Academic literature on the topic 'H₂ activation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'H₂ activation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "H₂ activation"
Qiu, Youai, Julia Struwe, and Lutz Ackermann. "Metallaelectro-Catalyzed C–H Activation by Weak Coordination." Synlett 30, no. 10 (May 21, 2019): 1164–73. http://dx.doi.org/10.1055/s-0037-1611568.
Full textLiu, Yunyun, and Baoli Zhao. "Step-Economical C–H Activation Reactions Directed by In Situ Amidation." Synthesis 52, no. 21 (May 18, 2020): 3211–18. http://dx.doi.org/10.1055/s-0040-1707124.
Full textIlies, Laurean. "Iron-Catalyzed C-H Bond Activation." Journal of Synthetic Organic Chemistry, Japan 75, no. 8 (2017): 802–9. http://dx.doi.org/10.5059/yukigoseikyokaishi.75.802.
Full textLI, Chao-Jun. "C―H Activation." Acta Physico-Chimica Sinica 35, no. 9 (2019): 905. http://dx.doi.org/10.3866/pku.whxb201903057.
Full textBergman, Robert G. "C–H activation." Nature 446, no. 7134 (March 21, 2007): 391–93. http://dx.doi.org/10.1038/446391a.
Full textWILSON, ELIZABETH. "H ACTIVATION, REVERSIBLY." Chemical & Engineering News 84, no. 47 (November 20, 2006): 21. http://dx.doi.org/10.1021/cen-v084n047.p021.
Full textHolland, Herbert L. "C–H activation." Current Opinion in Chemical Biology 3, no. 1 (February 1999): 22–27. http://dx.doi.org/10.1016/s1367-5931(99)80005-2.
Full textSauermann, Nicolas, Tjark H. Meyer, Youai Qiu, and Lutz Ackermann. "Electrocatalytic C–H Activation." ACS Catalysis 8, no. 8 (June 18, 2018): 7086–103. http://dx.doi.org/10.1021/acscatal.8b01682.
Full textDioumaev, Vladimir K., Patrick J. Carroll, and Donald H. Berry. "Tandemβ-CH Activation/SiH Elimination Reactions: Stabilization of CH Activation Products byβ-Agostic SiH Interactions." Angewandte Chemie International Edition 42, no. 33 (August 25, 2003): 3947–49. http://dx.doi.org/10.1002/anie.200352078.
Full textDioumaev, Vladimir K., Patrick J. Carroll, and Donald H. Berry. "Tandemβ-CH Activation/SiH Elimination Reactions: Stabilization of CH Activation Products byβ-Agostic SiH Interactions." Angewandte Chemie 115, no. 33 (August 25, 2003): 4077–79. http://dx.doi.org/10.1002/ange.200352078.
Full textDissertations / Theses on the topic "H₂ activation"
Weeks, Amanda. "C-H activation in organic synthesis." Thesis, University of Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.535205.
Full textDoyle, Claire Marie. "C-H activation reactions of tetrahydropyridines." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9469.
Full textDi, Matteo Marco. "Selective C-H Activation of Terpenes." Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS001.pdf.
Full textThis thesis work is dealing with the discovery of new strategies for the C-H activation/functionalization of terpenes, with particular emphasis on (+)-limonene and palladium catalysis. Firstly, we described the dehydrogenative Pd(II)-catalyzed C(sp2)-H/C(sp2)-H coupling between limonene and electron-poor alkenes, with extension to various terpenes and terpenoids. Therefore, we studied the post-functionalization of one product stemming from the dehydrogenative coupling and ethynylbenzene under micellar regime. Secondly, we successfully developed the Pd(II)-catalyzed redox neutral C(sp2)-H/C(sp2)-X coupling between (+)-limonene and bromoalkenes. This strategy, which is complementary with respect to the dehydrogenative coupling, needs a lower loading of the palladium catalyst and of the silver salt with respect to the previously studied coupling. Finally, we investigated the study of new approaches to cannabidiol (CBD). Of course, future work will be necessary to evaluate the strategies and reach the target
Vastine, Benjamin Alan. "Understanding mechanisms for C-H bond activation." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2679.
