To see the other types of publications on this topic, follow the link: Icp-Ms / mc-Icp-Ms.

Journal articles on the topic 'Icp-Ms / mc-Icp-Ms'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Icp-Ms / mc-Icp-Ms.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zhang, Wen, Zhaochu Hu, and Yongsheng Liu. "Iso-Compass: new freeware software for isotopic data reduction of LA-MC-ICP-MS." Journal of Analytical Atomic Spectrometry 35, no. 6 (2020): 1087–96. http://dx.doi.org/10.1039/d0ja00084a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Santamaria-Fernandez, Rebeca, Ruth Hearn, and Jean-Claude Wolff. "Detection of counterfeit tablets of an antiviral drug using δ34S measurements by MC-ICP-MS and confirmation by LA-MC-ICP-MS and HPLC-MC-ICP-MS." Journal of Analytical Atomic Spectrometry 23, no. 9 (2008): 1294. http://dx.doi.org/10.1039/b802890g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hanousek, Ondrej, Marion Brunner, Daniel Pröfrock, Johanna Irrgeher, and Thomas Prohaska. "The performance of single and multi-collector ICP-MS instruments for fast and reliable34S/32S isotope ratio measurements." Analytical Methods 8, no. 42 (2016): 7661–72. http://dx.doi.org/10.1039/c6ay02177h.

Full text
Abstract:
The performance and validation characteristics of different single collector inductively coupled plasma mass spectrometers based on different technical principles (ICP-SFMS, ICP-QMS in reaction and collision modes, and ICP-MS/MS) were evaluated in comparison to the performance of MC ICP-MS for fast and reliable S isotope ratio measurements.
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Fei, Yuhan Qi, Huimin Yu, Shengyu Tian, Zhenhui Hou, and Fang Huang. "Vanadium isotope measurement by MC-ICP-MS." Chemical Geology 421 (February 2016): 17–25. http://dx.doi.org/10.1016/j.chemgeo.2015.11.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Malinovsky, D., P. J. H. Dunn, and H. Goenaga-Infante. "Calibration of boron isotope ratio measurements by MC-ICP-MS using normalisation to admixed internal standards." Journal of Analytical Atomic Spectrometry 35, no. 11 (2020): 2723–31. http://dx.doi.org/10.1039/d0ja00145g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xie, Lie-Wen, Noreen J. Evans, Yue-Heng Yang, Chao Huang, and Jin-Hui Yang. "U–Th–Pb geochronology and simultaneous analysis of multiple isotope systems in geological samples by LA-MC-ICP-MS." Journal of Analytical Atomic Spectrometry 33, no. 10 (2018): 1600–1615. http://dx.doi.org/10.1039/c8ja00157j.

Full text
Abstract:
This is a critical review that: (i) provides an overview of LA-MC-ICP-MS dating techniques; (ii) highlights the benefits of using ICs and summarizes recent improvements in ultra-high spatial resolution dating; (iii) summarizes the range of minerals utilized for LA-MC-ICP-MS geochronology and LASS.
APA, Harvard, Vancouver, ISO, and other styles
7

Kaufmann, A. B., M. Lazarov, S. Kiefer, J. Majzlan, and S. Weyer. "In situ determination of antimony isotope ratios in Sb minerals by femtosecond LA-MC-ICP-MS." Journal of Analytical Atomic Spectrometry 36, no. 7 (2021): 1554–67. http://dx.doi.org/10.1039/d1ja00089f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Weyrauch, Mona, Martin Oeser, Annika Brüske, and Stefan Weyer. "In situ high-precision Ni isotope analysis of metals by femtosecond-LA-MC-ICP-MS." Journal of Analytical Atomic Spectrometry 32, no. 7 (2017): 1312–19. http://dx.doi.org/10.1039/c7ja00147a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pullen, Alex, Mauricio Ibáñez-Mejía, George E. Gehrels, Juan C. Ibáñez-Mejía, and Mark Pecha. "What happens when n= 1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations." J. Anal. At. Spectrom. 29, no. 6 (2014): 971–80. http://dx.doi.org/10.1039/c4ja00024b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Chao, Hao Wang, Jin-Hui Yang, Lie-Wen Xie, Yue-Heng Yang, and Shi-Tou Wu. "Further Characterization of the BB Zircon via SIMS and MC-ICP-MS for Li, O, and Hf Isotopic Compositions." Minerals 9, no. 12 (December 11, 2019): 774. http://dx.doi.org/10.3390/min9120774.

