Academic literature on the topic 'III-NITRIDE DEVICE'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'III-NITRIDE DEVICE.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "III-NITRIDE DEVICE"
Jamal-Eddine, Zane, Yuewei Zhang, and Siddharth Rajan. "Recent Progress in III-Nitride Tunnel Junction-Based Optoelectronics." International Journal of High Speed Electronics and Systems 28, no. 01n02 (March 2019): 1940012. http://dx.doi.org/10.1142/s0129156419400123.
Full textMuthuraj, Vineeta R., Caroline E. Reilly, Thomas Mates, Shuji Nakamura, Steven P. DenBaars, and Stacia Keller. "Properties of high to ultrahigh Si-doped GaN grown at 550 °C by flow modulated metalorganic chemical vapor deposition." Applied Physics Letters 122, no. 14 (April 3, 2023): 142103. http://dx.doi.org/10.1063/5.0142941.
Full textHangleiter, Andreas. "III–V Nitrides: A New Age for Optoelectronics." MRS Bulletin 28, no. 5 (May 2003): 350–53. http://dx.doi.org/10.1557/mrs2003.99.
Full textBaten, Md Zunaid, Shamiul Alam, Bejoy Sikder, and Ahmedullah Aziz. "III-Nitride Light-Emitting Devices." Photonics 8, no. 10 (October 7, 2021): 430. http://dx.doi.org/10.3390/photonics8100430.
Full textFu, Wai Yuen, and Hoi Wai Choi. "Progress and prospects of III-nitride optoelectronic devices adopting lift-off processes." Journal of Applied Physics 132, no. 6 (August 14, 2022): 060903. http://dx.doi.org/10.1063/5.0089750.
Full textZolper, J. C., and R. J. Shul. "Implantation and Dry Etching of Group-III-Nitride Semiconductors." MRS Bulletin 22, no. 2 (February 1997): 36–43. http://dx.doi.org/10.1557/s0883769400032553.
Full textFu, Houqiang. "(Invited) III-Oxide/III-Nitride Heterostructures for Power Electronics and Optoelectronics Applications." ECS Meeting Abstracts MA2022-02, no. 34 (October 9, 2022): 1243. http://dx.doi.org/10.1149/ma2022-02341243mtgabs.
Full textZhang, Shuai, Bingcheng Zhu, Zheng Shi, Jialei Yuan, Yuan Jiang, Xiangfei Shen, Wei Cai, Yongchao Yang, and Yongjin Wang. "Spatial signal correlation from an III-nitride synaptic device." Superlattices and Microstructures 110 (October 2017): 296–304. http://dx.doi.org/10.1016/j.spmi.2017.08.028.
Full textGaevski, Mikhail, Jianyu Deng, Grigory Simin, and Remis Gaska. "500 °C operation of AlGaN/GaN and AlInN/GaN Integrated Circuits." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2014, HITEC (January 1, 2014): 000084–89. http://dx.doi.org/10.4071/hitec-tp16.
Full textIslam, Md Sherajul, Md Arafat Hossain, Sakib Mohammed Muhtadi, and Ashraful G. Bhuiyan. "Transport Properties of Insulated Gate AlInN/InN Heterojunction Field Effect Transistor." Advanced Materials Research 403-408 (November 2011): 64–69. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.64.
Full textDissertations / Theses on the topic "III-NITRIDE DEVICE"
Monika, Sadia K. "III- Nitride Enhancement Mode Device." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1483535296785214.
Full textLiu, Jie. "Channel engineering of III-nitride HEMTs for enhanced device performance /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?ECED%202006%20LIUJ.
Full textEiting, Christopher James. "Growth of III-V nitride materials by MOCVD for device applications /." Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Full textFeng, Zhihong. "Enhanced device performance of III-nitride HEMTs on sapphire substrates by MOCVD /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202006%20FENG.
Full textNath, Digbijoy N. "Advanced polarization engineering of III-nitride heterostructures towards high-speed device applications." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1376927078.
Full textNguyen, Hieu. "Molecular beam epitaxial growth, characterization and device applications of III-Nitride nanowire heterostructures." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=107905.