Full textKhamker, Qudsia. "Ambiphilic C-H activation routes to heterocycles." Thesis, University of Leicester, 2014. http://hdl.handle.net/2381/28919.
Full textRossignol, Anne-Claude. "Activation métabolique par la prostaglandine H synthétase." Paris 5, 1993. http://www.theses.fr/1993PA05P111.
Full textWiley, Jack Scott. "C-H bond activation in iridium complexes /." Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/8510.
Full textBu, Qingqing. "Ruthenium- and Cobalt-Catalyzed C-H Activation." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2018. http://hdl.handle.net/11858/00-1735-0000-002E-E4FC-F.
Full textHebert, Alexandra. "Mise au point de nouvelles techniques de radio-iodation et application au radiomarquage de molécules d'intérêt." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMC413/document.
Full textLabeling of (bio)molecules with radioactive isotopes is of high interest to for the scientific commu-nity, as it strongly impacts the discovery process in life science and nuclear medicine. Radiolabeled molecules have been extensively used to assess biochemical reactions, to measure in vivo distribution of a substance or to preform RIA (RadioImmunoAssay). In nuclear medicine, radio-therapeutics for RIT (RadioIsotope Therapy) and radio-tracers for molecular imaging experiments such as PET (Positron Emission Tomography), SPECT (Single Photon Emission Computed Tomography) or scintigraphy have been described. Several useful isotopes of iodine can be used for both diagnosis and therapy: 123I for SPECT imaging, 124I for PET imaging, 125I for biological assays and 131I for radio-therapy and scintig-raphy.Classical methods of radioiodination methods use a prefunctionalized precursor, which must be syn-thesized, isolated and purified before being introduced to the radio-iodination step. The radioiodode-stannylation method is the most popular method, although stannylated precursors are known for their difficult synthesis and their toxicity. The development of new methods of radioiodination is therefore of great interest in the field of radiochemistry.Based on a previous work, our group has developed a method to radio-iodinate N-acylsulfonamides through a room temperature palladium mediated C-H radio-iodination. This original strategy allows radiolabeling of biomolecules in very mild conditions without the use of chemical precursors.Based on literature, our group is now developping a new method to radio-iodinate arylsilyl derivates through radioiododesilylation in mild conditions. This general methodology allows for the moment the radiolabeling of activated arylsilyl derivates in mild conditions
Chow, Catherine. "C-H activation by a tungsten trimethylsilylallyl complex." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42646.
Full textBooks on the topic "H₂ activation"
Yu, Jin-Quan, Lutz Ackermann, and Zhangjie Shi. C-H activation. Heidelberg: Springer, 2010.
Find full textYu, Jin-Quan, and Zhangjie Shi, eds. C-H Activation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12356-6.
Full textGoldberg, Karen I., and Alan S. Goldman, eds. Activation and Functionalization of C—H Bonds. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0885.
Full textR, Leone Stephen, and United States. National Aeronautics and Space Administration., eds. Rate coefficients of C₂H with C₂H₄, C₂H₆, and H₂ from 150 to 359 K. [Washington, DC: National Aeronautics and Space Administration, 1996.
Find full textDixneuf, Pierre H., and Henri Doucet, eds. C-H Bond Activation and Catalytic Functionalization II. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29319-6.
Full textDixneuf, Pierre H., and Henri Doucet, eds. C-H Bond Activation and Catalytic Functionalization I. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24630-7.
Full textWu, Xiao-Feng, ed. Transition Metal-Catalyzed Heterocycle Synthesis via CH Activation. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527691920.
Full textPérez, Pedro J., ed. Alkane C-H Activation by Single-Site Metal Catalysis. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-3698-8.
Full textMaiti, Debabrata, and Upendra Sharma, eds. Functionalisation of Heterocycles through Transition Metal Catalyzed C-H Activation. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-70843-5.
