To see the other types of publications on this topic, follow the link: Igneous – New South Wales.

Journal articles on the topic 'Igneous – New South Wales'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Igneous – New South Wales.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Musili, Paul M., Jeremy J. Bruhl, and Karen L. Wilson. "Schoenus rupicola: a narrowly endemic species distinguished from S. melanostachys (Cyperaceae, Schoeneae) in eastern Australia." Australian Systematic Botany 31, no. 3 (2018): 219. http://dx.doi.org/10.1071/sb17046.

Full text
Abstract:
Widespread, common species are of limited value for regional biogeographic studies and of least concern for conservation and land management. In contrast, narrow endemics may be informative for such studies and are usually of high conservation priority. A new species is separated from the widespread species Schoenus melanostachys on the basis of phenetic analysis of morphological data, and integrating evidence from culm anatomy, culm and fruit ornamentation, and corroborated by ecological differentiation. Schoenus rupicola Musili & J.J.Bruhl is found on acid volcanics of south-eastern Queensland and north-eastern New South Wales, adding yet another narrow endemic to the suite of species that characterises the McPherson Range and associated igneous outcrops.
APA, Harvard, Vancouver, ISO, and other styles
2

Squire, R. J., and A. J. Crawford. "Magmatic characteristics and geochronology of Ordovician igneous rocks from the Cadia – Neville region, New South Wales: implications for tectonic evolution." Australian Journal of Earth Sciences 54, no. 2-3 (March 2007): 293–314. http://dx.doi.org/10.1080/08120090601147001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hao, Hongda, Ian H. Campbell, Jung-Woo Park, and David R. Cooke. "Platinum-group element geochemistry used to determine Cu and Au fertility in the Northparkes igneous suites, New South Wales, Australia." Geochimica et Cosmochimica Acta 216 (November 2017): 372–92. http://dx.doi.org/10.1016/j.gca.2017.05.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McPhie, J. "Evolution of a non-resurgent cauldron: the Late Permian Coombadjha Volcanic Complex, northeastern New South Wales, Australia." Geological Magazine 123, no. 3 (May 1986): 257–77. http://dx.doi.org/10.1017/s0016756800034749.

Full text
Abstract:
AbstractThe Coombadjha Volcanic Complex is the remnant of a Late Permian cauldron. It is part of an extensive sequence of silicic calc-alkaline volcanics that covers the southeastern portion of the New England Orogen in NSW. The Complex is elliptical, measuring 15 × 24 km, and is outlined by a ring pluton and an arcuate fault. Bedding in the volcanic units of the Complex defines a structural basin, with steep inward dips at the monoclinal rim and gentle to horizontal orientations near the centre. An older group of outflow ignimbrites, lavas, breccias and volcaniclastic rocks at least 1500 m thick, is conformably overlain by more than 500 m of texturally homogeneous, crystal-rich, dacitic ignimbrite. Ignimbrites of the older group are the products of several discrete eruptions from separate vents, all of which were situated outside the Coombadjha area. Silicic lava domes with volcaniclastic aprons, and a tuff ring, mark the positions of local vents active on a small scale during intervals between the emplacement of the outflow ignimbrites. No significant subsidence occurred, nor did a caldera exist at this stage. Cauldron subsidence occurred in response to the large magnitude eruption that produced the crystal-rich ignimbrite. The central cauldron block was lowered at least 2000 m by downwarping and fault displacement, and remained largely intact. There is no evidence for resurgent doming of the cauldron after subsidence, although igneous activity continued with intrusion of an adamellite ring pluton along much of the cauldron margin. The crystal-rich ignimbrite and the ring pluton are similar in composition and may have been successive products of a common magma source that sustained this simple, single cauldron cycle.
APA, Harvard, Vancouver, ISO, and other styles
5

Caprarelli, Graziella, and Evan C. Leitch. "Magmatic changes during the stabilisation of a cordilleran fold belt: the Late Carboniferous–Triassic igneous history of eastern New South Wales, Australia." Lithos 45, no. 1-4 (December 1998): 413–30. http://dx.doi.org/10.1016/s0024-4937(98)00042-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gatehouse, Robyn D., I. S. Williams, and B. J. Pillans. "Fingerprinting windblown dust in south-eastern Australian soils by uranium-lead dating of detrital zircon." Soil Research 39, no. 1 (2001): 7. http://dx.doi.org/10.1071/sr99078.