Full textRécemment, les hétérostructures à base de nitride et de groupe III ont fait l'objet de recherches intensives. Grâce à la relaxation latérale effective du stress, de telles hétérostructures d'échelle nanométrique peuvent être déposés sur du Silicium ou d'autres substrats. Celles-ci démontrent une réduction dramatique des dislocations et des champs de polarisations comparativement à leurs contreparties planes. Cette dissertation rapporte l'accomplissement d'une nouvelle classe de matériau nanométrique, soit des hétérostructures III-nitride incluant InGaN/GaN point dans fils ainsi que des nanofils d'InN presque sans défauts sur du Silicium. De plus, nous avons développé une nouvelle génération de dispositifs à base de nanofils, incluant des diodes émettrices de lumière (LEDs) à efficacité ultra haute et spectre visible complet ainsi que des cellules solaires sur une gaufre de Silicium. Nous avons identifié 2 mécanismes majeurs, incluant le faible transport des trous et le surplus d'électrons, qui limitent sérieusement la performance des LEDs à base de nanofils de GaN. Avec l'ajout de certaines techniques spéciales de modulation de type p, et une couche bloquante d'électrons faite de AlGaN dans la région active de la LED point dans fil. Par ailleurs, nous avons démontré des LEDs blanche sans phosphore qui démontrent, pour la première fois, une efficacité quantique supérieure à 50% ainsi qu'une baisse d'efficacité négligeable jusqu'à ~ 2,000A/cm2 et des caractéristiques d'émissions très hautes et stables à température pièce. Celles-ci sont donc toutes désignées pour des applications d'illumination intelligentes et des écrans pleines couleurs. La croissance par épitaxie, la fabrication et la caractérisation des nanofils d'InN:Mg/i-InN/InN:Si axiaux sur des substrats de Si(111) de type n et démontré la première cellule solaire à base d'InN. Sous l'illumination d'un soleil (AM 1.5G), les dispositifs démontrent une densité de courant de ~ 14.4 mA/cm2 en court-circuit, un voltage de circuit ouvert de 0.14V, un facteur de remplissage de 34.0% et une efficacité de conversion d'énergie de 0.68%. Ce travail ouvre des portes excitantes pour des cellules solaires plein spectre de troisième génération à base de nanofils d'InGaN.
Miller, Eric Justin. "Influence of material properties on device design and performance in III-V nitride alloys /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2003. http://wwwlib.umi.com/cr/ucsd/fullcit?p3091322.
Full textJackson, Christine M. "Correlations of Electronic Interface States and Interface Chemistry on Dielectric/III Nitride Heterostructures for Device Applications." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu15257361319909.
Full textGrowden, Tyler A. "III-V Tunneling Based Quantum Devices for High Frequency Applications." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1469199253.
Full textNamkoong, Gon. "Molecular beam epitaxy grown III-nitride materials for high-power and high-temperture applications : impact of nucleation kinetics on material and device structure quality." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/16426.
Full textBooks on the topic "III-NITRIDE DEVICE"
Chuan, Feng Zhe, ed. III-nitride devices and nanoengineering. London: Imperial College Press, 2008.
Find full textT, Yu E., and Manasreh Mahmoud Omar, eds. III-V nitride semiconductors: Applications & devices. New York: Taylor & Francis, 2003.
Find full textSeong, Tae-Yeon. III-Nitride Based Light Emitting Diodes and Applications. Dordrecht: Springer Netherlands, 2013.
Find full textMorkoç, Hadis. Gallium nitride materials and devices III: 21-24 January 2008, San Jose, California, USA. Edited by Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: SPIE, 2008.
Find full textKurt, Gaskill D., Brandt Charles D, Nemanich R. J, and Materials Research Society Meeting, eds. III-Nitride, SiC, and diamond materials for electronic devices: Symposium held April, 1996, San Francisco, California, U.S.A. Pittsburgh, Pa: Materials Research Society, 1996.
Find full textSymposium on III-Nitride Based Semiconductor Electronic and Optical Devices (2001 Washington, D.C.). III-nitride based semiconductor electronics and optical devices: And, thirty-fourth state-of-the-art-program on compound semiconductors (SOTAPOCS XXXIV) : proceedings of the international symposia. Edited by Ren F, Electrochemical Society Meeting, and State-of-the-Art Program on Compound Semiconductors (34th : 2001 : Washington, D.C.). Pennington, NJ: Electrochemical society, 2001.
Find full textIII-Nitride Electronic Devices. Elsevier, 2019. http://dx.doi.org/10.1016/s0080-8784(19)x0004-6.
Full textFeng, Zhe Chuan. III-Nitride Materials Devices. World Scientific Publishing Co Pte Ltd, 2017.
Find full textChu, Rongming, and Keisuke Shinohara. III-Nitride Electronic Devices. Elsevier Science & Technology Books, 2019.
Find full textChu, Rongming, and Keisuke Shinohara. III-Nitride Electronic Devices. Elsevier Science & Technology, 2019.
Find full textBook chapters on the topic "III-NITRIDE DEVICE"
Zhou, Shengjun, and Sheng Liu. "Device Reliability and Measurement." In III-Nitride LEDs, 217–39. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0436-3_6.
Full textFan, Shizhao, Songrui Zhao, Faqrul A. Chowdhury, Renjie Wang, and Zetian Mi. "Molecular Beam Epitaxial Growth of III-Nitride Nanowire Heterostructures and Emerging Device Applications." In Handbook of GaN Semiconductor Materials and Devices, 243–83. Boca Raton : Taylor & Francis, CRC Press, 2017. | Series: Series in optics and optoelectronics: CRC Press, 2017. http://dx.doi.org/10.1201/9781315152011-7.
Full textMukherjee, Moumita, and D. N. Bose. "Large-Signal Analysis of III-V Nitride Based DD-Transit Time Device: A New Source for THz Power Generation." In Physics of Semiconductor Devices, 107–11. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_26.
Full textMukherjee, Moumita. "Large Signal Physical Operation of a III–V Nitride Based Double Velocity Transit Time Device: A Potential Source For THz Imaging." In Physics of Semiconductor Devices, 225–28. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_56.
Full textMaiti, Chinmay K. "III-Nitride Flexible Electronic Devices." In Fabless Semiconductor Manufacturing, 211–47. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003314974-6.
Full textBisi, Davide, Isabella Rossetto, Matteo Meneghini, Gaudenzio Meneghesso, and Enrico Zanoni. "Reliability in III-Nitride Devices." In Handbook of GaN Semiconductor Materials and Devices, 367–430. Boca Raton : Taylor & Francis, CRC Press, 2017. | Series: Series in optics and optoelectronics: CRC Press, 2017. http://dx.doi.org/10.1201/9781315152011-12.
Full textBinari, Steven C., and Harry B. Dietrich. "III-V Nitride Electronic Devices." In GaN and Related Materials, 509–34. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003211082-16.
Full textShen, Bo, Ning Tang, XinQiang Wang, ZhiZhong Chen, FuJun Xu, XueLin Yang, TongJun Yu, et al. "III-Nitride Materials and Characterization." In Handbook of GaN Semiconductor Materials and Devices, 3–52. Boca Raton : Taylor & Francis, CRC Press, 2017. | Series: Series in optics and optoelectronics: CRC Press, 2017. http://dx.doi.org/10.1201/9781315152011-1.
Full textLin, Chien-Chung, Lung-Hsing Hsu, Yu-Ling Tsai, Hao-chung (Henry) Kuo, Wei-Chih Lai, and Jinn-Kong Sheu. "III–V Nitride-Based Photodetection." In Handbook of GaN Semiconductor Materials and Devices, 597–613. Boca Raton : Taylor & Francis, CRC Press, 2017. | Series: Series in optics and optoelectronics: CRC Press, 2017. http://dx.doi.org/10.1201/9781315152011-19.
Full textLin, Chien-Chung, Lung-Hsing Hsu, Yu-Ling Tsai, Hao-chung Kuo, Wei-Chih Lai, and Jinn-Kong Sheu. "III–V Nitride-Based Photodetection." In Handbook of GaN Semiconductor Materials and Devices, 597–613. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315152011-25.
Full textConference papers on the topic "III-NITRIDE DEVICE"
Toledo, Nikholas G., Samantha C. Cruz, Carl J. Neufeld, Jordan R. Lang, Michael A. Scarpulla, Trevor Buehl, Arthur C. Gossard, Steven P. Denbaars, James S. Speck, and Umesh K. Mishra. "Integrated non-III-nitride/III-nitride tandem solar cell." In 2011 69th Annual Device Research Conference (DRC). IEEE, 2011. http://dx.doi.org/10.1109/drc.2011.5994525.
Full textFeezell, Daniel, Arman Rashidi, Morteza Monavarian, Andrew Aragon, Mohsen Nami, Saadat Mishkat-Ul-Masabih, and Ashwin Rishinaramangalam. "III-Nitride High-Speed Optoelectronics." In 2019 Device Research Conference (DRC). IEEE, 2019. http://dx.doi.org/10.1109/drc46940.2019.9046403.
Full textRuden, P. P. "Materials-theory-based device modeling for III-nitride devices." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Gail J. Brown and Manijeh Razeghi. SPIE, 1999. http://dx.doi.org/10.1117/12.344555.
Full textSimin, G., Z.-j. Yang, A. Koudymov, V. Adivarahan, J. Yang, and M. Khan. "III-Nitride Field-Effect Transistors with Capacitively-Coupled Contacts." In 2006 64th Device Research Conference. IEEE, 2006. http://dx.doi.org/10.1109/drc.2006.305139.
Full textShahedipour-Sandvik, F., M. Tungare, J. Leathersich, P. Suvarna, R. Tompkins, and K. A. Jones. "III-Nitride devices on Si: Challenges and opportunities." In 2011 International Semiconductor Device Research Symposium (ISDRS 2011). IEEE, 2011. http://dx.doi.org/10.1109/isdrs.2011.6135260.
Full textNikishin, Sergey, and Mark Holtz. "Growth of III-Nitride quantum structures for device applications." In 2010 IEEE 10th Conference on Nanotechnology (IEEE-NANO). IEEE, 2010. http://dx.doi.org/10.1109/nano.2010.5698066.
Full textWang, Ping, Ding Wang, Shubham Mondal, and Zetian Mi. "Fully Epitaxial Ferroelectric III-Nitride Semiconductors: From Materials to Devices." In 2022 Device Research Conference (DRC). IEEE, 2022. http://dx.doi.org/10.1109/drc55272.2022.9855651.
Full textYang, Z., A. Kudymov, X. Hu, J. Yang, G. Simin, M. Shur, and R. Gaska. "Sub-0.1 dB loss III-Nitride MOSHFET RF Switches." In 2008 66th Annual Device Research Conference (DRC). IEEE, 2008. http://dx.doi.org/10.1109/drc.2008.4800845.
Full textHung, Ting-Hsiang, Pil Sung Park, Sriram Krishnamoorthy, Digbijoy N. Nath, Sanyam Bajaj, and Siddharth Rajan. "Lateral energy band engineering of Al2O3/III-nitride interfaces." In 2014 72nd Annual Device Research Conference (DRC). IEEE, 2014. http://dx.doi.org/10.1109/drc.2014.6872332.
Full textYang, Z. C., D. N. Nath, Y. Zhang, and S. Rajan. "N-polar III-nitride tunneling hot electron transfer amplifier." In 2014 72nd Annual Device Research Conference (DRC). IEEE, 2014. http://dx.doi.org/10.1109/drc.2014.6872353.
Full textReports on the topic "III-NITRIDE DEVICE"
Kurtz, Steven Ross, Terry W. Hargett, Darwin Keith Serkland, Karen Elizabeth Waldrip, Normand Arthur Modine, John Frederick Klem, Eric Daniel Jones, Michael Joseph Cich, Andrew Alan Allerman, and Gregory Merwin Peake. III-antimonide/nitride based semiconductors for optoelectronic materials and device studies : LDRD 26518 final report. Office of Scientific and Technical Information (OSTI), December 2003. http://dx.doi.org/10.2172/918384.
Full textDavis, R. F., M. Harris, S. Halpern, S. Siebert, and M. Patel. Materials Processing and Device Development to Achieve Integration of Low Defect Density III Nitride Based Radio Frequency. Fort Belvoir, VA: Defense Technical Information Center, April 2001. http://dx.doi.org/10.21236/ada389624.
Full textDavis, Robert F., and Kevin J. Linthicum. Materials Processing and Device Development to Achieve Integration of Low Defect Density III Nitride Based Radio Frequency. Fort Belvoir, VA: Defense Technical Information Center, October 2000. http://dx.doi.org/10.21236/ada383629.
Full textPark, Gil Han, and Jin-Joo Song. (DURIP 99) MOCVD Growth With In-Situ Characterization and Femto-second Two-Color Laser Experiments for Widegap III-Nitride Materials and Device Development. Fort Belvoir, VA: Defense Technical Information Center, December 2001. http://dx.doi.org/10.21236/ada397733.
Full textMcCartney, Martha R., and David J. Smith. Failure Mechanisms for III-Nitride HEMT Devices. Fort Belvoir, VA: Defense Technical Information Center, November 2013. http://dx.doi.org/10.21236/ada601810.
Full textJiang, Hongxing, and Jingyu Lin. UV/Blue III-Nitride Micro-Cavity Photonic Devices. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada399578.
Full textJiang, Hongxing, and Jingyu Lin. UV/Blue III-Nitride Micro-Cavity Photonic Devices. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada390015.
Full textJiang, Hongxing, and Jingyu Lin. UV/Blue III-Nitride Micro-Cavity Photonic Devices. Fort Belvoir, VA: Defense Technical Information Center, July 2001. http://dx.doi.org/10.21236/ada390174.
Full textStroscio, Michael A., and Mitra Dutta. III-nitride and Related Wuertzite Quantum-dot-based Optoelectronic Devices with Enhanced Performance. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada495368.
Full text