Full text
Abstract:
In this contribution, we report the results for the characterization of the BB zircon, a newly developed zircon reference material from Sri Lanka, via secondary ion mass spectrometry (SIMS) and multiple-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The focus of this work was to further investigate the applicability of the BB zircon as a reference material for micro-beam analysis, including Li, O, and Hf isotopes. The SIMS analyses reveal that BB zircon is characterized by significant localized variations in Li concentration and isotopic ratio, which makes it unsuitable as a lithium isotope reference material. The SIMS-determined δ18O values are 13.81‰ ± 0.39‰ (2SD, BB16) and 13.61‰ ± 0.40‰ (2SD, BB40), which, combined with previous studies, indicates that there is no evidence of conspicuous O isotope heterogeneity within individual BB zircon megacrysts. The mean 176Hf/177Hf ratio of BB16 determined by solution MC-ICP-MS is 0.281669 ± 0.000012 (2SD, n = 29) indistinguishable from results achieved by laser ablation (LA)-MC-ICP-MS. Based on the SIMS and MC-ICP-MS data, BB zircon is proposed as a reference material for the O isotope and Hf isotope determination.
APA, Harvard, Vancouver, ISO, and other styles
11

Segal, Irina, and Ludwik Halicz. "Provenance studies in archaeometallurgy using lead isotope ratio determination by Q-ICP-MS and MC-ICP-MS." Israel Journal of Earth Sciences 54, no. 2 (July 1, 2005): 87–96. http://dx.doi.org/10.1560/qtnb-lxql-q7ef-5f7b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Usman, Abida, E. Louise Ander, Elizabeth H. Bailey, Simon Nelms, Vanessa Pashley, Scott D. Young, and Simon R. Chenery. "Optimisation of a current generation ICP-QMS and benchmarking against MC-ICP-MS spectrometry for the determination of lead isotope ratios in environmental samples." Journal of Analytical Atomic Spectrometry 33, no. 12 (2018): 2184–94. http://dx.doi.org/10.1039/c8ja00290h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Fu, Jiali, Zhaochu Hu, Jianwei Li, Lu Yang, Wen Zhang, Yongsheng Liu, Qiuli Li, Keqing Zong, and Shenghong Hu. "Accurate determination of sulfur isotopes (δ33S and δ34S) in sulfides and elemental sulfur by femtosecond laser ablation MC-ICP-MS with non-matrix matched calibration." Journal of Analytical Atomic Spectrometry 32, no. 12 (2017): 2341–51. http://dx.doi.org/10.1039/c7ja00282c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Chemale Jr, Farid, Koji Kawashita, Ivo A. Dussin, Janaína N. Ávila, Dayvisson Justino, and Anelise Bertotti. "U-Pb zircon in situ dating with LA-MC-ICP-MS using a mixed detector configuration." Anais da Academia Brasileira de Ciências 84, no. 2 (May 15, 2012): 275–96. http://dx.doi.org/10.1590/s0001-37652012005000032.

