Academic literature on the topic 'I band dynamic stiffness'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'I band dynamic stiffness.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "I band dynamic stiffness"
Sun, Yonggan. "Study on the Dynamic Performance of Locally Resonant Plates with Elastic Unit Cell Edges." Mathematical Problems in Engineering 2021 (June 4, 2021): 1–7. http://dx.doi.org/10.1155/2021/5541052.
Full textWANG, BAOSHENG, JIANMIN ZUO, and MULAN WANG. "ANALYSIS AND COMPENSATION OF STIFFNESS IN CNC MACHINE TOOL FEED SYSTEM." Journal of Advanced Manufacturing Systems 10, no. 01 (June 2011): 77–84. http://dx.doi.org/10.1142/s0219686711002004.
Full textXu, Qiang-Rong, Yang Zhu, Kang Lin, Cheng Shen, and Tian-Jian Lu. "Low-frequency sound insulation performance of novel membrane acoustic metamaterial with dynamic negative stiffness." Acta Physica Sinica 71, no. 21 (2022): 214301. http://dx.doi.org/10.7498/aps.71.20221058.
Full textSun, Ya Zhou, Xue Mei Yu, Hai Tao Liu, and Ying Chun Liang. "Analysis of Dynamic Stiffness and Damping of Partial Porous Aerostatic Thrust Bearings." Applied Mechanics and Materials 16-19 (October 2009): 596–600. http://dx.doi.org/10.4028/www.scientific.net/amm.16-19.596.
Full textDing, Lan, Zhi Ye, and Qiao-Yun Wu. "Flexural vibration band gaps in periodic Timoshenko beams with oscillators in series resting on flexible supports." Advances in Structural Engineering 23, no. 14 (June 16, 2020): 3117–27. http://dx.doi.org/10.1177/1369433220928529.
Full textEsteva, Luis. "Nonlinear Seismic Response of Soft-First-Story Buildings Subjected to Narrow-Band Accelerograms." Earthquake Spectra 8, no. 3 (August 1992): 373–89. http://dx.doi.org/10.1193/1.1585686.
Full textQin, Zhaoye, Delin Cui, Shaoze Yan, and Fulei Chu. "Application of 2D finite element model for nonlinear dynamic analysis of clamp band joint." Journal of Vibration and Control 23, no. 9 (August 3, 2015): 1480–94. http://dx.doi.org/10.1177/1077546315594065.
Full textWang, Yong, Shunming Li, Chun Cheng, and Xingxing Jiang. "Dynamic Analysis of a High-Static-Low-Dynamic-Stiffness Vibration Isolator with Time-Delayed Feedback Control." Shock and Vibration 2015 (2015): 1–19. http://dx.doi.org/10.1155/2015/712851.
Full textSolaroli, G., Z. Gu, A. Baz, and M. Ruzzene. "Wave Propagation in Periodic Stiffened Shells: Spectral Finite Element Modeling and Experiments." Journal of Vibration and Control 9, no. 9 (September 2003): 1057–81. http://dx.doi.org/10.1177/107754603030677.
Full textLi, Jun Lan, Shao Ze Yan, and Xue Feng Tan. "Modeling and Simulation of Clamp Band Dynamic Envelope in a LV/SC Separation System." Applied Mechanics and Materials 141 (November 2011): 359–63. http://dx.doi.org/10.4028/www.scientific.net/amm.141.359.
Full textDissertations / Theses on the topic "I band dynamic stiffness"
周婉娥 and Wan-E. Zhou. "The dynamic stiffness method." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31235487.
Full textLeung, A. Y. T. "Dynamic stiffness and substructures." Thesis, Aston University, 1993. http://publications.aston.ac.uk/21737/.
Full textZhou, Wan-E. "The dynamic stiffness method /." Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19668612.
Full textAlley, Ferryl. "Dynamic ankle stiffness during upright standing." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110417.