Full text
Abstract:
The U-Pb ages of fine-grained zircon separated from 2 dust-dominated soils in the eastern highlands of south-eastern Australia and measured by ion microprobe (SHRIMP) revealed a characteristic age ‘fingerprint’ from which the source of the dust has been determined and by which it will be possible to assess the contribution of dust to other soil profiles. The 2 soils are dominated by zircon 400–600 and 1000–1200 Ma old, derived from Palaeozoic granites and sediments of the Lachlan Fold Belt, but also contain significant components 100–300 Ma old, characteristic of igneous rocks in the New England Fold Belt in northern New South Wales and Queensland. This pattern closely matches that of sediments of the Murray-Darling Basin, especially the Mallee dunefield, suggesting that weathering of rocks in the eastern highlands has contributed large quantities of sediment to the arid and semi-arid inland basins via internally draining rivers of the present and past Murray–Darling River systems, where it has formed a major source of dust subsequently blown eastwards and deposited in the highland soils of eastern Australia.
APA, Harvard, Vancouver, ISO, and other styles
7

Crawford, A. J., D. R. Cooke, and C. M. Fanning. "Geochemistry and age of magmatic rocks in the unexposed Narromine, Cowal and Fairholme Igneous Complexes in the Ordovician Macquarie Arc, New South Wales." Australian Journal of Earth Sciences 54, no. 2-3 (March 2007): 243–71. http://dx.doi.org/10.1080/08120090701221714.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, I. E. M., A. J. R. White, B. W. Chappell, and R. A. Eggleton. "Fractionation in a zoned monzonite pluton: Mount Dromedary, southeastern Australia." Geological Magazine 125, no. 3 (May 1988): 273–84. http://dx.doi.org/10.1017/s0016756800010219.

Full text
Abstract:
AbstractMount Dromedary pluton is one of several predominantly monzonite plutons and smaller intrusive bodies which constitute the Dromedary igneous complex in southeastern New South Wales. The pluton exhibits a striking arrangement of petrographically, but not always chemically, distinct zones ranging from mafic monzonite at the outside to quartz monzonite in the centre. The rocks display a mineralogical and geochemical integrity which indicates a consanguineous relationship. Minor compositional discontinuities between zones, together with observed and inferred minor intrusive zone boundaries, suggest that each zone has to some extent evolved independently. Negative Eu anomalies in REE abundance patterns show that some of the zones have been affected by fractionation of feldspar, but complementary accumulates are not found at the present levels of exposure. The pattern of zoning can be explained by a process of shallow fractional crystallization in which variations within zones are the result of lateral accretion of alkali feldspar as well as settling and/or lateral accretion of mafic phases at lower levels in the intrusion and upward displacement of fractionated magma. The parental magma of the pluton probaby originated by partial melting of an alkali basalt composition with an amphibolite mineralogy at the base of the crust.
APA, Harvard, Vancouver, ISO, and other styles
9