Full text
Abstract:
The LA-MC-ICP-MS method applied to U-Pb in situ dating is still rapidly evolving due to improvements in both lasers and ICP-MS. To test the validity and reproducibility of the method, 5 different zircon samples, including the standard Temora-2, ranging in age between 2.2 Ga and 246 Ma, were dated using both LA-MC-ICP-MS and SHRIMP. The selected zircons were dated by SHRIMP and, after gentle polishing, the laser spot was driven to the same site or on the same zircon phase with a 213 nm laser microprobe coupled to a multi-collector mixed system. The data were collected with a routine spot size of 25 μm and, in some cases, of 15 and 40 μm. A careful cross-calibration using a diluted U-Th-Pb solution to calculate the Faraday reading to counting rate conversion factors and the highly suitable GJ-1 standard zircon for external calibrations were of paramount importance for obtaining reliable results. All age results were concordant within the experimental errors. The assigned age errors using the LA-MC-ICP-MS technique were, in most cases, higher than those obtained by SHRIMP, but if we are not faced with a high resolution stratigraphy, the laser technique has certain advantages.
APA, Harvard, Vancouver, ISO, and other styles
15

Hu, Xia, Xiao-Yun Nan, Hui-Min Yu, and Fang Huang. "High precision Rb isotope measurements by MC-ICP-MS." Journal of Analytical Atomic Spectrometry 36, no. 12 (2021): 2744–55. http://dx.doi.org/10.1039/d1ja00315a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Nan, Xiaoyun, Fei Wu, Zhaofeng Zhang, Zhenhui Hou, Fang Huang, and Huimin Yu. "High-precision barium isotope measurements by MC-ICP-MS." Journal of Analytical Atomic Spectrometry 30, no. 11 (2015): 2307–15. http://dx.doi.org/10.1039/c5ja00166h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Albarède, Francis, Emmanuelle Albalat, and Philippe Télouk. "Instrumental isotope fractionation in multiple-collector icp-ms." Journal of Analytical Atomic Spectrometry 30, no. 8 (2015): 1736–42. http://dx.doi.org/10.1039/c5ja00188a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Park, Sanghee, Jong-Sik Ryu, Hyung Seon Shin, Youngwoo Kil, and Yunsoo Jo. "Copper Isotope Measurements Using a Neptune MC-ICP-MS." Journal of the mineralogical society of korea 29, no. 4 (December 30, 2016): 221–27. http://dx.doi.org/10.9727/jmsk.2016.29.4.221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Park, Sanghee, Jong-Sik Ryu, Hyung Seon Shin, and Youngwoo Kil. "Zinc isotope measurements using a Neptune MC-ICP-MS." Journal of the Geological Society of Korea 52, no. 6 (December 31, 2016): 953–60. http://dx.doi.org/10.14770/jgsk.2016.52.6.953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Ohno, Takeshi, and Takafumi Hirata. "Stable isotope geochemistry of strontium using MC-ICP-MS." Geochimica et Cosmochimica Acta 70, no. 18 (August 2006): A453. http://dx.doi.org/10.1016/j.gca.2006.06.913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

BoHang, XIE, WU ShiTou, YANG YueHeng, WANG Hao, ZHAO ZiFu, HUANG Chao, and XIE LieWen. "LA-MC-ICP-MS calcite U-Pb dating technique." Acta Petrologica Sinica 39, no. 1 (2023): 236–48. http://dx.doi.org/10.18654/1000-0569/2023.01.16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sánchez, Carlos, Eduardo Bolea-Fernandez, Marta Costas-Rodríguez, Charles-Philippe Lienemann, Jose-Luis Todolí, and Frank Vanhaecke. "Direct lead isotopic analysis of bioethanol by means of multi-collector ICP-mass spectrometry with a total consumption sample introduction system." Journal of Analytical Atomic Spectrometry 33, no. 3 (2018): 481–90. http://dx.doi.org/10.1039/c8ja00020d.