Full textLes études de la posture érigée sont couramment fondées sur le modèle biomécanique du pendule inversé définissant une raideur posturale générale produite par les articulations des chevilles et nécessaire pour compenser les effets déstabilisants de la gravité. Ce modèle est basé sur l'hypothèse d'une raideur symétrique des chevilles gauche et droite qui demeure fixe pendant la tenue de la posture érigée. Toutefois, les contributions relatives des composantes intrinsèques et réflexes de la raideur dynamique ainsi que l'interaction des membres inférieurs pendant la position érigée debout ne sont pas bien comprises. Ce mémoire fait état d'une estimation de la raideur dynamique des deux chevilles simultanément durant la position érigée debout, ainsi que d'une étude de la coordination entre les deux membres. Au cours de tests de perturbation bilatérale, pendant lesquels des perturbations de la position angulaire ont été appliquées aux deux chevilles simultanément, une nette réponse intrinsèque et réflexe a été observée. Chez tous les sujets, la raideur intrinsèque était inférieure à la raideur posturale nécessaire pour maintenir la station debout. La raideur dynamique des chevilles a également évolué en fonction de différents niveaux du couple du balancement postural, de telle sorte que la raideur intrinsèque et réflexe était plus élevée pendant l'inclinaison avant et moins élevée pendant l'inclinaison arrière. Des réponses controlatérales ont été observées entre la position de départ de la cheville et les couples générés depuis la cheville opposée. Ces résultats donnent à penser que le contrôle postural général ne consiste pas en la simple sommation de réponses indépendantes fixes de raideur intrinsèque des chevilles individuelles. La raideur élastique intrinsèque ne suffit pas pour maintenir l'équilibre, et les voies de raideur contributives sont modulées pendant le balancement de la position érigée debout. Les modèles de la position érigée debout doivent intégrer des mesures de la raideur dynamique des chevilles, des paramètres variables de la raideur et des interactions entre les membres d'appui.
郭騰川 and Tang-chuen Nick Kwok. "Dynamic stiffness method for curved structures." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1995. http://hub.hku.hk/bib/B31212359.
Full textKwok, Tang-chuen Nick. "Dynamic stiffness method for curved structures /." Hong Kong : University of Hong Kong, 1995. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19672421.
Full textVega, González Myraida Angélica. "Dynamic study of tunable stiffness scanning microscope probe." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32967.
Full textIncludes bibliographical references (leaf 31).
This study examines the dynamic characteristics of the in-plane tunable stiffness scanning microscope probe for an atomic force microscope (AFM). The analysis was carried out using finite element analysis (FEA) methods for the micro scale device and its macro scale counterpart, which was designed specifically for this study. Experimental system identification testing using sound wave and high-speed camera recordings was clone on the macro scale version to identify trends that were then verified in the micro scale predictions. The results for the micro scale device followed the trends predicted by the macro scale experimental data. The natural frequencies of the device corresponded to the three normal directions of motion, in ascending order from the vertical direction, the out-of- plane direction, and the horizontal direction. The numerical values for these frequencies in the micro scale are 81.314 kHz, 51.438 kHz, and 54.899 kHz for the X, Y, and Z directions of vibration respectively. The error associated with these measurements is 6.6% and is attributed to the high tolerance necessary for measurements in the micro scale, which was not matched by the macro scale data acquisition methods that predict the natural frequency range.
(cont.) The vertical vibrations are therefore the limiting factor in the scanning speed of the probe across a sample surface, thus requiring the AFM to scan at an effective frequency of less than 81.3 kHz to avoid resonance.
by Myraida Angélica Vega González.
S.B.
Garcia, Maria-José. "Engineering rubber bushing stiffness formulas including dynamic amplitude dependence." Licentiate thesis, KTH, Aeronautical and Vehicle Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4017.
