7.
Full textAnsara, I., C. Chatillon, H. L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, et al. "A binary database for III–V compound semiconductor systems." Calphad 18, no. 2 (April 1994): 177–222. http://dx.doi.org/10.1016/0364-5916(94)90027-2.
Full textWessels, Bruce. "Physics and chemistry of III–V compound semiconductor interfaces." Materials Science and Engineering 96 (December 1987): 325–26. http://dx.doi.org/10.1016/0025-5416(87)90568-4.
Full textPEARTON, S. J. "ION IMPLANTATION IN III–V SEMICONDUCTOR TECHNOLOGY." International Journal of Modern Physics B 07, no. 28 (December 30, 1993): 4687–761. http://dx.doi.org/10.1142/s0217979293003814.
Full textSilveira, J. P., J. M. Garcia, and F. Briones. "Surface stress effects during MBE growth of III–V semiconductor nanostructures." Journal of Crystal Growth 227-228 (July 2001): 995–99. http://dx.doi.org/10.1016/s0022-0248(01)00966-6.
Full textRiel, Heike, Lars-Erik Wernersson, Minghwei Hong, and Jesús A. del Alamo. "III–V compound semiconductor transistors—from planar to nanowire structures." MRS Bulletin 39, no. 8 (August 2014): 668–77. http://dx.doi.org/10.1557/mrs.2014.137.
Full textMalheiros-Silveira, Gilliard N., Fanglu Lu, Indrasen Bhattacharya, Thai-Truong D. Tran, Hao Sun, and Connie J. Chang-Hasnain. "III–V Compound Semiconductor Nanopillars Monolithically Integrated to Silicon Photonics." ACS Photonics 4, no. 5 (April 21, 2017): 1021–25. http://dx.doi.org/10.1021/acsphotonics.6b01035.
Full textXue, Q. "Scanning tunneling microscopy of III-V compound semiconductor (001) surfaces." Progress in Surface Science 56, no. 1-2 (October 1997): 1–131. http://dx.doi.org/10.1016/s0079-6816(97)00033-6.
Full textGao, Q., H. H. Tan, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, Jin Zou, and C. Jagadish. "Growth and properties of III–V compound semiconductor heterostructure nanowires." Semiconductor Science and Technology 26, no. 1 (December 15, 2010): 014035. http://dx.doi.org/10.1088/0268-1242/26/1/014035.
Full textGao, Q., H. H. Tan, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, Jin Zou, and C. Jagadish. "Growth and properties of III–V compound semiconductor heterostructure nanowires." Semiconductor Science and Technology 27, no. 5 (March 27, 2012): 059501. http://dx.doi.org/10.1088/0268-1242/27/5/059501.
Full textShi, W. S., Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee. "A General Synthetic Route to III-V Compound Semiconductor Nanowires." Advanced Materials 13, no. 8 (April 2001): 591–94. http://dx.doi.org/10.1002/1521-4095(200104)13:8<591::aid-adma591>3.0.co;2-#.
Full textKalem, S., A. Curtis, Q. Hartmann, B. Moser, and G. Stillman. "Sub-Gap Excited Photoluminescence in III-V Compound Semiconductor Heterostructures." physica status solidi (b) 221, no. 1 (September 2000): 517–22. http://dx.doi.org/10.1002/1521-3951(200009)221:1<517::aid-pssb517>3.0.co;2-m.
Full textClemans, Jim E., William A. Gault, and Eric M. Monberg. "The Production of High Quality, III-V Compound Semiconductor Crystals." AT&T Technical Journal 65, no. 4 (July 8, 1986): 86–98. http://dx.doi.org/10.1002/j.1538-7305.1986.tb00469.x.
Full textKasenov, B. K. "ELECTROPHYSICAL PROPERTIES OF NEW NANOSTRUCTURED COPPER-ZINC MANGANITE OF LANTHANUM AND MAGNESIUM." Eurasian Physical Technical Journal 19, no. 2 (40) (June 15, 2022): 42–47. http://dx.doi.org/10.31489/2022no2/42-47.
Full textGlas, F., J. Coelho, G. Patriarche, and G. Saint-Girons. "Buried dislocation networks for the controlled growth of III–V semiconductor nanostructures." Journal of Crystal Growth 275, no. 1-2 (February 2005): e1647-e1653. http://dx.doi.org/10.1016/j.jcrysgro.2004.11.219.
Full textCoelho, J., G. Patriarche, F. Glas, I. Sagnes, and G. Saint-Girons. "Dislocation networks adapted to order the growth of III-V semiconductor nanostructures." physica status solidi (c) 2, no. 6 (April 2005): 1933–37. http://dx.doi.org/10.1002/pssc.200460528.
Full textLee, Kwan-Hyi, Jong-Wook Lee, Ho-Dong Park, Won-Young Jeung, and Jong-Yup Lee. "Electrochemical Formation and Characterization of III-V Compound Semiconductor InSb Nanowires." Journal of the Korean Electrochemical Society 8, no. 3 (August 1, 2005): 130–34. http://dx.doi.org/10.5229/jkes.2005.8.3.130.
Full textNishio, Kenya, Suguru Saito, Yoshiya Hagimoto, and Hayato Iwamoto. "Effect of WET treatment on Group III-V Compound Semiconductor Surface." Solid State Phenomena 282 (August 2018): 43–47. http://dx.doi.org/10.4028/www.scientific.net/ssp.282.43.
Full textBurstein, L., J. Bregman, and Yoram Shapira. "Characterization of interface states at III‐V compound semiconductor‐metal interfaces." Journal of Applied Physics 69, no. 4 (February 15, 1991): 2312–16. http://dx.doi.org/10.1063/1.348712.
Full textZhang, Ao, Jianjun Gao, and Hong Wang. "An empirical noise model for III-V compound semiconductor based HBT." Solid-State Electronics 163 (January 2020): 107679. http://dx.doi.org/10.1016/j.sse.2019.107679.
Full textWade, Travis L., Raman Vaidyanathan, Uwe Happek, and John L. Stickney. "Electrochemical formation of a III–V compound semiconductor superlattice: InAs/InSb." Journal of Electroanalytical Chemistry 500, no. 1-2 (March 2001): 322–32. http://dx.doi.org/10.1016/s0022-0728(00)00473-3.
Full textNakamura, M., H. Fujioka, K. Ono, M. Takeuchi, T. Mitsui, and M. Oshima. "Molecular dynamics simulation of III–V compound semiconductor growth with MBE." Journal of Crystal Growth 209, no. 2-3 (February 2000): 232–36. http://dx.doi.org/10.1016/s0022-0248(99)00546-1.
Full textDautremont-Smith, William C., R. J. McCoy, Randolph H. Burton, and Albert G. Baca. "Fabrication Technologies for III-V Compound Semiconductor Photonic and Electronic Devices." AT&T Technical Journal 68, no. 1 (January 2, 1989): 64–82. http://dx.doi.org/10.1002/j.1538-7305.1989.tb00647.x.
Full text