Full text
Abstract:
A method has been developed for the direct (no sample pretreatment and/or isolation of the target element from the sample matrix) Pb isotopic analysis of bioethanol via multi-collector ICP-mass spectrometry (MC-ICP-MS).
APA, Harvard, Vancouver, ISO, and other styles
23

Lin, Jie, Yongsheng Liu, Yueheng Yang, and Zhaochu Hu. "Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios." Solid Earth Sciences 1, no. 1 (June 2016): 5–27. http://dx.doi.org/10.1016/j.sesci.2016.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Li, Ming, Yv Lei, Lanping Feng, Zaicong Wang, Nick S. Belshaw, Zhaochu Hu, Yongsheng Liu, Lian Zhou, Haihong Chen, and Xinna Chai. "High-precision Ca isotopic measurement using a large geometry high resolution MC-ICP-MS with a dummy bucket." Journal of Analytical Atomic Spectrometry 33, no. 10 (2018): 1707–19. http://dx.doi.org/10.1039/c8ja00234g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Balaram, V. "Advances in Analytical Techniques and Applications in Exploration, Mining, Extraction, and Metallurgical Studies of Rare Earth Elements." Minerals 13, no. 8 (July 31, 2023): 1031. http://dx.doi.org/10.3390/min13081031.

Full text
Abstract:
The use of analytical techniques is important and critical in all areas related to REE, such as basic fundamental research, exploration, mining, extraction, and metallurgical activities at different stages by different industries. At every stage of these activities, rock, ore, minerals, and other related materials have to be analyzed for their REE contents in terms of elemental, isotopic, and mineralogical concentrations using different analytical techniques. Spectacular developments have taken place in the area of analytical instrumentation during the last four decades, with some of them having shrunk in size and become handheld. Among laboratory-based techniques, F-AAS, GF-AAS, ICP-OES, and MP-AES have become very popular. Because of high sensitivity, fewer interference effects, and ease of use, ICP-MS techniques, such as quadrupole ICP-MS, ICP-MS/MS, ICP-TOF-MS, MH-ICP-MS, HR-ICP-MS, and MC-ICP-MS, with both solution nebulization as well as direct solid analysis using laser ablation sample introduction methods, have become more popular for REE analysis. For direct analysis of solids, INAA, XRF, and LIBS techniques, as well as LA-based ICP-MS techniques, are being extensively utilized. The LIBS technique in particular requires little to no sample preparation. TIMS, SIMS, and SHRIMP techniques are being used for isotopic as well as dating REE depots. Portable analytical techniques, such as pXRF, pLIBS, and Raman spectrometers are able to perform in situ analysis even in the field, helping to make fast decisions during exploration studies. At present, hyperspectral remote sensing techniques including handheld, drone, and satellite-based techniques have become very popular in REE exploration studies because of their ability to cover larger areas in a limited time and, thus, became very cost-effective. Deployment of microanalytical devices/sensors mounted in remotely operated vehicles (ROV) is being successfully utilized in detecting REE-rich deposits in the deep oceans. Providing updated in-depth information on all these important aspects with suitable examples, especially from the point of view of REE research studies is the focal point of this review article.
APA, Harvard, Vancouver, ISO, and other styles
26

