Academic literature on the topic 'IA de confiance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'IA de confiance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "IA de confiance"
Preteux, Jérôme. "La confiance en l’IA pour une IA d’emploi." Revue Défense Nationale N° 855, no. 10 (December 1, 2022): 91–99. http://dx.doi.org/10.3917/rdna.855.0091.
Full textMasciotra, Viviane, and Jean-Sébastien Boudrias. "Promouvoir l’adoption de l’IA dans les milieux d’emploi par l’entremise de l’explicabilité et de la confiance : une étude empirique." Ad machina, no. 8 (December 13, 2024): 84–113. https://doi.org/10.1522/radm.no8.1840.
Full textDevillers, Laurence. "Le langage non responsable des systèmes d’intelligence artificielle (IA) générative." Champ lacanien N° 28, no. 1 (October 2, 2024): 133–38. http://dx.doi.org/10.3917/chla.028.0133.
Full textPluchart, Jean-Jacques. "Transformation des entreprises et tiers de confiance : la mutation de la chaîne de confiance dans le management des entreprises." Vie & sciences de l'entreprise N° 216-217, no. 1 (August 21, 2023): 62–91. http://dx.doi.org/10.3917/vse.216.0062.
Full textBerger, Alain, and Jean-Pierre Cotton. "Quel avenir pour la modélisation et la structuration dans un projet de management de la connaissance ?" I2D - Information, données & documents 1, no. 1 (July 19, 2023): 88–94. http://dx.doi.org/10.3917/i2d.231.0088.
Full textChiaroni, Julien. "Vers la confiance, voire la certification, des systèmes à base d’intelligence artificielle." Annales des Mines - Enjeux numériques N° 13, no. 1 (January 24, 2021): 37–41. http://dx.doi.org/10.3917/ennu.013.0037.
Full textJean, Aurélie. "Une brève introduction à l’intelligence artificielle." médecine/sciences 36, no. 11 (November 2020): 1059–67. http://dx.doi.org/10.1051/medsci/2020189.
Full textVaileanu, Ingrid, and Florin Paun. "L’économie de la fonctionnalité des données qualifiées au cœur d’une croissance vertueuse." Marché et organisations Pub. anticipées (December 31, 2024): I114—XXXVII. http://dx.doi.org/10.3917/maorg.pr1.0114.
Full textVaileanu, Ingrid, and Florin Paun. "L’économie de la fonctionnalité des données qualifiées au cœur d’une croissance vertueuse." Marché et organisations N° 51, no. 3 (July 31, 2024): 129–65. http://dx.doi.org/10.3917/maorg.051.0129.
Full textSampaio, Gêisa Aiane de Morais, Andressa Vieira Landgraf, Pedro Henrique Sette de Souza, and Renata de Oliveira Cartaxo. "Avaliação da autopercepção de confiança clínica de concluintes do curso de Odontologia." Arquivos em Odontologia 58 (November 26, 2022): 199–208. http://dx.doi.org/10.35699/2178-1990.2022.37525.
Full textDissertations / Theses on the topic "IA de confiance"
Le, Coz Adrien. "Characterization of a Reliability Domain for Image Classifiers." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG109.
Full textDeep neural networks have revolutionized the field of computer vision. These models learn a prediction task from examples. Image classification involves identifying the main object present in the image. Despite the very good performance of neural networks on this task, they often fail unexpectedly. This limitation prevents them from being used in many applications. The goal of this thesis is to explore methods for defining a reliability domain that would clarify the conditions under which a model is trustworthy. Three aspects have been considered. The first is qualitative: generating synthetic extreme examples helps illustrate the limits of a classifier and better understand what causes it to fail. The second aspect is quantitative: selective classification allows the model to abstain in cases of high uncertainty, and calibration helps better quantify prediction uncertainty. Finally, the third aspect involves semantics: multimodal models that associate images and text are used to provide textual descriptions of images likely to lead to incorrect or, conversely, to correct predictions
Taheri, Sojasi Yousef. "Modeling automated legal and ethical compliance for trustworthy AI." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS225.
