Academic literature on the topic 'Identify malware'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Identify malware.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Identify malware"
Suryati, One Tika, and Avon Budiono. "Impact Analysis of Malware Based on Call Network API With Heuristic Detection Method." International Journal of Advances in Data and Information Systems 1, no. 1 (April 1, 2020): 1–8. http://dx.doi.org/10.25008/ijadis.v1i1.176.
Full textYuswanto, Andrie, and Budi Wibowo. "A SYSTEMATIC REVIEW METHOD FOR SECURITY ANALYSIS OF INTERNET OF THINGS ON HONEYPOT DETECTION." TEKNOKOM 4, no. 1 (May 24, 2021): 16–20. http://dx.doi.org/10.31943/teknokom.v4i1.54.
Full textBai, Jinrong, Qibin Shi, and Shiguang Mu. "A Malware and Variant Detection Method Using Function Call Graph Isomorphism." Security and Communication Networks 2019 (September 22, 2019): 1–12. http://dx.doi.org/10.1155/2019/1043794.
Full textBai, Jin Rong, Shi Guang Mu, and Guo Zhong Zou. "The Application of Machine Learning to Study Malware Evolution." Applied Mechanics and Materials 530-531 (February 2014): 875–78. http://dx.doi.org/10.4028/www.scientific.net/amm.530-531.875.
Full textEt. al., Balal Sohail. "Macro Based Malware Detection System." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 3 (April 10, 2021): 5776–87. http://dx.doi.org/10.17762/turcomat.v12i3.2254.
Full textSusanto, Susanto, M. Agus Syamsul Arifin, Deris Stiawan, Mohd Yazid Idris, and Rahmat Budiarto. "The trend malware source of IoT network." Indonesian Journal of Electrical Engineering and Computer Science 22, no. 1 (April 1, 2021): 450. http://dx.doi.org/10.11591/ijeecs.v22.i1.pp450-459.
Full textMuhtadi, Adib Fakhri, and Ahmad Almaarif. "Analysis of Malware Impact on Network Traffic using Behavior-based Detection Technique." International Journal of Advances in Data and Information Systems 1, no. 1 (April 1, 2020): 17–25. http://dx.doi.org/10.25008/ijadis.v1i1.14.
Full textMuhtadi, Adib Fakhri, and Ahmad Almaarif. "Analysis of Malware Impact on Network Traffic using Behavior-based Detection Technique." International Journal of Advances in Data and Information Systems 1, no. 1 (March 9, 2020): 17–25. http://dx.doi.org/10.25008/ijadis.v1i1.8.
Full textMartín, Ignacio, José Alberto Hernández, Alfonso Muñoz, and Antonio Guzmán. "Android Malware Characterization Using Metadata and Machine Learning Techniques." Security and Communication Networks 2018 (July 8, 2018): 1–11. http://dx.doi.org/10.1155/2018/5749481.
Full textKalash, Mahmoud, Mrigank Rochan, Noman Mohammed, Neil Bruce, Yang Wang, and Farkhund Iqbal. "A Deep Learning Framework for Malware Classification." International Journal of Digital Crime and Forensics 12, no. 1 (January 2020): 90–108. http://dx.doi.org/10.4018/ijdcf.2020010105.
Full textDissertations / Theses on the topic "Identify malware"
Varga, Adam. "Identifikace a charakterizace škodlivého chování v grafech chování." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442388.
Full textNguyen, Sao Linh. "Bezpečnostní rizika sociálních sítí a jejich prevence." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2018. http://www.nusl.cz/ntk/nusl-378363.
Full textBooks on the topic "Identify malware"
Phishing Exposed. Syngress, 2005.
Find full textBook chapters on the topic "Identify malware"
Bellizzi, Jennifer, Mark Vella, Christian Colombo, and Julio Hernandez-Castro. "Real-Time Triggering of Android Memory Dumps for Stealthy Attack Investigation." In Secure IT Systems, 20–36. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70852-8_2.
Full textRussel, Md Omar Faruque Khan, Sheikh Shah Mohammad Motiur Rahman, and Takia Islam. "A Large-Scale Investigation to Identify the Pattern of Permissions in Obfuscated Android Malwares." In Cyber Security and Computer Science, 85–97. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52856-0_7.
Full textRussel, Md Omar Faruque Khan, Sheikh Shah Mohammad Motiur Rahman, and Takia Islam. "A Large-Scale Investigation to Identify the Pattern of App Component in Obfuscated Android Malwares." In Communications in Computer and Information Science, 513–26. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6318-8_42.
Full textSethuraman, Murugan Sethuraman. "Survey of Unknown Malware Attack Finding." In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 260–76. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3129-6.ch011.
Full textSethuraman, Murugan Sethuraman. "Survey of Unknown Malware Attack Finding." In Intelligent Systems, 2227–43. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5643-5.ch099.
Full textSharma, Kavita, and B. B. Gupta. "Towards Privacy Risk Analysis in Android Applications Using Machine Learning Approaches." In Research Anthology on Securing Mobile Technologies and Applications, 645–66. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8545-0.ch036.
Full textLuo, Xin, and Merrill Warkentin. "Developments and Defenses of Malicious Code." In Encyclopedia of Multimedia Technology and Networking, Second Edition, 356–63. IGI Global, 2009. http://dx.doi.org/10.4018/978-1-60566-014-1.ch049.
Full textRajkumar, Manokaran Newlin, Varadhan Venkatesa Kumar, and Ramachandhiran Vijayabhasker. "A Hybrid Approach to Detect the Malicious Applications in Android-Based Smartphones Using Deep Learning." In Handbook of Research on Machine and Deep Learning Applications for Cyber Security, 176–94. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-9611-0.ch009.
Full textRajkumar, Manokaran Newlin, Varadhan Venkatesa Kumar, and Ramachandhiran Vijayabhasker. "A Hybrid Approach to Detect the Malicious Applications in Android-Based Smartphones Using Deep Learning." In Research Anthology on Securing Mobile Technologies and Applications, 626–44. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-8545-0.ch035.
Full textNarayan, Valliammal, and Barani Shaju. "Malware and Anomaly Detection Using Machine Learning and Deep Learning Methods." In Handbook of Research on Machine and Deep Learning Applications for Cyber Security, 104–31. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-5225-9611-0.ch006.
Full textConference papers on the topic "Identify malware"
Tam, Geran, and Aaron Hunter. "Machine Learning to Identify Android Malware." In 2018 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). IEEE, 2018. http://dx.doi.org/10.1109/uemcon.2018.8796795.
Full textPang, Jianmin, Yichi Zhang, Zhen Shan, and Chao You. "Program Behavior Fusion to Identify Malware." In 2012 5th International Symposium on Computational Intelligence and Design (ISCID 2012). IEEE, 2012. http://dx.doi.org/10.1109/iscid.2012.30.
Full textBotacin, Marcus, André Grégio, and Paulo De Geus. "Malware Variants Identification in Practice." In Simpósio Brasileiro de Segurança da Informação e de Sistemas Computacionais. Sociedade Brasileira de Computação, 2019. http://dx.doi.org/10.5753/sbseg.2019.13960.
Full textSaxe, Joshua, David Mentis, and Christopher Greamo. "Mining Web Technical Discussions to Identify Malware Capabilities." In 2013 IEEE 33rd International Conference on Distributed Computing Systems Workshops (ICDCSW). IEEE, 2013. http://dx.doi.org/10.1109/icdcsw.2013.56.
Full textQiao, Yanchen, Xiaochun Yun, and Yongzheng Zhang. "How to Automatically Identify the Homology of Different Malware." In 2016 IEEE Trustcom/BigDataSE/ISPA. IEEE, 2016. http://dx.doi.org/10.1109/trustcom.2016.0158.
Full textVanHoudnos, Nathan, William Casey, David French, Brian Lindauer, Eliezer Kanal, Evan Wright, Bronwyn Woods, Seungwhan Moon, Peter Jansen, and Jamie Carbonell. "This Malware Looks Familiar: Laymen Identify Malware Run-time Similarity with Chernoff faces and Stick Figures." In 10th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS). EAI, 2017. http://dx.doi.org/10.4108/eai.22-3-2017.152417.
Full textDuan, Yiheng, Xiao Fu, Bin Luo, Ziqi Wang, Jin Shi, and Xiaojiang Du. "Detective: Automatically identify and analyze malware processes in forensic scenarios via DLLs." In 2015 IEEE International Conference on Signal Processing for Communications (ICC). IEEE, 2015. http://dx.doi.org/10.1109/icc.2015.7249229.
Full textSmutz, Charles, and Angelos Stavrou. "When a Tree Falls: Using Diversity in Ensemble Classifiers to Identify Evasion in Malware Detectors." In Network and Distributed System Security Symposium. Reston, VA: Internet Society, 2016. http://dx.doi.org/10.14722/ndss.2016.23078.
Full textPascariu, Cristian, and Ionut-Daniel Barbu. "Dynamic analysis of malware using artificial neural networks: Applying machine learning to identify malicious behavior based on parent process hirarchy." In 2017 9th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). IEEE, 2017. http://dx.doi.org/10.1109/ecai.2017.8166505.
Full textRamkumar, G., S. Vigneshwari, and S. Roodyn. "An enhanced system to identify mischievous social malwares on Facebook applications." In 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT). IEEE, 2016. http://dx.doi.org/10.1109/iccpct.2016.7530271.
Full text