Contents
Academic literature on the topic 'Identification sans marquage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Identification sans marquage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Identification sans marquage"
Hussek, Agnes, Cleo Graf, and Klaus Hackländer. "Are ear notches an effective tool for monitoring individual rhino?" Pachyderm 60 (November 10, 2019): 55–66. http://dx.doi.org/10.69649/pachyderm.v60i.34.
Full textDoelman, James. "Circulation of the late Elizabethan and Early Stuart Epigram." Renaissance and Reformation 41, no. 1 (January 1, 2005): 59–73. http://dx.doi.org/10.33137/rr.v41i1.9072.
Full textGiguère, Hélène. "« Un quart Gitan »." Anthropologie et Sociétés 33, no. 2 (February 23, 2010): 255–72. http://dx.doi.org/10.7202/039307ar.
Full textGiordana, B. "L’écriture de la créativité au cœur du trouble psychiatrique, William Styron." European Psychiatry 28, S2 (November 2013): 37. http://dx.doi.org/10.1016/j.eurpsy.2013.09.091.
Full textPensieroso, Luca, and Michel De Vroey. "Focus 25 - juin 2020." Regards économiques, July 16, 2020. http://dx.doi.org/10.14428/regardseco2020.06.04.01.
Full textCortado, Thomas Jacques. "Maison." Anthropen, 2020. http://dx.doi.org/10.17184/eac.anthropen.131.
Full textDissertations / Theses on the topic "Identification sans marquage"
Le, Galudec Joël. "lmagerie hyperspectrale infrarouge pour l'identification sans marquage de pathogènes sur milieu gélosé." Thesis, Université Grenoble Alpes, 2022. http://www.theses.fr/2022GRALS006.
Full textIndustry and health care are demanding rapid and inexpensive means for microbial identification. Thanks to its low cost and practical advantages, Petri dish culture is a ubiquitous tool in microbiology, but the sole observation of microbial colonies does not offer a reliable diagnosis. Identification in itself depends on secondary analysis, such as chemical reactions, PCR or mass spectrometry, which require specific sample preparation, which involves additional costs and delays. That is why several dish imaging systems have already been tested to automate the observation of cultures and to propose an identification directly on the Petri dish. However, these systems are generally limited to the visible and near infrared range (400 - 1000 nm), which only provides information on the morphotype of the microorganism colonies and therefore limits the identification accuracy.This thesis focuses on the development of a multispectral imaging system in the mid-infrared. In this wavelength range, images provide information on both the morphotype and the chemical composition of the observed colonies. This non-destructive and label-free imaging could provide species identification of colonies grown on agar, while opening the way to new applications. An experimental system, combining quantum cascade lasers as a light source and a microbolometers array as an imager, allowed the acquisition of images of colonies at nine wavelengths between 5 and 8 µm. 2253 colonies belonging to eight species of common microorganisms were imaged. For one of the species, Staphylococcus epidermidis, three different strains were analyzed to test the typing capabilities of the system.After acquisition, several image classification methods were tested to obtain an average correct identification rate of 94.4%
Burande, Clara. "Identification des substracts d'ASB2alpha, la sous-unité de spécificité d'une E3 ubiquitine ligase impliquée dans la différenciation hématopoïétique." Toulouse 3, 2010. http://thesesups.ups-tlse.fr/1639/.
Full textThe ubiquitin-proteasome system is a central mechanism for controlled proteolysis that regulates numerous cellular processes in eukaryotes. E3 ubiquitin ligases are responsible for the specificity of this system. They provide platforms for binding specific substrates thereby coordinating their ubiquitination and subsequent degradation by the proteasome. We have developed a global proteomic strategy to identified E3 ubiquitin ligase substrates targeted to proteasomal degradation. The proof of principle of this strategy is provided by our results highlighting FLNa and FLNb as substrates of the ASB2alpha E3 ubiquitin ligase that is involved in hematopoiesis. Furthermore, we have shown that FLNc, the third member of the filamin family, is also a target of ASB2alpha. This study provides a new strategy for the identification of E3 ubiquitin ligase substrates that have to be degraded in physiologically relevant settings. We have also demonstrated that ASB2alpha, through degradation of FLNs, can regulate integrin-dependent cell motility. Moreover, structural and cell biology studies have unraveled the domain of ASB2α that is involved in the recruitment of its substrate, FLNa. This study has provided an original strategy to identify E3 ubiquitin ligase substrates targeted to degradation. Furthermore, our work has contributed to the understanding of the function and mechanisms of action of ASB2α in hematopoietic cells
Jemfer, Charlotte. "Couplage SdFFF et UHF-DEP : Technologie innovante d'isolement et de caractérisation des CSC appliquée au diagnostic et à la thérapie du cancer colorectal." Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0112.
Full textCancer stem cells (CSCs) play a central role in cellular heterogeneity and tumour progression in colorectal cancer (CRC). However, their isolation is a challenge using conventional methods based on fluorescent or magnetic labelling. These methods remain uncertain due to the plasticity of CSCs, thus limiting their clinical usefulness. In this study, we propose an innovative coupling between cell sorting fractionation by sedimentation flow-force coupling (SdFFF) and the ultra-high frequency biosensor detection method (UHF-DEP), both label-free methods. This approach has already demonstrated its effectiveness in glioblastoma, and our aim is to demonstrate its universality and its application to other types of cancer such as CRC. This coupling requires instrumental and methodological adaptation to the mobile phase of the two technologies. Functional and phenotypic analysis and, for the first time, transcriptomic analysis revealed that SdFFF was capable of isolating a CSC-enriched subpopulation. These characteristics are correlated with specific electromagnetic signatures (SEM) obtained by the UHF-DEP biosensor, thus demonstrating the effectiveness of the SdFFF/UHF-DEP coupling for the isolation and characterisation of CSCs in the CRC. These signatures correlate not only with the strain status of the populations, but also with changes in membrane properties, as revealed by transcriptomic analysis.To further explore the interest of this coupling, we explored its potential to analyse the effects of 5-fluorouracil (5-FU, a key chemotherapy in the treatment of CRC) on isolated sub-populations. We compared the SEM and transcriptomic analysis of these CSC sub-populations, with the aim of identifying the changes induced, opening up potential applications in diagnosis and therapeutic monitoring. Finally, SEM and RNA-Seq analysis of a heterogeneous cell population treated with 5-FU, sorted and then characterised, made it possible to assess the coupling's ability to identify residual cancer stem cells (CSCs) after treatment. The results suggest a reduction in the CSC population after treatment, underlining the potential of this approach for assessing therapeutic efficacy and the changes induced by chemotherapy on CSCs. This work demonstrates the potential of SdFFF/UHF-DEP coupling as a diagnostic and treatment personalisation tool in oncology, offering promising prospects for more accurate assessment of therapeutic response and optimisation of treatment strategies according to cell profile