Full textThe advancements in artificial intelligence have led to significant legal and ethical issues related to privacy, bias, accountability, etc. In recent years, many regulations have been put in place to limit or mitigate the risks associated with AI. Compliance with these regulations are necessary for the reliability of AI systems and to ensure that they are being used responsibly. In addition, reliable AI systems should also be ethical, ensuring alignment with ethical norms. Compliance with applicable laws and adherence to ethical principles are essential for most AI applications. We investigate this problem from the point of view of AI agents. In other words, how an agent can ensure the compliance of its actions with legal and ethical norms. We are interested in approaches based on logical reasoning to integrate legal and ethical compliance in the agent's planning process. The specific domain in which we pursue our objective is the processing of personal data. i.e., the agent's actions involve the use and processing of personal data. A regulation that applies in such a domain is the General Data Protection Regulations (GDPR). In addition, processing of personal data may entail certain ethical risks with respect to privacy or bias.We address this issue through a series of contributions presented in this thesis. We start with the issue of GDPR compliance. We adopt Event Calculus with Answer Set Programming(ASP) to model agents' actions and use it for planning and checking the compliance with GDPR. A policy language is used to represent the GDPR obligations and requirements. Then we investigate the issue of ethical compliance. A pluralistic ordinal utility model is proposed that allows one to evaluate actions based on moral values. This model is based on multiple criteria and uses voting systems to aggregate evaluations on an ordinal scale. We then integrate this utility model and the legal compliance framework in a Hierarchical Task Network(HTN) planner. In this contribution, legal norms are considered hard constraints and ethical norm as soft constraint. Finally, as a last step, we further explore the possible combinations of legal and ethical compliance with the planning agent and propose a unified framework. This framework captures the interaction and conflicts between legal and ethical norms and is tested in a use case with AI systems managing the delivery of health care items
Bresson, Roman. "Neural learning and validation of hierarchical multi-criteria decision aiding models with interacting criteria." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG008.
Full textMulticriteria Decision Aiding (MCDA) is a field that aims at assisting expert decision mak ers (DM) in problems such as selecting, ranking, or classifying alternatives defined on several inter acting attributes. Such models do not make the decision, but assist the DM, who takes the final decision. It is thus crucial for the model to offer ways for the DM to maintain operational awareness, in particular in safety-critical contexts where errors can have dire consequences. It is thus a prerequisite of MCDA models to be intelligible, in terpretable, and to have a behaviour that is highly constrained by information stemming from in do main knowledge. Such models are usually built hand in hand with a field expert, obtaining infor mation through a Q&A procedure, and eliciting the model through methods rooted in operations research. On the other hand, Machine Learning (ML), and more precisely Preference Learning (PL), bases its approach on learning the optimal model from fitting data. This field usually focuses on model performances, tuning complex black-boxes to ob tain a statistically low error on new examples cases. While this is adapted to many settings, it is out of the question for decision aiding settings, as neither constrainedness nor intelligibility are available. This thesis bridges both fields. We focus on a certain class of MCDA models, called utilitaris tic hierarchical Choquet integrals (UHCI). Our first contribution, which is theoretical, is to show the identifiability (or unicity of the parameterization) of UHCIs This result motivates our second con tribution: the Neur-HCI framework, an archi tecture of neural network modules which can learn the parameters of a UHCI. In particular, all Neur HCI models are guaranteed to be formally valid, fitting the constraints that befit such a model, and remain interpretable. We show empirically that Neur-HCI models perform well on both artificial and real dataset, and that they exhibit remarkable stability, making it a relevant tool for alleviating the model elicitation effort when data is readily available, along with making it a suitable analysis tool for indentifying patterns in the data
Books on the topic "IA de confiance"
Protéger les élections démocratiques par la sauvegarde de l’intégrité de l’information. International IDEA; Forum sur l’information et la démocratie; Democracy Reporting International, 2024. http://dx.doi.org/10.31752/idea.2024.9.
Full textBook chapters on the topic "IA de confiance"
Flores-Garrido, Marisol. "Fuck the algorithm: Navegando la promesa tecnológica y el impacto social de la IA." In Inteligencia artificial transformación, retos y prospectiva social, 101–18. Astra Ediciones, 2024. http://dx.doi.org/10.61728/ae24001052.
Full textCAMBAZA, E. M., and F. F. G. GUSTAVO. "Inteligência Artificial: Ética do seu Uso na Triagem para o Transplante de Órgãos." In Temas de Pesquisa em Bioética, 51–66. Editora Científica Digital, 2024. https://doi.org/10.37885/241118117.
Full textSchmidt Bortolini, Vanessa, Cristiano Colombo, José Luiz de Moura Faleiros Júnior, and Eduardo Neubarth Trindade. "(In)explicabilidade da inteligência artificial na saúde: revisão da literatura, regulação e novos rumos." In Direito, Tecnologia e Inovação - vol. 6: Ciência de Dados e Direito, 193–224. Centro DTIBR, 2024. http://dx.doi.org/10.59224/dti6.ch6.
Full textVasconcelos, Eduardo Silva, Leandro Aureliano da Silva, Débora Vasconcelos Melo, Adriano Dawison de Lima, Luiz Fernando Ribeiro de Paiva, and Cleiton Silvano Goulart. "Inteligencia Artificial en la Gestión Agrícola: Uso de Modelos de Bosque Aleatorio para la Predicción de Producción y Reserva de Semillas en Brasil." In Agricultural and Biological Sciences: Foundations and Applications. Seven Editora, 2024. http://dx.doi.org/10.56238/sevened2024.023-006.
Full textConference papers on the topic "IA de confiance"
Condori-Fernández, Nelly. "Sostenibilidad y sistemas basados en inteligencia artificial." In Congreso Internacional de Ingeniería de Sistemas. Universidad de Lima, 2024. http://dx.doi.org/10.26439/ciis2023.7077.
Full textSilva, Francisco Luciano Quirino da, Andréia Libório Sampaio, Carla Ilane Moreira Bezerra, and Ingrid Teixeira Monteiro. "Brainwriting na elicitação de requisitos para IA confiável." In Workshop sobre Aspectos Sociais, Humanos e Econômicos de Software. Sociedade Brasileira de Computação - SBC, 2023. http://dx.doi.org/10.5753/washes.2023.230891.
Full textCardoso, Joyce, and Cleide Muñoz. "O FUTURO DA INTELIGÊNCIA ARTIFICIAL NA EDUCAÇÃO A DISTÂNCIA: ASPECTOS LEGISLATIVOS." In XIX Congresso Internacional de Tecnologia na Educação. SENAC, 2023. http://dx.doi.org/10.61917/2764-684x.2023.059.
Full textSilva, Jhessica, Alef Ferreira, Diego Moreira, Gabriel Santos, Gustavo Bonil, João Gondim, Luiz Pereira, et al. "Avaliação de Ferramentas de Ética no Levantamento de Considerações Éticas de Modelos de Linguagem em Português." In Conferência Latino-Americana de Ética em Inteligência Artificial, 61–64. Sociedade Brasileira de Computação - SBC, 2024. https://doi.org/10.5753/laai-ethics.2024.32452.
Full textTerán, Héctor. "La implementación de la Inteligencia Artificial en la enseñanza de la programación. Un estudio sobre el uso ético de ChatGPT en el aula." In Ingeniería para transformar territorios. Asociación Colombiana de Facultades de Ingeniería - ACOFI, 2023. http://dx.doi.org/10.26507/paper.2768.
Full textUribe, Lorena. "Integración de Inteligencia Artificial en la gestión de tecnologías de la información: un enfoque aplicado en el desarrollo empresarial." In Ingeniería: una transición hacia el futuro, 1–10. Asociación Colombiana de Facultades de Ingeniería - ACOFI, 2024. http://dx.doi.org/10.26507/paper.3761.
Full textVasconcelos, Eduardo Silva, Leandro Aureliano da Silva, Débora Vasconcelos Melo, Adriano Dawison de Lima, Luiz Fernando Ribeiro de Paiva, and Cleiton Silvano Goulart. "Inteligencia artificial en la gestión agrícola: Uso de modelos de bosque aleatorio para la predicción de producción y reserva de semillas en Brasil." In I Seven Agricultural Sciences Congress. Seven Congress, 2024. http://dx.doi.org/10.56238/icongresssevenagriculturalsciences-010.
Full textMarín Idárraga, Diego Alberto, and Alexandra E. Duarte Castillo. "Estado del arte sobre Supply Chain Management SCM en el sector cafetero colombiano." In Ingeniería: una transición hacia el futuro, 1–11. Asociación Colombiana de Facultades de Ingeniería - ACOFI, 2024. http://dx.doi.org/10.26507/paper.3605.
Full textReports on the topic "IA de confiance"
Yousefi, Farzaneh, and Marie-Pierre Gagnon. L’intelligence artificielle (IA) pour la promotion de la santé et la réduction de la maladie : synthèse des connaissances. Observatoire international sur les impacts sociétaux de l'intelligence artificielle et du numérique, July 2024. http://dx.doi.org/10.61737/pjld3032.
Full textCorbett, Jaqueline, and Chris Emmanuel Tchatchouang Wanko. Les enjeux transversaux au déploiement et à l'utilisation de l'IA au sein du système professionnel québécois. Observatoire international sur les impacts sociétaux de l’intelligence artificielle et du numérique, March 2022. http://dx.doi.org/10.61737/zfuw6688.
Full textNovoa-Jaso, María Fernanda, Aurken Sierra-Iso, Roncesvalles Labiano-Juangarcía, and Alfonso Vara-Miguel. Digital News Report España 2024. Calidad periodística y pluralidad: claves para la confianza informativa en la era de la inteligencia artificial (IA). Servicio de Publicaciones de la Universidad de Navarra, 2024. http://dx.doi.org/10.15581/019.2024.
Full text