Offler, R., and S. Shaw. "Hornblende Gabbro Block in Serpentinite Mélange, Peel‐Manning Fault System, New South Wales, Australia: Lu‐Hf and U‐Pb Isotopic Evidence for Mantle‐Derived, Late Ordovician Igneous Activity." Journal of Geology 114, no. 2 (March 2006): 211–30. http://dx.doi.org/10.1086/499572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rahimi, Mehdi. "New South Wales." Australian Endodontic Journal 41, no. 2 (July 29, 2015): 99–100. http://dx.doi.org/10.1111/aej.12120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Rahimi, Mehdi. "New South Wales." Australian Endodontic Journal 41, no. 3 (December 2015): 143. http://dx.doi.org/10.1111/aej.12140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ferguson, Lorraine. "New South Wales." Australian Critical Care 5, no. 2 (June 1992): 23. http://dx.doi.org/10.1016/s1036-7314(92)70046-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ferguson, Lorraine. "New South Wales." Australian Critical Care 5, no. 3 (September 1992): 23–24. http://dx.doi.org/10.1016/s1036-7314(92)70057-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ferguson, Lorraine. "New South Wales." Australian Critical Care 5, no. 4 (December 1992): 25–26. http://dx.doi.org/10.1016/s1036-7314(92)70070-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Robertson, Sally. "New South Wales." Australian Critical Care 6, no. 1 (March 1993): 33. http://dx.doi.org/10.1016/s1036-7314(93)70101-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Robertson, Sally. "New South Wales." Australian Critical Care 6, no. 2 (June 1993): 34. http://dx.doi.org/10.1016/s1036-7314(93)70121-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ferguson, Lorraine. "New South Wales." Australian Critical Care 6, no. 3 (September 1993): 33–34. http://dx.doi.org/10.1016/s1036-7314(93)70156-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Robertson, Sally. "New South Wales." Australian Critical Care 6, no. 4 (December 1993): 30. http://dx.doi.org/10.1016/s1036-7314(93)70180-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Thompson, Elaine. "New South Wales." Australian Cultural History 27, no. 2 (October 2009): 135–42. http://dx.doi.org/10.1080/07288430903164827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

D'Elmaine, Judith. "New South Wales." Australian College of Midwives Incorporated Journal 6, no. 1 (March 1993): 16–17. http://dx.doi.org/10.1016/s1031-170x(05)80095-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Maxwell, Catherine. "New South Wales." Australian College of Midwives Incorporated Journal 5, no. 2 (June 1992): 24. http://dx.doi.org/10.1016/s1031-170x(05)80110-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Maxwell, C. "New South Wales." Australian College of Midwives Incorporated Journal 5, no. 4 (December 1992): 25. http://dx.doi.org/10.1016/s1031-170x(05)80185-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Maxwell, Catherine. "New South Wales." Australian College of Midwives Incorporated Journal 5, no. 1 (March 1992): 21. http://dx.doi.org/10.1016/s1031-170x(05)80200-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Haertsch, Maggie. "New South Wales." Australian College of Midwives Incorporated Journal 4, no. 2 (September 1991): 19. http://dx.doi.org/10.1016/s1031-170x(05)80251-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Scalmer, Sean. "New South Wales." Australian Journal of Politics & History 50, no. 2 (June 2004): 257–64. http://dx.doi.org/10.1111/j.1467-8497.2004.247_2.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Chadwick, Virginia. "New South Wales." Children Australia 15, no. 2 (1990): 51–52. http://dx.doi.org/10.1017/s1035077200002777.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Blefari, Vince. "New South Wales." Australian Endodontic Journal 32, no. 3 (December 2006): 137. http://dx.doi.org/10.1111/j.1747-4477.2006.00039.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Blefari, Vince. "New South Wales." Australian Endodontic Journal 33, no. 1 (April 2007): 48. http://dx.doi.org/10.1111/j.1747-4477.2007.00067_1.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Blefari, Vincent. "New South Wales." Australian Endodontic Journal 33, no. 2 (August 2007): 96. http://dx.doi.org/10.1111/j.1747-4477.2007.00084_1.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Young, Geoff. "New South Wales." Australian Endodontic Journal 36, no. 2 (May 11, 2010): 97–98. http://dx.doi.org/10.1111/j.1747-4477.2010.00243.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Young, Geoff. "New South Wales." Australian Endodontic Journal 36, no. 3 (November 22, 2010): 135. http://dx.doi.org/10.1111/j.1747-4477.2010.00281.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Young, Geoff. "New South Wales." Australian Endodontic Journal 37, no. 1 (March 21, 2011): 39. http://dx.doi.org/10.1111/j.1747-4477.2011.00301.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Blefari, Vince. "New South Wales." Australian Endodontic Journal 37, no. 2 (July 20, 2011): 86. http://dx.doi.org/10.1111/j.1747-4477.2011.00313.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Blefari, Vincent. "New South Wales." Australian Endodontic Journal 37, no. 3 (November 24, 2011): 151. http://dx.doi.org/10.1111/j.1747-4477.2011.00329.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Blefari, Vincent. "New South Wales." Australian Endodontic Journal 38, no. 1 (March 20, 2012): 45. http://dx.doi.org/10.1111/j.1747-4477.2012.00343.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Case, Peter. "New South Wales." Australian Endodontic Journal 38, no. 2 (July 24, 2012): 91. http://dx.doi.org/10.1111/j.1747-4477.2012.00361.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Jones, P. A. "New South Wales." Australian Endodontic Newsletter 14, no. 2 (February 11, 2010): 6–7. http://dx.doi.org/10.1111/j.1747-4477.1988.tb00782.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hao, Hongda, Ian H. Campbell, David R. Cooke, Eizo Nakamura, and Chie Sakaguchi. "Geochronology, Petrogenesis and Oxidation State of the Northparkes Igneous Suite, New South Wales, Australia: Implications for Magma Fertility." Economic Geology, March 25, 2021. http://dx.doi.org/10.5382/econgeo.4825.