Full textMatsumoto, Arimasa. Iron-Catalyzed Synthesis of Fused Aromatic Compounds via C–H Bond Activation. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54928-4.
Full textBook chapters on the topic "H₂ activation"
Shi, Feng, and Richard C. Larock. "Remote C–H Activation via Through-Space Palladium and Rhodium Migrations." In C-H Activation, 123–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2008_46.
Full textDaugulis, Olafs. "Palladium and Copper Catalysis in Regioselective, Intermolecular Coupling of C–H and C–Hal Bonds." In C-H Activation, 57–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_10.
Full textDavies, Huw M. L., and Allison R. Dick. "Functionalization of Carbon–Hydrogen Bonds Through Transition Metal Carbenoid Insertion." In C-H Activation, 303–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_11.
Full textBouffard, Jean, and Kenichiro Itami. "Rhodium-Catalyzed C–H Bond Arylation of Arenes." In C-H Activation, 231–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_12.
Full textMartins, Andrew, Brian Mariampillai, and Mark Lautens. "Synthesis in the Key of Catellani: Norbornene-Mediated ortho C–H Functionalization." In C-H Activation, 1–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_13.
Full textFagnou, Keith. "Mechanistic Considerations in the Development and Use of Azine, Diazine and Azole N-Oxides in Palladium-Catalyzed Direct Arylation." In C-H Activation, 35–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_14.
Full textBeck, Elizabeth M., and Matthew J. Gaunt. "Pd-Catalyzed C–H Bond Functionalization on the Indole and Pyrrole Nucleus." In C-H Activation, 85–121. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_15.
Full textLiu, Guosheng, and Yichen Wu. "Palladium-Catalyzed Allylic C–H Bond Functionalization of Olefins." In C-H Activation, 195–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_16.
Full textYoo, Woo-Jin, and Chao-Jun Li. "Cross-Dehydrogenative Coupling Reactions of sp3-Hybridized C–H Bonds." In C-H Activation, 281–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_17.
Full textYou, Shu-Li, and Ji-Bao Xia. "Palladium-Catalyzed Aryl–Aryl Bond Formation Through Double C–H Activation." In C-H Activation, 165–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/128_2009_18.
Full textConference papers on the topic "H₂ activation"
Yann, Theara, Charinee Winotapun, Phanny Yos, Lee Hwei Voon, and Orathai Boondamnoen. "Particle Characteristics of Diatomite Activated by Alkaline Solution." In 2024 8th International Conference on Materials Engineering and Nano Sciences & 2024 8th International Conference on Material Engineering and Manufacturing, 37–43. Switzerland: Trans Tech Publications Ltd, 2024. http://dx.doi.org/10.4028/p-d4jwe2.
Full textUlin-Avila, Erick, and Akhilesh Kumar Mishra. "Graphene-based Photonic C-H bond activation." In Frontiers in Optics. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/fio.2021.jtu1a.55.
Full textNyambo, Silver, Dong-Sheng Yang, and Yuchen Zhang. "PROBING SELECTIVE BOND ACTIVATION IN ALKYLAMINES: LANTHANUM-MEDIATED C-H AND N-H BOND ACTIVATION STUDIED BY MATI SPECTROSCOPY." In 73rd International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2018. http://dx.doi.org/10.15278/isms.2018.fb01.
Full textSiffert, W., P. Scheid, and JW N. Akkerman. "PROTEIN KINASE C CONTROLS CA2+ MOBILIZATION IN HUMAN PLATELETS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644509.
Full textAkkerman, JW N. "INTRACELLULAR PH CHANGES AND PLATELET ACTIVATION." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644774.
Full textLian, T., S. E. Bromberg, H. Yang, M. Asplund, R. G. Bergman, and C. B. Harris. "Femtosecond IR Studies of Alkane C-H Bond Activation by Organometallic Compounds." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.fe.27a.
Full textKim, Jongsik, Marshall S. Abbott, David B. Go, and Jason C. Hicks. "Tunable C-H activation via metal-plasma interaction at elevated temperatures." In 2016 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2016. http://dx.doi.org/10.1109/plasma.2016.7533960.
Full textOrtiz de Elguea, Verónica, Nuria Sotomayor, and Esther Lete. "Intramolecular Palladium-catalyzed C-H activation reactions: Synthesis of substituted quinolones." In MOL2NET 2016, International Conference on Multidisciplinary Sciences, 2nd edition. Basel, Switzerland: MDPI, 2016. http://dx.doi.org/10.3390/mol2net-02-h008.
Full textSato, Tamotsu, Hirokazu Odaka, Kazuyoshi Hiragi, Tsunefumi Mizuno, Masatoshi Ohno, Yasushi Fukazawa, Masayuki Ohta, et al. "In-orbit activation study of ASTRO-H X-ray observatory using Geant4." In 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference (2012 NSS/MIC). IEEE, 2012. http://dx.doi.org/10.1109/nssmic.2012.6551405.
Full textSchleef, R. R., M. P. Bevilacqua, M. Sawdey, M. A. Gimbrone, and D. J. Loskutoff. "INTERLEUKIN 1 (IL-1) AND TUMOR NECROSIS FACTOR (TNF) ACTIVATION OF VASCULAR ENDOTHELIUM: EFFECTS ON PLASMINOGEN ACTIVATOR INHIBITOR (PAI-1) AND TISSUE-TYPE PLASMINOGEN ACTIVATOR (tPA)." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642864.
Full textReports on the topic "H₂ activation"
Lees, Alistair J. Photochemistry of Intermolecular C-H Bond Activation Reactions. Office of Scientific and Technical Information (OSTI), June 2000. http://dx.doi.org/10.2172/761218.
Full textCrabtree, Robert. Moving to Sustainable Metals: Multifunctional Ligands in Catalytic, Outer Sphere C-H, N-H and O-H Activation. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1171638.
Full textRakowski-DuBois, Mary C. Aspects of C-H Activation in Metal Complexes Containing Sulfur Ligands. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/833244.
Full textAsplund, M. C. Time resolved infrared studies of C-H bond activation by organometallics. Office of Scientific and Technical Information (OSTI), June 1998. http://dx.doi.org/10.2172/290889.
Full textDas, Jayabrata, and Debabrata Maiti. Transition Metal Catalyzed Remote C-H Activation: A New Direction Towards Site-Selective Chemical Reactions. The Israel Chemical Society, March 2023. http://dx.doi.org/10.51167/acm00036.
Full textLees, A. J. [Photochemistry of intermolecular C-H bond activation reactions]. Progress report, [September 15, 1994--March 15, 1995]. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/35271.
Full textMoran, Nava, Richard Crain, and Wolf-Dieter Reiter. Regulation by Light of Plant Potassium Uptake through K Channels: Biochemical, Physiological and Biophysical Study. United States Department of Agriculture, September 1995. http://dx.doi.org/10.32747/1995.7571356.bard.
Full textRafaeli, Ada, and Russell Jurenka. Molecular Characterization of PBAN G-protein Coupled Receptors in Moth Pest Species: Design of Antagonists. United States Department of Agriculture, December 2012. http://dx.doi.org/10.32747/2012.7593390.bard.
Full textPrusky, Dov, Noel T. Keen, and Stanley Freeman. Elicitation of Preformed Antifungal Compounds by Non-Pathogenic Fungus Mutants and their Use for the Prevention of Postharvest Decay in Avocado Fruits. United States Department of Agriculture, January 1996. http://dx.doi.org/10.32747/1996.7570573.bard.
Full textRafaeli, Ada, Russell Jurenka, and Daniel Segal. Isolation, Purification and Sequence Determination of Pheromonotropic-Receptors. United States Department of Agriculture, July 2003. http://dx.doi.org/10.32747/2003.7695850.bard.
Full text