Full textEngineering design models for the torsion and axial dynamic stiffness of carbon black filled rubber bushings in the frequency domain including amplitude dependence are presented. They are founded on a developed material model which is the result of applying a separable elastic, viscoelastic and friction rubber component model to the material level. Moreover, the rubber model is applied to equivalent strains of the strain states inside the torsion or axial deformed bushing previously obtained by the classical linear theory of elasticity, thus yielding equivalent shear moduli which are inserted into analytical formulas for the stiffness. Therefore, unlike other simplified approaches, this procedure includes the Fletcher-Gent effect inside the bushing due to non-homogeneous strain states. The models are implemented in Matlab®. In addition, an experimental verification is carried out on a commercially available bushing thus confirming the accuracy of these models which become a fast engineering tool to design the most suitable rubber bushing to fulfil user requirements. Finally, they can be easily employed in multi-body and finite element simulations
Garcia, Maria-José. "Engineering rubber bushing stiffness formulas including dynamic amplitude dependence /." Stockholm : Royal Institute of Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4017.
Full textCarrella, Alessandro. "Passive vibration isolators with high-static-low-dynamic-stiffness." Thesis, University of Southampton, 2008. https://eprints.soton.ac.uk/51276/.
Full textBooks on the topic "I band dynamic stiffness"
Leung, Andrew Y. T. Dynamic Stiffness and Substructures. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1.
Full textLeung, Andrew Y. T. Dynamic Stiffness and Substructures. London: Springer London, 1993.
Find full textPedro, Arduino, University of Washington. Dept. of Civil Engineering., Washington State Transportation Center, Washington (State). Dept. of Transportation., United States. Federal Highway Administration., and Washington State Transportation Commission, eds. Dynamic stiffness of piles in liquefiable soils. Seattle, Wash: The Center, 2002.
Find full textUnited States. National Aeronautics and Space Administration., ed. Experiments on dynamic stiffness and damping of tapered bore seals. [Washington, DC: National Aeronautics and Space Administration, 1987.
Find full textK, Ghosh A. Evaluation of dynamic stiffness and damping factor of a hydraulic damper. Mumbai: Bhabha Atomic Research Centre, 2000.
Find full textVanderborght, Bram. Dynamic Stabilisation of the Biped Lucy Powered by Actuators with Controllable Stiffness. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13417-3.
Full textVanderborght, Bram. Dynamic stabilisation of the biped Lucy powered by actuators with controllable stiffness. Berlin: Springer, 2010.
Find full textTownsend, John S. Dynamic characteristics of a vibrating beam with periodic variation in bending stiffness. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.
Find full textBook chapters on the topic "I band dynamic stiffness"
Leung, Andrew Y. T. "Dynamic Stiffness." In Dynamic Stiffness and Substructures, 133–88. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1_4.
Full textLeung, Andrew Y. T. "Dynamic Substructures." In Dynamic Stiffness and Substructures, 53–132. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1_3.
Full textMukhopadhyay, Madhujit. "Dynamic Direct Stiffness Method." In Structural Dynamics, 395–423. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69674-0_10.
Full textLeung, Andrew Y. T. "Harmonic Analysis." In Dynamic Stiffness and Substructures, 1–19. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1_1.
Full textLeung, Andrew Y. T. "Finite Elements and Continuum Elements." In Dynamic Stiffness and Substructures, 21–51. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1_2.
Full textLeung, Andrew Y. T. "General Formulation." In Dynamic Stiffness and Substructures, 189–240. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1_5.
Full textHagedorn, Peter, Klaus Kelkel, and Jörg Wallaschek. "Dynamic stiffness of rectangular plates." In Lecture Notes in Engineering, 28–144. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82906-2_3.
Full textConnor, Jerome, and Simon Laflamme. "Optimal Stiffness/Damping for Dynamic Loading." In Structural Motion Engineering, 75–140. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06281-5_3.
Full textLepert, P., and J. L. Briaud. "Dynamic non destructive testing of footing stiffness." In Structural Dynamics, 237–43. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203738085-35.
Full textLing, Mingxiang. "Building Dynamic Stiffness Matrix Library of Flexure Members for Use in a Dynamic Stiffness Model of Compliant Mechanisms." In Advances in Mechanism and Machine Science, 469–78. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20131-9_47.
Full textConference papers on the topic "I band dynamic stiffness"
Gholipour, Yaghob. "Dynamic Buckling Analysis of Axi-Symmetric Shells." In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58210.
Full textFricke, J. Robert, and Mark A. Hayner. "Direct Global Stiffness Matrix Method for 3-D Truss Dynamics." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0402.
Full textLee, Usik, and Joohong Kim. "Modal Spectral Element for the Transverse Vibrations of Axially Moving Wide-Band Strips." In ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/detc2002/cie-34469.
Full textDwivedi, Ankur, Arnab Banerjee, and Bishakh Bhattacharya. "Dynamics of Piezo-Embedded Negative Stiffness Mechanical Metamaterials: A Study on Electromechanical Bandgaps." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23717.
Full textMurer, Mauro, Walter Lacarbonara, and Giovanni Formica. "Multi-Stop Band Wave Propagation in a Honeycomb Metamaterial With Embedded Resonators." In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-91070.
Full textKang, Hooi-Siang, Moo-Hyun Kim, Shankar S. Bhat Aramanadka, and Heon-Yong Kang. "Dynamic Response Control of Top-Tension Risers by a Variable Damping and Stiffness System With Magneto-Rheological Damper." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23683.
Full textSampath, Arun M., C. Nataraj, and H. Ashrafiuon. "Optimal Design of Coupled Structures Subjected to Random Excitation." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0043.
Full textChae, Seokyong, Moustafa El-Gindy, Mukesh Trivedi, Inge Johansson, and Fredrik O¨ijer. "Dynamic Response Predictions of a Truck Tire Using Detailed Finite Element and Rigid Ring Models." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61111.
Full textRaclot, J. P., and P. Velex. "Analysis of Dynamic Couplings in Two-Stage Geared Systems." In ASME 1999 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/detc99/vib-8107.
Full textCheng, Yuping, and Teik C. Lim. "Dynamic Analysis of High Speed Hypoid Gears With Emphasis on Automotive Axle Noise Problem." In ASME 1998 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/detc98/ptg-5784.
Full textReports on the topic "I band dynamic stiffness"
Goodwin, M. J., and M. P. Roach. Vibration Control in Rotating Machinery Using Variable Dynamic Stiffness Squeeze-Films. Fort Belvoir, VA: Defense Technical Information Center, June 1988. http://dx.doi.org/10.21236/ada202902.
Full textRoach M. J. /Goodwin, M. P. Vibration Control in Rotating Machinery Using Variable Dynamic Stiffness Squeeze-Films. Volume 1. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada174417.
Full textGoodwin, M. J., and M. P. Roach. Vibration Control in Rotating Machinery Using Variable Dynamic Stiffness Squeeze Films. Volume 2. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada174433.
Full textSong, Chang-Yong, Jae-Yoon Jung, Yong-Sung Kim, Jung-Hwan Lim, and Jong-Chan Park. The Topology and Size Optimization of Bus Roof Structure Considering the Dynamic Stiffness Characteristics. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0015.
Full textBennett, J. G., P. Goldman, D. C. Williams, and C. R. Farrar. A comparison of the dynamic stiffness of the Goldcrown GC-500 grinding machine for three slide designs. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/10121869.
Full textLane, Richard. Feasibility Study of Dynamic Built-In Test/Simulation (DBITS) Using Synthetic In-Band Visible/IR Scenes. Fort Belvoir, VA: Defense Technical Information Center, June 1998. http://dx.doi.org/10.21236/ada347278.
Full textMason, J. J., A. J. Rosakis, and G. Ravichandran. Full Field Measurements of the Dynamic Deformation Field Around a Growing Adiabatic Shear Band at the Tip of a Dynamically Loaded Crack or Notch. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada279791.
Full textQamhia, Issam, Erol Tutumluer, and Han Wang. Aggregate Subgrade Improvements Using Quarry By-products: A Field Investigation. Illinois Center for Transportation, June 2021. http://dx.doi.org/10.36501/0197-9191/21-017.
Full textZareian, Farzin, and Joel Lanning. Development of Testing Protocol for Cripple Wall Components (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/olpv6741.
Full textTENSILE BEHAVIOR OF T-STUB SUBJECTED TO STATIC AND DYNAMIC LOADS. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.313.
Full text