Full text
Abstract:
Abstract New geochronological and geochemical data for the barren and ore-associated suites from the Northparkes porphyry Cu-Au deposits, Australia, have implications for magma fertility. The Goonumbla and Wombin Volcanics and intrusions are barren in the Northparkes area. A sample from Wombin suite yielded a zircon U-Pb age of 433.8 ± 3.1 Ma, whereas the ore-associated porphyries yielded ages between 441.8 ± 3.7 and 436.3 ± 4.5 Ma. The bulk of the mineralization at Northparkes is associated with a K-feldspar-phyric quartz monzonite porphyry (K-QMP), which gave U-Pb zircon ages of 441.8 ± 3.7 and 441.1 ± 2.5 Ma. Whole-rock Sr-Nd isotope compositions of the Goonumbla, Wombin, and ore-associated suites are similar, with (87Sr/86Sr)i = 0.704112 to 0.704424 and εNd = 5.6 to 6.9, which is typical of primitive intraoceanic island arcs, and their Pb isotope values lie within the MORB array. Most of the zircons from the Wombin and ore-associated suites have arc mantle-like O-Hf isotope compositions, with δ18O values that vary from 6.13 to 4.95, and εHf(t) from 11.5 to 6. These results suggest that the Goonumbla, Wombin, and ore-associated suites originated from typical arc mantle. The magmas that produced the Goonumbla and Wombin suites were dominated by plagioclase-pyroxene fractionation, and the Wombin suite has a low oxidation state with ΔFMQ between ~0 and 1.5. They were relatively reduced and dry. This combination resulted in early sulfide saturation, probably without reaching fluid saturation. Trace element modeling shows that plagioclase-amphibole dominated the later stages of fractionation of the ore-associated suite, implying that it had a higher water content than the barren suites. It was also more oxidized (ΔFMQ from ~0 to 4). The result was late sulfide saturation, which was followed shortly thereafter by voluminous fluid release. As a consequence, the ore-forming fluid effectively transferred Cu and Au from the magma to the site of hydrothermal ore deposition. We suggest that the higher water content and oxidation state of the ore-associated suite was due to the deep underlying magma chamber, which was recharged by many more pulses of magma than the chamber that underlay the barren suites. This is more effective in raising the concentration of incompatible water and ferric iron in the residual melt than straight fractional crystallization. High oxygen fugacities and water contents played a significant role in determining the timing of sulfide and fluid saturation, respectively, and as a result, they had a critical influence on magma fertility.
APA, Harvard, Vancouver, ISO, and other styles
39

Kerr, Andrew. "Long Walks, Lost Documents and the Birthplace of Igneous Petrology: Exploring Glen Tilt, Perthshire, Scotland." Geoscience Canada, July 10, 2020, 83–102. http://dx.doi.org/10.12789/geocanj.2020.47.159.

Full text
Abstract:
The spectacular angular unconformity at Siccar Point is the most famous site associated with James Hutton (1726–1797), but it was not his only place of insight. In 1785, three years before he discovered Siccar Point, Hutton examined outcrops in the still-remote valley of Glen Tilt, in the Scottish Highlands. He documented contact relationships between Precambrian metasedimentary rocks and Paleozoic granite bodies, although he had no knowledge of their true ages. Near to the hunting lodge where he and his colleague John Clerk of Eldin stayed, veins of granite clearly cut through relict bedding in the stratified rocks and disrupt their layering, breaking apart individual strata and leaving fragments (xenoliths) surrounded by granite. Hutton correctly deduced that the granite must originally have been in a ‘state of fusion’ and was forcefully injected into much older ‘schistus’. Such conclusions contravened prevailing ideas that granite bodies formed from aqueous solutions, and also refuted a wider philosophical view that granite and other crystalline rocks were the oldest and first-created parts of the Earth. Hutton’s key outcrops in Glen Tilt are easy to visit, although they do require a long (but easy) roundtrip hike of some 25 km. These are certainly not the most spectacular intrusion breccias that I have ever seen, but they are very instructive, and were very influential, because they sparked a long, and at times acrimonious, debate about the origins of igneous rocks and especially granite. This controversy had many strange twists and turns. These include the disappearance of Hutton’s original manuscript after his death, and its serendipitous rediscovery a century later, and the similar loss and rediscovery of exquisite drawings by John Clerk, almost two centuries after they were first penned. Among the lost drawings is an early example of detailed outcrop-scale mapping, which would become a key field-work technique. Hutton’s vision of granite as the product of hot, liquid material that moved upward in the Earth’s crust (plutonism) eventually prevailed over the idea that crystalline rocks formed from a primordial ocean that once enveloped the Earth (neptunism), but this victory did not come easily or quickly. In another strange twist of history, new evidence from the Cape of Good Hope in South Africa eventually acted to further the plutonist cause. Glen Tilt has changed very little since the time of Hutton, but the observations that were made here, and the long debate that followed, brought fundamental changes in our understanding of the Earth. Although Siccar Point should remain the first entry on the bucket list of any prospective geopilgrim to Scotland, the long and beautiful valley of the River Tilt should also be a priority. RÉSUMÉLa spectaculaire discordance angulaire de Siccar Point est le site le plus célèbre associé à James Hutton (1726–1797), mais ce n'était pas le seul lieu qui l’ait inspiré. En 1785, trois ans avant de découvrir Siccar Point, Hutton a examiné des affleurements dans la vallée encore enclavée de Glen Tilt, dans les Highlands écossais. Il a documenté les contacts entre les roches métasédimentaires précambriennes et les corps granitiques du Paléozoïque, bien qu'il ne connût pas leur véritable âge. Près du pavillon de chasse où lui et son collègue John Clerk of Eldin ont séjourné, des veines de granit ont clairement percé le litage relique dans les roches stratifiées et perturbé leur superposition, brisant les strates individuelles et laissant des fragments (xénolithes) entourés de granit. Hutton a correctement déduit que le granit devait à l'origine être dans un « état de fusion » et qu'il avait été injecté de force dans des « schistes » beaucoup plus anciens. De telles conclusions contrevenaient aux idées dominantes selon lesquelles des corps granitiques se formaient à partir de solutions aqueuses et réfutaient également une vision philosophique plus large selon laquelle le granit et d'autres roches cristallines étaient les parties de la Terre les plus anciennes et les premières créées. Les principaux affleurements de Hutton à Glen Tilt sont faciles à visiter, bien qu'ils nécessitent une longue randonnée (mais facile) d'environ 25 km aller et retour. Ce ne sont certainement pas les brèches d'intrusion les plus spectaculaires que je n’ai jamais vues, mais elles sont très instructives et ont eu un rôle très influent, car elles ont déclenché un long débat, parfois acrimonieux, sur les origines des roches ignées et en particulier du granit. Cette controverse a eu de nombreux rebondissements étranges. Ceux-ci incluent la disparition du manuscrit original de Hutton après sa mort, et sa redécouverte fortuite un siècle plus tard, et la perte et la redécouverte similaires de dessins remarquables de John Clerk, près de deux siècles après qu’ils aient été esquissés. Parmi les dessins perdus, se trouve un premier exemple de cartographie détaillée à l'échelle des affleurements, qui deviendra une technique clé de travail sur le terrain.La vision de Hutton du granit en tant que produit d'un matériau chaud et liquide qui s'est déplacé vers le haut dans la croûte terrestre (plutonisme) a finalement prévalu sur l'idée que des roches cristallines se sont formées à partir d'un océan primordial qui enveloppait autrefois la Terre (neptunisme), mais cette victoire n'est pas venue facilement ou rapidement. Dans une autre tournure étrange de l'histoire, de nouvelles preuves provenant du Cap de Bonne-Espérance en Afrique du Sud ont fini par faire avancer la cause plutoniste. Glen Tilt a très peu changé depuis l'époque de Hutton, mais les observations qui ont été faites ici, et le long débat qui a suivi, ont apporté des changements fondamentaux dans notre compréhension de la Terre. Bien que Siccar Point devrait rester en haut de la liste des lieux à visiter de tout visiteur potentiel lors d’un pèlerinage géologique en Écosse, la longue et belle vallée de la rivière Tilt devrait également être une priorité.
APA, Harvard, Vancouver, ISO, and other styles
40

"NEW SOUTH WALES." Australian Journal of Politics & History 3, no. 1 (April 7, 2008): 99–101. http://dx.doi.org/10.1111/j.1467-8497.1957.tb00371.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

"NEW SOUTH WALES." Australian Journal of Politics & History 3, no. 2 (April 7, 2008): 231–34. http://dx.doi.org/10.1111/j.1467-8497.1958.tb00386.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

"NEW SOUTH WALES." Australian Journal of Politics & History 4, no. 2 (April 7, 2008): 247–50. http://dx.doi.org/10.1111/j.1467-8497.1958.tb00402.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

"NEW SOUTH WALES." Australian Journal of Politics & History 10, no. 1 (April 7, 2008): 104–6. http://dx.doi.org/10.1111/j.1467-8497.1964.tb00736.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

"NEW SOUTH WALES." Australian Journal of Politics & History 10, no. 2 (April 7, 2008): 229–31. http://dx.doi.org/10.1111/j.1467-8497.1964.tb00752.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

"NEW SOUTH WALES." Australian Journal of Politics & History 10, no. 2 (April 7, 2008): 374–77. http://dx.doi.org/10.1111/j.1467-8497.1964.tb00768.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

"NEW SOUTH WALES." Australian Journal of Politics & History 11, no. 1 (April 7, 2008): 92–94. http://dx.doi.org/10.1111/j.1467-8497.1965.tb00418.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

"NEW SOUTH WALES." Australian Journal of Politics & History 12, no. 3 (April 7, 2008): 431–41. http://dx.doi.org/10.1111/j.1467-8497.1966.tb00899.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

"NEW SOUTH WALES." Australian Journal of Politics & History 13, no. 1 (April 7, 2008): 107–12. http://dx.doi.org/10.1111/j.1467-8497.1967.tb00315.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

"NEW SOUTH WALES." Australian Journal of Politics & History 13, no. 2 (April 7, 2008): 259–62. http://dx.doi.org/10.1111/j.1467-8497.1967.tb00807.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

"NEW SOUTH WALES." Australian Journal of Politics & History 17, no. 3 (April 7, 2008): 429–33. http://dx.doi.org/10.1111/j.1467-8497.1971.tb00507.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography