Academic literature on the topic 'II-VI Substrates'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'II-VI Substrates.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "II-VI Substrates"
Sato, K., Y. Seki, Y. Matsuda, and O. Oda. "Recent developments in II–VI substrates." Journal of Crystal Growth 197, no. 3 (February 1999): 413–22. http://dx.doi.org/10.1016/s0022-0248(98)00739-8.
Full textErnst, K., I. Sieber, M. Neumann-Spallart, M. Ch Lux-Steiner, and R. Könenkamp. "Characterization of II–VI compounds on porous substrates." Thin Solid Films 361-362 (February 2000): 213–17. http://dx.doi.org/10.1016/s0040-6090(99)00836-6.
Full textJones, K. M., F. S. Hasoon, A. B. Swartzlander, M. M. Al-Jassim, T. L. Chu, and S. S. Chu. "The morphology and microstructure of polycrystalline CdTe thin films for solar cell applications." Proceedings, annual meeting, Electron Microscopy Society of America 50, no. 2 (August 1992): 1384–85. http://dx.doi.org/10.1017/s0424820100131553.
Full textZAHN, DIETRICH R. T. "PROBING SURFACES AND INTERFACES WITH OPTICAL TECHNIQUES." Surface Review and Letters 01, no. 04 (December 1994): 421–28. http://dx.doi.org/10.1142/s0218625x94000382.
Full textBelyaev, A. P., and V. P. Rubets. "Heteroepitaxy of II-VI compound semiconductors on cooled substrates." Semiconductors 35, no. 3 (March 2001): 279–82. http://dx.doi.org/10.1134/1.1356146.
Full textBoney, C. "II–VI blue/green laser diodes on ZnSe substrates." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 14, no. 3 (May 1996): 2259. http://dx.doi.org/10.1116/1.588914.
Full textCywiński, G., T. Wojtowicz, K. Kopalko, G. Karczewski, and J. Kossut. "Epitaxial Growths of II-VI Compounds on (110) Substrates." Acta Physica Polonica A 94, no. 2 (August 1998): 281–84. http://dx.doi.org/10.12693/aphyspola.94.281.
Full textThompson, J., K. T. Woodhouse, and C. Dineen. "Epitaxial growth of II–VI compounds on sapphire substrates." Journal of Crystal Growth 77, no. 1-3 (September 1986): 452–59. http://dx.doi.org/10.1016/0022-0248(86)90336-2.
Full textSchikora, D., H. Hausleitner, S. Einfeldt, C. R. Becker, Th Widmer, C. Giftge, K. Lübke, K. Lischka, M. von Ortenberg, and G. Landwehr. "Epitaxial overgrowth of II–VI compounds on patterned substrates." Journal of Crystal Growth 138, no. 1-4 (April 1994): 8–13. http://dx.doi.org/10.1016/0022-0248(94)90772-2.
Full textBrill, Gregory N., Yuanping Chen, Priyalal S. Wijewarnasuriya, and Nibir K. Dhar. "Hg based II-VI compounds on non-standard substrates." physica status solidi (a) 209, no. 8 (June 20, 2012): 1423–27. http://dx.doi.org/10.1002/pssa.201100734.
Full textDissertations / Theses on the topic "II-VI Substrates"
Shkurmanov, Alexander, Chris Sturm, Jörg Lenzner, Guy Feuillet, Florian Tendille, Mierry Philippe De, and Marius Grundmann. "Selective growth of tilted ZnO nanoneedles and nanowires by PLD of patterned sapphire substrates." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-210898.
Full textO'Donnell, Cormac Brendan. "MBE growth and characterisation of ZnSe-based II-VI semiconductors." Thesis, Heriot-Watt University, 2000. http://hdl.handle.net/10399/524.
Full textKumar, Vishwanath. "Characterization Of Large Area Cadmium Telluride Films And Solar Cells Deposited On Moving Substrates By Close Spaced Sublimation." [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000218.
Full textMelhem, Hassan. "Epitaxial Growth of Hexagonal Ge Planar Layers on Non-Polar Wurtzite Substrates." Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPAST011.
Full textSilicon and Germanium crystallizing in the cubic diamond (denoted 3C) structure, have been the cornerstone of the electronic industry due to their inherent properties. However, metastable crystal phase engineering has emerged as a powerful method for tuning electronic band structures and conduction properties, enabling new functionalities while maintaining chemical compatibility. Notably, Germanium within the hexagonal 2H phase exhibits a direct bandgap of 0.38 eV. The alloy SixGe(1-x)-2H demonstrates strong light emission with a tunable wavelength ranging from 1.8 µm to 3.5 µm, depending on silicon concentration (40% to 0%). These properties position SixGe(1-x)-2H as a "holy grail material" among group IV semiconductors, with promising applications in mid-infrared light emission (e.g., LEDs and lasers) and detection on silicon platform.Despite recent progress, synthesizing large volumes of high-quality Ge-2H remains a challenge. Until now, Ge-2H has been limited to nanostructures, including nanodomains formed by shear-induced phase transformation, core/shell nanowires, and nanobranches. These approaches restrict active volumes, hindering basic property investigation and scalable device manufacturing. Achieving high-quality planar crystals with controlled doping is essential for advancing SixGe(1-x)-2H integration.This thesis aims to pioneer the synthesis of planar layers of hexagonal Ge using Ultra High Vacuum - Vapor Phase Epitaxy (UHV-VPE) on hexagonal m-plane II-VI substrates such as CdS-2H and ZnS-4H. The work includes developing surface preparation techniques for II-VI compounds and conducting detailed studies on hexagonal structure formation in materials such as GaAs-4H, ZnS-2H (grown via Metal-Organic Chemical Vapor Deposition, MOCVD), and Ge in both 2H and 4H hexagonal phases.A crucial preliminary step involved preparing substrate surfaces, as their quality directly impacts the crystalline quality of the epitaxial layers. Surface preparation included chemical-mechanical polishing with a Br2-MeOH solution to remove surface contaminants, confirmed through XPS analysis. Challenges related to the thermal properties of CdS-2H and ZnS-4H substrates were addressed, including desorption of II-VI compounds and the formation of negative whiskers above 500°C.Epitaxial growth by UHV-VPE posed selectivity constraints on II-VI substrates, prompting the exploration of alternative growth configurations, such as using buffer template layers. This thesis presents the first synthesis of a GaAs layer in the 4H hexagonal structure grown by epitaxy on ZnS-4H m-plane substrate, along with a first characterization of basal stacking faults (BSFs) in this layer. The feasibility of synthesizing Ge on GaAs-4H was also investigated. A significant part of the work was dedicated to growth on the CdS-2H substrates, demonstrating the first Ge layer with nanoscale regions of Ge-2H epitaxy, providing proof of concept for structure replication of Ge-2H on II-VI m-plane surfaces. However, amorphous and highly defective regions were also observed. Process optimization led to the development of ZnS-2H template layers on CdS-2H using MOCVD, circumventing constraints of direct growth on CdS. A thorough investigation of growth regimes revealed a strong impact of growth temperature on the CdS substrate surface, significantly influencing crystalline quality. m-plane ZnS layers grown at 360°C exhibited a pure hexagonal structure with excellent epitaxial orientation relative to CdS-WZ substrates. Strain relaxation occurred through misfit dislocations at the interface due to lattice mismatches of 7.63% and 6.83% along the a- and c-axes, forming basal and prismatic stacking faults on {11-20} planes. Finally, as further proof of concept, the thesis presents evidence supporting the synthesis of a Ge layer with a partial hexagonal phase
Gros, Patricia. "Epitaxie métal sur semi-conducteur II-VI : cas des terres rares sur CdTe." Grenoble 1, 1993. http://www.theses.fr/1993GRE10079.
Full textChen, Jie. "Spectroscopic Ellipsometry Studies of II-VI Semiconductor Materials and Solar Cells." University of Toledo / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1286813480.
Full text"Monocrystalline ZnTe/CdTe/MgCdTe Double Heterostructure Solar Cells Grown on InSb Substrates by Molecular Beam Epitaxy." Doctoral diss., 2014. http://hdl.handle.net/2286/R.I.26867.
Full textDissertation/Thesis
Doctoral Dissertation Electrical Engineering 2014
Yuvaraj, D. "Studies On The Growth And Characterization Of II-VI Semiconductor Nanostructures By Evaporation Methods." Thesis, 2009. https://etd.iisc.ac.in/handle/2005/1037.
Full textYuvaraj, D. "Studies On The Growth And Characterization Of II-VI Semiconductor Nanostructures By Evaporation Methods." Thesis, 2009. http://hdl.handle.net/2005/1037.
Full textYa-wen, Tzeng, and 曾雅文. "Interface study of II-VI compound semiconductor thin film grown on GaAs substrate." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/25036883588018655769.
Full text中原大學
物理學系
88
ZnSe buffer layers were grown at low temperature (100 to 250 oC) on the GaAs substrates by molecular beam epitaxy. Resistivity was found to decrease with the growth temperature. While, etch pit density (EPD) of ZnSe epilayer grown at 300 oC on the low temperature ZnSe buffer layers was found independent on the growth temperature of the buffer layer. EPD of the ZnMgSe epilayers, which were grown on the tilted GaAs substrates, was found to decrease with the substrate tilted angle. The result is corroborated with the photoluminescence (PL) measurement, which shows an increasing PL intensity with the tilted substrate angle.
Book chapters on the topic "II-VI Substrates"
Colibaba, G. V., E. V. Monaico, E. P. Goncearenco, I. Inculet, and I. M. Tiginyanu. "Features of Nanotemplates Manufacturing on the II-VI Compound Substrates." In 3rd International Conference on Nanotechnologies and Biomedical Engineering, 188–91. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-736-9_47.
Full textPark, Robert M. "ZnSe Growth on Non-Polar Substrates by Molecular Beam Epitaxy." In Growth and Optical Properties of Wide-Gap II–VI Low-Dimensional Semiconductors, 245–56. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5661-5_24.
Full textHobart, Karl D., Fritz J. Kub, Henry F. Gray, Mark E. Twigg, Dowwon Park, and Phillip E. Thompson. "Growth of low-dimensional structures on nonplanar patterned substrates." In Selected Topics in Group IV and II–VI Semiconductors, 338–43. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50072-3.
Full textBremond, G., A. Souifi, O. De Barros, A. Benmansour, P. Warren, and D. Dutartre. "Photoluminescence characterization of Si1−xGex relaxed “pseudo-substrates” grown on Si." In Selected Topics in Group IV and II–VI Semiconductors, 116–20. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50032-2.
Full textKolodzey, J., P. R. Berger, B. A. Orner, D. Hits, F. Chen, A. Khan, X. Shao, et al. "Optical and electronic properties of SiGeC alloys grown on Si substrates." In Selected Topics in Group IV and II–VI Semiconductors, 386–91. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50081-4.
Full textSochinskii, N. V., J. C. Soares, E. Alves, M. F. da Silva, P. Franzosi, S. Bernardi, and E. Diéguez. "Structural properties of CdTe and Hg1−xCdxTe epitaxial layers grown on sapphire substrates." In Selected Topics in Group IV and II–VI Semiconductors, 195–200. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50123-6.
Full textBenisty, Henri, Jean-Jacques Greffet, and Philippe Lalanne. "More confined electrons: Quantum dots and quantum wires." In Introduction to Nanophotonics, 246–72. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780198786139.003.0009.
Full textKayambaki, M., R. Callec, G. Constantinidis, Ch Papavassiliou, E. Löchtermann, H. Krasny, N. Papadakis, P. Panayotatos, and A. Georgakilas. "Investigation of Si-substrate preparation for GaAs-on-Si MBE growth." In Selected Topics in Group IV and II–VI Semiconductors, 300–303. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50064-4.
Full textLi, Shaozhong, Qi Xiang, Dawen Wang, and Kang L. Wang. "Modeling of facet growth on patterned Si substrate in gas source MBE." In Selected Topics in Group IV and II–VI Semiconductors, 185–89. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50044-9.
Full textGutheit, T., M. Heinau, H. J. Füsser, C. Wild, P. Koidl, and G. Abstreiter. "Molecular beam epitaxial grown Si1−xCx layers on Si(001) as a substrate for MWCVD of diamond." In Selected Topics in Group IV and II–VI Semiconductors, 426–30. Elsevier, 1996. http://dx.doi.org/10.1016/b978-0-444-82411-0.50088-7.
Full textConference papers on the topic "II-VI Substrates"
Zogg, Hans, A. N. Tiwari, Stefan Blunier, Clau Maissen, and Jiri Masek. "Heteroepitaxy of II-VI and IV-VI semiconductors on Si substrates." In Physical Concepts of Materials for Novel Optoelectronic Device Applications, edited by Manijeh Razeghi. SPIE, 1991. http://dx.doi.org/10.1117/12.24409.
Full textUusimma, P., M. Pessa, P. Blood, I. Auffret, and C. Cooper. "Blue-green II-VI quantum well lasers." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/cleo_europe.1998.ctug4.
Full textUeta, A., A. Avramescu, K. Uesugi, T. Numai, I. Suemune, H. Machida, and H. Shimoyama. "Selective Area Growth of Widegap II-VI Semiconductors on Patterned Substrates." In 1997 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1997. http://dx.doi.org/10.7567/ssdm.1997.c-5-2.
Full textHaase, M. A., J. Qiu, J. M. DePuydt, and H. Cheng. "Blue-green II–VI laser diodes." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.tuss1.
Full textDi Marzio, Don, David J. Larson, Jr., Louis G. Casagrande, Jun Wu, Michael Dudley, Stephen P. Tobin, and Peter W. Norton. "Large-area x-ray topographic screening of II-VI substrates and epilayers." In SPIE's International Symposium on Optical Engineering and Photonics in Aerospace Sensing, edited by Herbert K. Pollehn and Raymond S. Balcerak. SPIE, 1994. http://dx.doi.org/10.1117/12.179671.
Full textBONEY, C., D. B. EASON, Z. YU, W. C. HUGHES, J. W. COOK, J. F. SCHETZINA, G. CANTWELL, and W. C. HARSCH. "Blue/Green Light Emitters Based on II-VI Heterostructures on ZnSe Substrates." In 1995 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1995. http://dx.doi.org/10.7567/ssdm.1995.s-v-1.
Full textHaase, Michael A. "Blue-green II-VI Laser Diodes: Progress in Reliability." In Symposium on Optical Memory. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/isom.1996.ofb.1.
Full textTamargo, Maria C., Ning Dai, Abdullah Cavus, Rhonda Dzakpasu, Wojciech Krystek, Fred H. Pollak, Alph F. Semendy, et al. "Growth of wide bandgap II-VI alloys on InP substrates by molecular beam epitaxy." In Photonics for Industrial Applications, edited by Robert L. Gunshor and Arto V. Nurmikko. SPIE, 1994. http://dx.doi.org/10.1117/12.197267.
Full textIchirou Nomura, Katsumi Kishino, Tomoya Ebisawa, Shun Kushida, Jun Uota, Kunihiko Tasai, Hitoshi Nakamura, Tsunenori Asatsuma, and Hiroshi Nakajima. "Proposal of BeZnSeTe/MgZnCdSe II–VI compound semiconductors on InP substrates for green laser diodes." In 2008 IEEE 21st International Semiconductor Laser Conference (ISLC). IEEE, 2008. http://dx.doi.org/10.1109/islc.2008.4636070.
Full textJohnson, Anthony M. "Femtosecond Exciton Dynamics of II-VI Semiconductor Multiple Quantum Wells (Invited)." In Inaugural Forum for the Research Center for Optical Physics. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/rcop.1993.tpls2.
Full textReports on the topic "II-VI Substrates"
Wilson, Thomas E., Avraham A. Levy, and Tzvi Tzfira. Controlling Early Stages of DNA Repair for Gene-targeting Enhancement in Plants. United States Department of Agriculture, March 2012. http://dx.doi.org/10.32747/2012.7697124.bard.
Full text