Dissertations / Theses on the topic 'Ignition engine; Hydrogen'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 18 dissertations / theses for your research on the topic 'Ignition engine; Hydrogen.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Silva, Isaac Alexander. "Onboard Hydrogen Generation for a Spark Ignition Engine via Thermochemical Recuperation." Thesis, University of California, Davis, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1585124.
Full textA method of exhaust heat recovery from a spark-ignition internal combustion engine was explored, utilizing a steam reforming thermochemical reactor to produce a hydrogen-rich effluent, which was then consumed in the engine. The effects of hydrogen in the combustion process have been studied extensively, and it has been shown that an extension of the lean stability limit is possible through hydrogen enrichment. The system efficiency and the extension of the operational range of an internal combustion engine were explored through the use of a methane fueled naturally aspirated single cylinder engine co-fueled with syngas produced with an on board methane steam reformer. It was demonstrated that an extension of the lean stability limit is possible using this system.
Christodoulou, Fanos. "Hydrogen, nitrogen and syngas enriched diesel combustion." Thesis, Brunel University, 2014. http://bura.brunel.ac.uk/handle/2438/9109.
Full textDunstan, T. D. "Turbulent Premixed Flame Kernel Growth During The Early Stages Using Direct Numerical Simulation." Thesis, Cranfield University, 2008. http://hdl.handle.net/1826/3486.
Full textStousland, Tyler Brian. "Experimental Use of Hydrogen to Reduce the Consumption of Carbon Fuels in a Compression Ignition Engine and Its Effect on Performance." Thesis, North Dakota State University, 2016. https://hdl.handle.net/10365/27641.
Full textHamori, Ferenc. "Exploring the limits of hydrogen assisted jet ignition /." Connect to thesis, 2006. http://eprints.unimelb.edu.au/archive/00001606.
Full textToulson, Elisa. "Applying alternative fuels in place of hydrogen to the jet ignition process /." Connect to thesis, 2008. http://repository.unimelb.edu.au/10187/3532.
Full textAntunes, Jorge Manuel Gomes. "The use of hydrogen as a fuel for compression ignition engines." Thesis, University of Newcastle Upon Tyne, 2011. http://hdl.handle.net/10443/1365.
Full textRocchi, Jean-Philippe. "Simulations aux grandes échelles de la phase d'allumage dans un moteur fusée cryotechnique." Phd thesis, Toulouse, INPT, 2014. http://oatao.univ-toulouse.fr/14667/1/rocchi.pdf.
Full textTahtouh, Toni. "Les effets combinés de l'hydrogène et de la dilution dans un moteur à allumage commandé." Phd thesis, Université d'Orléans, 2010. http://tel.archives-ouvertes.fr/tel-00604166.
Full textHsieh, Ming-Fong, and 謝明峰. "Experimental study of hydrogen direct injection spark ignition engine." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/61958709169998335777.
Full text逢甲大學
機械工程學所
97
This study chooses the hydrogen direct injection on the performance of the hydrogen engine to explore. The experiment engine adopts single cylinder and four strokes which converts gasoline fuel into hydrogen fuel. Moreover , modified on the engine, installed fuel injection systems,control systems, air intake system and power measuring device. Experimental results show that fuel injection timing in the intake stroke (270-300ObTDC) can successfully start the hydrogen engine, WOT status and hydrogen injection pressure 60bar amount maximum speed 2200rpm.That is disagreed with default target of 3600rpm. The major cause of ignition timing is not correct, when equivalence ratio changes ignition timing could not in the maximum torque (MBT) sparking. Followed by reasons include fuel injection pressure could not be changed with the equivalence ratio and the control circuit trigger signals as may be unstable. This thesis discuss our experimental results with references , discussion of the ignition timing, injection pressure, control circuit and the relationship between the experimental results. This research is insufficient ignition timing angle to crank angle 20O not yet reached the goal of the experiment caused.
Chanka, Trinesh. "Hydrogen-enhanced fuelling of a spark ignition engine from an on-board hydrogen-generating device." Thesis, 2008. http://hdl.handle.net/10539/4786.
Full textBurke, PH. "Performance appraisal of a four-stroke hydrogen internal combustion engine." Thesis, 2005. https://eprints.utas.edu.au/19195/1/whole_BurkePatrickHugh2005_thesis.pdf.
Full textChinnathambi, Prasanna. "Experimental investigation on traversing hot jet ignition of lean hydrocarbon-air mixtures in a constant volume combustor." Thesis, 2013. http://hdl.handle.net/1805/4439.
Full textA constant-volume combustor is used to investigate the ignition initiated by a traversing jet of reactive hot gas, in support of combustion engine applications that include novel wave-rotor constant-volume combustion gas turbines and pre-chamber IC engines. The hot-jet ignition constant-volume combustor rig at the Combustion and Propulsion Research Laboratory at the Purdue School of Engineering and Technology at Indiana University-Purdue University Indianapolis (IUPUI) was used for this study. Lean premixed combustible mixture in a rectangular cuboid constant-volume combustor is ignited by a hot-jet traversing at different fixed speeds. The hot jet is issued via a converging nozzle from a cylindrical pre-chamber where partially combusted products of combustion are produced by spark- igniting a rich ethylene-air mixture. The main constant-volume combustor (CVC) chamber uses methane-air, hydrogen-methane-air and ethylene-air mixtures in the lean equivalence ratio range of 0.8 to 0.4. Ignition delay times and ignitability of these combustible mixtures as affected by jet traverse speed, equivalence ratio, and fuel type are investigated in this study.
Toulson, E. "Applying alternative fuels in place of hydrogen to the jet ignition process." 2008. http://repository.unimelb.edu.au/10187/3532.
Full textThe benefits from the low temperature combustion at λ = 2 and leaner are that almost zero NOx is formed and there is an improvement in thermal efficiency. Efficiency improvements are a result of the elimination of dissociation, such as CO2 to CO, which normally occurs at high temperatures, together with reduced throttling losses to maintain the same road power. It is even possible to run the engine in an entirely unthrottled mode, but at λ = 5.
Although only a small amount of H2 is required for the HAJI process, it is difficult to both refuel H2 and store it onboard. In order to overcome these obstacles, the viability of a variety of more convenient fuels was experimentally assessed based on criteria such as combustion stability, lean limit and emission levels. The prechamber fuels tested were liquefied petroleum gas (LPG), natural gas, reformed gasoline and carbon monoxide. Additionally, LPG was employed as the main fuel in conjunction with H2 or LPG in the prechamber. Furthermore, the effects of HAJI operation under sufficient exhaust gas recirculation to allow stoichiometric fuel-air supply, thus permitting three-way catalyst application were also examined.
In addition to experiments, prechamber and main chamber flame propagation modeling was completed to examine the effects of each prechamber fuel on the ignition of the main fuel, which consisted of either LPG or gasoline. The modeling and experimental results offered similar trends, with the modeling results giving insight into the physiochemical process by which main fuel combustion is initiated in the HAJI process.
Both the modeling and experimental results indicate that the level of ignition enhancement provided by HAJI is highly dependent on the generation of chemical species and not solely on the energy content of the prechamber fuel. Although H2 was found to be the most effective fuel, in a study of a very light load condition (70 kPa MAP) especially when running in the ultra-lean region, the alternative fuels were effective at running between λ = 2-2.5 with almost zero NOx formation. These lean limits are about twice the value possible with spark ignition (λ = 1.25) in this engine at similar load conditions. In addition, the LPG results are very encouraging as they offer the possibility of a HAJI like system where a commercially available fuel is used as both the main and prechamber fuel, while providing thermal efficiency improvements over stoichiometric operation and meeting current NOx emission standards.
Khan, Md Nazmuzzaman. "Three-dimensional transient numerical study of hot-jet ignition of methane-hydrogen blends in a constant-volume combustor." Thesis, 2015. http://hdl.handle.net/1805/7960.
Full textIgnition by a jet of hot combustion product gas injected into a premixed combustible mixture from a separate pre-chamber is a complex phenomenon with jet penetration, vortex generation, flame and shock propagation and interaction. It has been considered a useful approach for lean, low-NOx combustion for automotive engines, pulsed detonation engines and wave rotor combustors. The hot-jet ignition constant-volume combustor (CVC) rig established at the Combustion and Propulsion Research Laboratory (CPRL) of the Purdue School of Engineering and Technology at Indiana University-Purdue University Indianapolis (IUPUI) is considered for numerical study. The CVC chamber contains stoichiometric methane-hydrogen blends, with pre-chamber being operated with slightly rich blends. Five operating and design parameters were investigated with respect to their eff ects on ignition timing. Di fderent pre-chamber pressure (2, 4 and 6 bar), CVC chamber fuel blends (Fuel-A: 30% methane + 70% hydrogen and Fuel-B: 50% methane + 50% hydrogen by volume), active radicals in pre-chamber combusted products (H, OH, O and NO), CVC chamber temperature (298 K and 514 K) and pre-chamber traverse speed (0.983 m/s, 4.917 m/s and 13.112 m/s) are considered which span a range of fluid-dynamic mixing and chemical time scales. Ignition delay of the fuel-air mixture in the CVC chamber is investigated using a detailed mechanism with 21 species and 84 elementary reactions (DRM19). To speed up the kinetic process adaptive mesh refi nement (AMR) based on velocity and temperature and multi-zone reaction technique is used. With 3D numerical simulations, the present work explains the e ffects of pre-chamber pressure, CVC chamber initial temperature and jet traverse speed on ignition for a speci fic set of fuels. An innovative post processing technique is developed to predict and understand the characteristics of ignition in 3D space and time. With the increase of pre-chamber pressure, ignition delay decreases for Fuel-A which is the relatively more reactive fuel blend. For Fuel-B which is relatively less reactive fuel blend, ignition occurs only for 2 bar pre-chamber pressure for centered stationary jet. Inclusion of active radicals in pre-chamber combusted product decreases the ignition delay when compared with only the stable species in pre-chamber combusted product. The eff ects of shock-flame interaction on heat release rate is observed by studying flame surface area and vorticity changes. In general, shock-flame interaction increases heat release rate by increasing mixing (increase the amount of deposited vorticity on flame surface) and flame stretching. The heat release rate is found to be maximum just after fast-slow interaction. For Fuel-A, increasing jet traverse speed decreases the ignition delay for relatively higher pre-chamber pressures (6 and 4 bar). Only 6 bar pre-chamber pressure is considered for Fuel-B with three di fferent pre-chamber traverse speeds. Fuel-B fails to ignite within the simulation time for all the traverse speeds. Higher initial CVC temperature (514 K) decreases the ignition delay for both fuels when compared with relatively lower initial CVC temperature (300 K). For initial temperature of 514 K, the ignition of Fuel-B is successful for all the pre-chamber pressures with lowest ignition delay observed for the intermediate 4 bar pre-chamber pressure. Fuel-A has the lowest ignition delay for 6 bar pre-chamber pressure. A speci fic range of pre-chamber combusted products mass fraction, CVC chamber fuel mass fraction and temperature are found at ignition point for Fuel-A which were liable for ignition initiation. The behavior of less reactive Fuel-B appears to me more complex at room temperature initial condition. No simple conclusions could be made about the range of pre-chamber and CVC chamber mass fractions at ignition point.
Lisio, Carmine. "Experimental investigation on the feasibility of shock wave application as a hydrogen ignition source in diesel engines." Thesis, 1990. http://spectrum.library.concordia.ca/3220/1/MM64747.pdf.
Full textSchmidt, Dennis Patrick. "Design and testing of a modular hydride hydrogen storage system for mobile vehicles." 1985. http://hdl.handle.net/2097/27531.
Full textKarimi, Abdullah. "Numerical study of hot jet ignition of hydrocarbon-air mixtures in a constant-volume combustor." Thesis, 2014. http://hdl.handle.net/1805/6249.
Full textIgnition of a combustible mixture by a transient jet of hot reactive gas is important for safety of mines, pre-chamber ignition in IC engines, detonation initiation, and in novel constant-volume combustors. The present work is a numerical study of the hot-jet ignition process in a long constant-volume combustor (CVC) that represents a wave-rotor channel. The mixing of hot jet with cold mixture in the main chamber is first studied using non-reacting simulations. The stationary and traversing hot jets of combustion products from a pre-chamber is injected through a converging nozzle into the main CVC chamber containing a premixed fuel-air mixture. Combustion in a two-dimensional analogue of the CVC chamber is modeled using global reaction mechanisms, skeletal mechanisms, and detailed reaction mechanisms for four hydrocarbon fuels: methane, propane, ethylene, and hydrogen. The jet and ignition behavior are compared with high-speed video images from a prior experiment. Hybrid turbulent-kinetic schemes using some skeletal reaction mechanisms and detailed mechanisms are good predictors of the experimental data. Shock-flame interaction is seen to significantly increase the overall reaction rate due to baroclinic vorticity generation, flame area increase, stirring of non-uniform density regions, the resulting mixing, and shock compression. The less easily ignitable methane mixture is found to show higher ignition delay time compared to slower initial reaction and greater dependence on shock interaction than propane and ethylene. The confined jet is observed to behave initially as a wall jet and later as a wall-impinging jet. The jet evolution, vortex structure and mixing behavior are significantly different for traversing jets, stationary centered jets, and near-wall jets. Production of unstable intermediate species like C2H4 and CH3 appears to depend significantly on the initial jet location while relatively stable species like OH are less sensitive. Inclusion of minor radical species in the hot-jet is observed to reduce the ignition delay by 0.2 ms for methane mixture in the main chamber. Reaction pathways analysis shows that ignition delay and combustion progress process are entirely different for hybrid turbulent-kinetic scheme and kinetics-only scheme.