Bao, Zhian, Kaiyun Chen, Chunlei Zong, and Honglin Yuan. "TC1725: a proposed chalcopyrite reference material for LA-MC-ICP-MS sulfur isotope determination." Journal of Analytical Atomic Spectrometry 36, no. 8 (2021): 1657–65. http://dx.doi.org/10.1039/d1ja00168j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Liu, Jinke, and Guilin Han. "An optimal method for magnesium purification and magnesium isotopic composition obtained by MC-ICP-MS." Journal of Analytical Atomic Spectrometry 36, no. 9 (2021): 1986–95. http://dx.doi.org/10.1039/d1ja00119a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kimura, Jun-Ichi, Qing Chang, Keita Itano, Tsuyoshi Iizuka, Bogdan Stefanov Vaglarov, and Kenichiro Tani. "An improved U–Pb age dating method for zircon and monazite using 200/266 nm femtosecond laser ablation and enhanced sensitivity multiple-Faraday collector inductively coupled plasma mass spectrometry." Journal of Analytical Atomic Spectrometry 30, no. 2 (2015): 494–505. http://dx.doi.org/10.1039/c4ja00257a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Yongyang, Su, Wang Wei, Li Zhiming, Deng Hu, Zhou Guoqing, Xu Jiang, and Ren Xiangjun. "Direct detection and isotope analysis of individual particles in suspension by single particle mode MC-ICP-MS for nuclear safety." Journal of Analytical Atomic Spectrometry 30, no. 5 (2015): 1184–90. http://dx.doi.org/10.1039/c4ja00339j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Hobin, Kasper, Marta Costas-Rodríguez, Elien Van Wonterghem, Roosmarijn E. Vandenbroucke, and Frank Vanhaecke. "Alzheimer’s Disease and Age-Related Changes in the Cu Isotopic Composition of Blood Plasma and Brain Tissues of the APPNL-G-F Murine Model Revealed by Multi-Collector ICP-Mass Spectrometry." Biology 12, no. 6 (June 14, 2023): 857. http://dx.doi.org/10.3390/biology12060857.

Full text
Abstract:
Alzheimer’s’ disease (AD) is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary tangles of tau protein in the brain. Aβ plaques are formed by the cleavage of the β-amyloid precursor protein (APP). In addition to protein aggregations, the metabolism of the essential mineral element Cu is also altered during the pathogenesis of AD. The concentration and the natural isotopic composition of Cu were investigated in blood plasma and multiple brain regions (brain stem, cerebellum, cortex, and hippocampus) of young (3–4 weeks) and aged (27–30 weeks) APPNL-G-F knock-in mice and wild-type controls to assess potential alterations associated with ageing and AD. Tandem inductively coupled plasma-mass spectrometry (ICP-MS/MS) was used for elemental analysis and multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) for high-precision isotopic analysis. The blood plasma Cu concentration was significantly altered in response to both age- and AD-related effects, whereas the blood plasma Cu isotope ratio was only affected by the development of AD. Changes in the Cu isotopic signature of the cerebellum were significantly correlated with the changes observed in blood plasma. The brain stem showed a significant increase in Cu concentration for both young and aged AD transgenic mice compared with healthy controls, whereas the Cu isotopic signature became lighter as a result of age-related changes. In this work, ICP-MS/MS and MC-ICP-MS provided relevant and complementary information on the potential role of Cu in ageing and AD.
APA, Harvard, Vancouver, ISO, and other styles
31

Metzger, Shalina C., Benjamin T. Manard, Debra A. Bostick, Brian W. Ticknor, Kayron T. Rogers, Eddy H. McBay, David C. Glasgow, N. Alex Zirakparvar, and Cole R. Hexel. "An approach to separating Pu, U, and Ti from high-purity graphite for isotopic analysis by MC-ICP-MS." Journal of Analytical Atomic Spectrometry 36, no. 6 (2021): 1150–58. http://dx.doi.org/10.1039/d1ja00079a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gu, Hai-Ou, and He Sun. "High-precision analysis of potassium isotopes by MC-ICP-MS without collision cell using cool plasma technique in low-resolution mode." Journal of Analytical Atomic Spectrometry 36, no. 11 (2021): 2545–52. http://dx.doi.org/10.1039/d1ja00201e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chen, Lu, Kaiyun Chen, Zhian Bao, Peng Liang, Tiantian Sun, and Honglin Yuan. "Preparation of standards for in situ sulfur isotope measurement in sulfides using femtosecond laser ablation MC-ICP-MS." Journal of Analytical Atomic Spectrometry 32, no. 1 (2017): 107–16. http://dx.doi.org/10.1039/c6ja00270f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chen, Xuefei, Le Zhang, Gangjian Wei, and Jinlong Ma. "Matrix effects and mass bias caused by inorganic acids on boron isotope determination by multi-collector ICP-MS." Journal of Analytical Atomic Spectrometry 31, no. 12 (2016): 2410–17. http://dx.doi.org/10.1039/c6ja00328a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Li, Xiaoqiang, Guilin Han, Qian Zhang, and Zhuang Miao. "An optimal separation method for high-precision K isotope analysis by using MC-ICP-MS with a dummy bucket." Journal of Analytical Atomic Spectrometry 35, no. 7 (2020): 1330–39. http://dx.doi.org/10.1039/d0ja00127a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Wang, Jun, Tongxiang Ren, Hai Lu, Tao Zhou, and Yuanjing Zhou. "The absolute isotopic composition and atomic weight of ytterbium using multi-collector inductively coupled plasma mass spectrometry and development of an SI-traceable ytterbium isotopic certified reference material." Journal of Analytical Atomic Spectrometry 30, no. 6 (2015): 1377–85. http://dx.doi.org/10.1039/c5ja00054h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Prohaska, T., J. Irrgeher, and A. Zitek. "Simultaneous multi-element and isotope ratio imaging of fish otoliths by laser ablation split stream ICP-MS/MC ICP-MS." Journal of Analytical Atomic Spectrometry 31, no. 8 (2016): 1612–21. http://dx.doi.org/10.1039/c6ja00087h.

Full text
Abstract:
The simultaneous retrieval of spatially resolved information on the elemental content and isotope ratios from the same sampling spot (e.g. in incrementally grown biological material) still represents an analytical challenge.
APA, Harvard, Vancouver, ISO, and other styles
38

Manard, Benjamin T., Veronica C. Bradley, Lyndsey Hendriks, Daniel R. Dunlap, N. Alex Zirakparvar, Brian W. Ticknor, Miguel Toro-Gonzalez, and Hunter B. Andrews. "Isotopic analysis of Nd nanoparticles using single particle MC-ICP-MS: A comparative study with single particle-ICP-TOF-MS." Talanta 286 (May 2025): 127516. https://doi.org/10.1016/j.talanta.2025.127516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Vysetti, Balaram, and Satyanarayanan Manavalan. "Data Quality in Geochemical Elemental and Isotopic Analysis." Minerals 12, no. 8 (August 8, 2022): 999. http://dx.doi.org/10.3390/min12080999.

Full text
Abstract:
Appropriate sampling, sample preparation, choosing the right analytical instrument, analytical methodology, and adopting proper data generation protocols are essential for generating data of the required quality for both basic and applied geochemical research studies. During the last decade, instrumental advancements, in particular further developments in ICP-MS, such as the use of tandem ICP-MS, high-resolution mass spectrometry to resolve several interferences, and the use of the second path with a collision/reaction cell in multi-collector ICP-MS (MC-ICP-MS) to effectively resolve interferences, have brought in remarkable improvements in accuracy and precision in both elemental and isotopic analyses. The availability of a number of well-characterized geological certified reference samples having both elemental and isotopic data-enabled matrix-matching calibrations and contributed to the quality and traceability of the geochemical data in several cases. There have been some developments in the sample dissolution methods also. A range of quality issues related to sampling, packaging and transport, powdering, dissolution, the application of suitable instrumental analytical techniques, calibration methods, accuracy, and precision are addressed which are helpful in geochemical studies.
APA, Harvard, Vancouver, ISO, and other styles
40

Craig, Grant, Matthew S. A. Horstwood, Helen J. Reid, and Barry L. Sharp. "‘Blind time’ – current limitations on laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) for ultra-transient signal isotope ratio analysis and application to individual sub-micron sized uranium particles." Journal of Analytical Atomic Spectrometry 35, no. 5 (2020): 1011–21. http://dx.doi.org/10.1039/d0ja00066c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Beunon, Hugues, Stepan M. Chernonozhkin, Nadine Mattielli, Steven Goderis, Luc-Serge Doucet, Vinciane Debaille, and Frank Vanhaecke. "Innovative two-step isolation of Ni prior to stable isotope ratio measurements by MC-ICP-MS: application to igneous geological reference materials." Journal of Analytical Atomic Spectrometry 35, no. 10 (2020): 2213–23. http://dx.doi.org/10.1039/d0ja00163e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Lana, Cristiano, Federico Farina, Axel Gerdes, Ana Alkmim, Guilherme O. Gonçalves, and Antonio C. Jardim. "Characterization of zircon reference materials via high precision U–Pb LA-MC-ICP-MS." Journal of Analytical Atomic Spectrometry 32, no. 10 (2017): 2011–23. http://dx.doi.org/10.1039/c7ja00167c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Chang, Qing, Jun-Ichi Kimura, and Bogdan Stefanov Vaglarov. "In situ Sr isotope measurement of small glass samples using multiple-Faraday collector inductively coupled plasma mass spectrometry with 1012Ω resistor high gain Faraday amplifiers." Journal of Analytical Atomic Spectrometry 30, no. 2 (2015): 515–24. http://dx.doi.org/10.1039/c4ja00297k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Eppich, Gary R., Zsuzsanna Mácsik, Róbert Katona, Stefanie Konegger-Kappel, Guillaume Stadelmann, Andreas Köpf, Beata Varga, and Sergei Boulyga. "Plutonium assay and isotopic composition measurements in nuclear safeguards samples by inductively coupled plasma mass spectrometry." Journal of Analytical Atomic Spectrometry 34, no. 6 (2019): 1154–65. http://dx.doi.org/10.1039/c9ja00047j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mahan, Brandon M., Fei Wu, Anthony Dosseto, Roger Chung, Bruce Schaefer, and Simon Turner. "SpinChem™: rapid element purification from biological and geological matrices via centrifugation for MC-ICP-MS isotope analyses – a case study with Zn." Journal of Analytical Atomic Spectrometry 35, no. 5 (2020): 863–72. http://dx.doi.org/10.1039/c9ja00361d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Queipo-Abad, Silvia, Pablo Rodríguez-González, and José Ignacio García Alonso. "Measurement of compound-specific Hg isotopic composition in narrow transient signals by gas chromatography coupled to multicollector ICP-MS." Journal of Analytical Atomic Spectrometry 34, no. 4 (2019): 753–63. http://dx.doi.org/10.1039/c8ja00453f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Choi, Ah Yeong, Jong-Sik Ryu, Kiseong Hyeong, Mun Gi Kim, Kongtae Ra, Hyeryeong Jeong, and Hyoun Soo Lim. "Silicon Isotope Measurement of Giant Diatoms Using MC-ICP-MS." Journal of the Korean earth science society 42, no. 1 (February 28, 2021): 1–10. http://dx.doi.org/10.5467/jkess.2021.42.1.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Choi, Min Seok, Jong-Sik Ryu, Sin-Woo Lee, Chang-Sik Cheong, Hyung Seon Shin, and Kwang-Sik Lee. "Radiogenic and stable isotope measurement using a MC-ICP-MS." Journal of Analytical Science and Technology 2, Supplement A (December 22, 2011): A125—A128. http://dx.doi.org/10.5355/jast.2011.a125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Xu, Juan, Shouye Yang, Yueheng Yang, Yongsheng Liu, and Xiaolei Xie. "Determination of Stable Strontium Isotopic Compositions by MC-ICP-MS." Atomic Spectroscopy 41, no. 2 (April 25, 2020): 64–73. http://dx.doi.org/10.46770/as.2020.02.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

van den Boorn, Sander H. J. M., Pieter Z. Vroon, and Manfred J. van Bergen. "Sulfur-induced offsets in MC-ICP-MS silicon-isotope measurements." Journal of Analytical Atomic Spectrometry 24, no. 8 (2009): 1111. http://dx.doi.org/10.1039/b816804k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography