Academic literature on the topic 'Hyporheic residence times'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hyporheic residence times.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hyporheic residence times"

1

Wu, Liwen, Jesus D. Gomez-Velez, Stefan Krause, Anders Wörman, Tanu Singh, Gunnar Nützmann, and Jörg Lewandowski. "How daily groundwater table drawdown affects the diel rhythm of hyporheic exchange." Hydrology and Earth System Sciences 25, no. 4 (April 9, 2021): 1905–21. http://dx.doi.org/10.5194/hess-25-1905-2021.

Full text
Abstract:
Abstract. Groundwater table dynamics extensively modify the volume of the hyporheic zone and the rate of hyporheic exchange processes. Understanding the effects of daily groundwater table fluctuations on the tightly coupled flow and heat transport within hyporheic zones is crucial for water resources management. With this aim in mind, a physically based model is used to explore hyporheic responses to varying groundwater table fluctuation scenarios. The effects of different timing and amplitude of groundwater table daily drawdowns under gaining and losing conditions are explored in hyporheic zones influenced by natural flood events and diel river temperature fluctuations. We find that both diel river temperature fluctuations and daily groundwater table drawdowns play important roles in determining the spatiotemporal variability of hyporheic exchange rates, temperature of exfiltrating hyporheic fluxes, mean residence times, and hyporheic denitrification potentials. Groundwater table dynamics present substantially distinct impacts on hyporheic exchange under gaining or losing conditions. The timing of groundwater table drawdown has a direct influence on hyporheic exchange rates and hyporheic buffering capacity on thermal disturbances. Consequently, the selection of aquifer pumping regimes has significant impacts on the dispersal of pollutants in the aquifer and thermal heterogeneity in the sediment.
APA, Harvard, Vancouver, ISO, and other styles
2

Kruegler, James, Jesus Gomez-Velez, Laura K. Lautz, and Theodore A. Endreny. "Dynamic Evapotranspiration Alters Hyporheic Flow and Residence Times in the Intrameander Zone." Water 12, no. 2 (February 5, 2020): 424. http://dx.doi.org/10.3390/w12020424.

Full text
Abstract:
Hyporheic zones (HZs) influence biogeochemistry at the local reach scale with potential implication for water quality at the large catchment scale. The characteristics of the HZs (e.g., area, flux rates, and residence times) change in response to channel and aquifer physical properties, as well as to transient perturbations in the stream–aquifer system such as floods and groundwater withdraws due to evapotranspiration (ET) and pumping. In this study, we use a numerical model to evaluate the effects of transient near-stream evapotranspiration (ET) on the area, exchange flux, and residence time (RT) of sinuosity-induced HZs modulated by regional groundwater flow (RGF). We found that the ET fluxes (up to 80 mm/day) consistently increased HZ area and exchange flux, and only increased RTs when the intensity of regional groundwater flow was low. Relative to simulations without ET, scenarios with active ET had more than double HZ area and exchange flux and about 20% longer residence times (as measured by the median of the residence time distribution). Our model simulations show that the drawdown induced by riparian ET increases the net flux of water from the stream to the nearby aquifer, consistent with field observations. The results also suggest that, along with ET intensity, the magnitude of the HZ response is influenced by the modulating effect of both gaining and losing RGF and the sensitivity of the aquifer to daily cycles of ET withdrawal. This work highlights the importance of representing near-stream ET when modeling sinuosity-induced hyporheic zones, as well as the importance of including riparian vegetation in efforts to restore the ecosystem functions of streams.
APA, Harvard, Vancouver, ISO, and other styles
3

Frei, S., S. Durejka, H. Le Lay, Z. Thomas, and B. S. Gilfedder. "Quantification of Hyporheic Nitrate Removal at the Reach Scale: Exposure Times Versus Residence Times." Water Resources Research 55, no. 11 (November 2019): 9808–25. http://dx.doi.org/10.1029/2019wr025540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fang, Yilin, Xingyuan Chen, Jesus Gomez Velez, Xuesong Zhang, Zhuoran Duan, Glenn E. Hammond, Amy E. Goldman, Vanessa A. Garayburu-Caruso, and Emily B. Graham. "A multirate mass transfer model to represent the interaction of multicomponent biogeochemical processes between surface water and hyporheic zones (SWAT-MRMT-R 1.0)." Geoscientific Model Development 13, no. 8 (August 7, 2020): 3553–69. http://dx.doi.org/10.5194/gmd-13-3553-2020.

Full text
Abstract:
Abstract. Surface water quality along river corridors can be modulated by hyporheic zones (HZs) that are ubiquitous and biogeochemically active. Watershed management practices often ignore the potentially important role of HZs as a natural reactor. To investigate the effect of hydrological exchange and biogeochemical processes on the fate of nutrients in surface water and HZs, a novel model, SWAT-MRMT-R, was developed coupling the Soil and Water Assessment Tool (SWAT) watershed model and the reaction module from a flow and reactive transport code (PFLOTRAN). SWAT-MRMT-R simulates concurrent nonlinear multicomponent biogeochemical reactions in both the channel water and its surrounding HZs, connecting the channel water and HZs through hyporheic exchanges using multirate mass transfer (MRMT) representation. Within the model, HZs are conceptualized as transient storage zones with distinguished exchange rates and residence times. The biogeochemical processes within HZs are different from those in the channel water. Hyporheic exchanges are modeled as multiple first-order mass transfers between the channel water and HZs. As a numerical example, SWAT-MRMT-R is applied to the Hanford Reach of the Columbia River, a large river in the United States, focusing on nitrate dynamics in the channel water. Major nitrate contaminants entering the Hanford Reach include those from the legacy waste, irrigation return flows (irrigation water that is not consumed by crops and runs off as point sources to the stream), and groundwater seepage resulting from irrigated agriculture. A two-step reaction sequence for denitrification and an aerobic respiration reaction is assumed to represent the biogeochemical transformations taking place within the HZs. The spatially variable hyporheic exchange rates and residence times in this example are estimated with the basin-scale Networks with EXchange and Subsurface Storage (NEXSS) model. Our simulation results show that (1), given a residence time distribution, how the exchange fluxes to HZs are approximated when using MRMT can significantly change the amount of nitrate consumption in HZs through denitrification and (2) source locations of nitrate have a different impact on surface water quality due to the spatially variable hyporheic exchanges.
APA, Harvard, Vancouver, ISO, and other styles
5

Bakke, Paul D., Michael Hrachovec, and Katherine D. Lynch. "Hyporheic Process Restoration: Design and Performance of an Engineered Streambed." Water 12, no. 2 (February 5, 2020): 425. http://dx.doi.org/10.3390/w12020425.

Full text
Abstract:
Stream restoration designed specifically to enhance hyporheic processes has seldom been contemplated. To gain experience with hyporheic restoration, an engineered streambed was built using a gravel mixture formulated to mimic natural streambed composition, filling an over-excavated channel to a minimum depth of 90 cm. Specially designed plunge-pool structures, built with subsurface gravel extending down to 2.4 m, promoted greatly enhanced hyporheic circulation, path length, and residence time. Hyporheic process enhancement was verified using intra-gravel temperature mapping to document the distribution and strength of upwelling and downwelling zones, computation of vertical water flux using diurnal streambed temperature patterns, estimation of hyporheic zone cross section using sodium chloride tracer studies, and repeat measurements of streambed sand content to document evolution of the engineered streambed over time. Results showed that vertical water flux in the vicinity of plunge-pool structures was quite large, averaging 89 times the pre-construction rate, and 17 times larger than maximum rates measured in a pristine stream in Idaho. Upwelling and downwelling strengths in the constructed channel were larger and more spatially diverse than in the control. Streambed sand content showed a variety of response over time, indicating that rapid return to an embedded, impermeable state is not occurring.
APA, Harvard, Vancouver, ISO, and other styles
6

Mojarrad, Brian Babak, Andrea Betterle, Tanu Singh, Carolina Olid, and Anders Wörman. "The Effect of Stream Discharge on Hyporheic Exchange." Water 11, no. 7 (July 12, 2019): 1436. http://dx.doi.org/10.3390/w11071436.

Full text
Abstract:
Streambed morphology, streamflow dynamics, and the heterogeneity of streambed sediments critically controls the interaction between surface water and groundwater. The present study investigated the impact of different flow regimes on hyporheic exchange in a boreal stream in northern Sweden using experimental and numerical approaches. Low-, base-, and high-flow discharges were simulated by regulating the streamflow upstream in the study area, and temperature was used as the natural tracer to monitor the impact of the different flow discharges on hyporheic exchange fluxes in stretches of stream featuring gaining and losing conditions. A numerical model was developed using geomorphological and hydrological properties of the stream and was then used to perform a detailed analysis of the subsurface water flow. Additionally, the impact of heterogeneity in sediment permeability on hyporheic exchange fluxes was investigated. Both the experimental and modelling results show that temporally increasing flow resulted in a larger (deeper) extent of the hyporheic zone as well as longer hyporheic flow residence times. However, the result of the numerical analysis is strongly controlled by heterogeneity in sediment permeability. In particular, for homogeneous sediments, the fragmentation of upwelling length substantially varies with streamflow dynamics due to the contribution of deeper fluxes.
APA, Harvard, Vancouver, ISO, and other styles
7

Earon, Robert, Joakim Riml, Liwen Wu, and Bo Olofsson. "Insight into the influence of local streambed heterogeneity on hyporheic-zone flow characteristics." Hydrogeology Journal 28, no. 8 (October 2, 2020): 2697–712. http://dx.doi.org/10.1007/s10040-020-02244-5.

Full text
Abstract:
AbstractInteraction between surface water and groundwater plays a fundamental role in influencing aquatic chemistry, where hyporheic exchange processes, distribution of flow paths and residence times within the hyporheic zone will influence the transport of mass and energy in the surface-water/groundwater system. Geomorphological conditions greatly influence hyporheic exchange, and heterogeneities such as rocks and clay lenses will be a key factor for delineating the hyporheic zone. Electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) were used to investigate the streambed along a 6.3-m-long reach in order to characterise geological layering and distinct features which may influence parameters such as hydraulic conductivity. Time-lapse ERT measurements taken during a tracer injection demonstrated that geological features at the meter-scale played a determining role for the hyporheic flow field. The penetration depth of the tracer into the streambed sediment displayed a variable spatial pattern in areas where the presence of highly resistive anomalies was detected. In areas with more homogeneous sediments, the penetration depth was much more uniformly distributed than observed in more heterogeneous sections, demonstrating that ERT can play a vital role in identifying critical hydraulic features that may influence hyporheic exchange processes. Reciprocal ERT measurements linked variability and thus uncertainty in the modelled resistivity to the spatial locations, which also demonstrated larger variability in the tracer penetration depth, likely due to local heterogeneity in the hydraulic conductivity field.
APA, Harvard, Vancouver, ISO, and other styles
8

Briggs, Martin A., Laura K. Lautz, Danielle K. Hare, and Ricardo González-Pinzón. "Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams." Freshwater Science 32, no. 2 (June 2013): 622–41. http://dx.doi.org/10.1899/12-110.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cranswick, Roger H., Peter G. Cook, and Sebastien Lamontagne. "Hyporheic zone exchange fluxes and residence times inferred from riverbed temperature and radon data." Journal of Hydrology 519 (November 2014): 1870–81. http://dx.doi.org/10.1016/j.jhydrol.2014.09.059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gomez-Velez, J. D., J. L. Wilson, M. B. Cardenas, and J. W. Harvey. "Flow and Residence Times of Dynamic River Bank Storage and Sinuosity-Driven Hyporheic Exchange." Water Resources Research 53, no. 10 (October 2017): 8572–95. http://dx.doi.org/10.1002/2017wr021362.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hyporheic residence times"

1

Zarnetske, Jay P. "Hydrological and biogeochemical dynamics of nitrate production and removal at the stream – ground water interface." Thesis, 2011. http://hdl.handle.net/1957/23463.

Full text
Abstract:
The feedbacks between hydrology and biogeochemical cycling of nitrogen (N) are of critical importance to global bioavailable N budgets. Human activities are dramatically increasing the amount of bioavailable N in the biosphere, which is causing increasingly frequent and severe impacts on ecosystems and human welfare. Streams are important features in the landscape for N cycling, because they integrate many sources of terrestrially derived N and control export to downgradient systems via internal source and sink processes. N transformations in stream ecosystems are typically very complex due to spatiotemporal variability in the factors controlling N biogeochemistry. Thus, it is difficult to predict if a particular stream system will function as a net source or sink of bioavailable N. A key location for N transformations in stream ecosystems is the hyporheic zone, where stream and ground waters mix. The hyporheic zone can be a source of bioavailable N via nitrification or a sink via denitrification. These N transformations are regulated by the physical and biogeochemical conditions of hyporheic zones. Natural heterogeneity in streams leads to unique combinations of both the physical and biogeochemical conditions which in turn result in unique N source and sink conditions. This dissertation investigates the relationships between physical and biogeochemical controls and the resulting fate of bioavailable N in hyporheic zones. The key physical factor investigated is the supply rate of solutes which is a function of transport processes - advection and dispersion, and transport conditions - hydraulic conductivity and flowpath length. Different physical conditions result in different characteristic residence times of water and solutes in hyporheic zones. The key biogeochemical factors investigated are the dynamics of oxygen (O₂), labile dissolved organic carbon (DOC), and inorganic bioavailable N (NH₄⁺ and NO₃⁻). This dissertation uses ¹⁵N isotope experiments, numerical modeling of coupled transport of the bioavailable N species, O₂ and DOC, and a suite of geophysical measurements to identify the key linkages between hydrological and biogeochemical controls on N transformations in hyporheic zones. Specifically, it was determined that the conditions governing the fate of hyporheic N are both the physical transport and reaction kinetics – the residence time of water and the O2 uptake rate. An important scaling relationship is developed by relating the characteristic timescales of residence time and O₂ uptake. The resulting dimensionless relationship, the Damköhler number for O₂, is useful for scaling different streams hyporheic zones and their role on stream N source – sink dynamics. More generally, these investigations demonstrate that careful consideration and quantification of hydrological processes can greatly inform the investigation of aquatic biogeochemical dynamics and lead to the development of process-based knowledge. In turn, this process-based knowledge will facilitate more robust approaches to quantifying and predicting biogeochemical cycles and budgets.
Graduation date: 2012
Access restricted to the OSU Community at author's request from Sept. 21, 2011 - March 21, 2012
APA, Harvard, Vancouver, ISO, and other styles
2

Mahmood, Muhammad Nasir. "Modeling the effects of Transient Stream Flow on Solute Dynamics in Stream Banks and Intra-meander Zones." 2019. https://tud.qucosa.de/id/qucosa%3A74858.

Full text
Abstract:
The docotoral thesis titled 'Modeling the effects of Transient Stream Flow on Solute Dynamics in Stream Banks and Intra-meander Zones' investigates flow and solute dynamcis across surface water-groundwater interface under dynamic flow conditons through numerical simulations. The abstract of the thesis is as follows: Waters from various sources meet at the interface between streams and groundwater. Due to their different origins, these waters often have contrasting chemical signatures and therefore mixing of water at the interface may lead to significant changes in both surface and subsurface water quality. The riparian zone adjacent to the stream serves as transition region between groundwater and stream water, where complex water and solute mixing and transport processes occur. Predicting the direction and the magnitude of solute exchanges and the extent of transformations within the riparian zone is challenging due to the varying hydrologic and chemical conditions as well as heterogeneous morphological features which result in complex, three-dimensional flow patterns. The direction of water flow and solute transport in the riparian zone typically varies over time as a result of fluctuating stream water and groundwater levels. Particularly, increasing groundwater levels can mobilize solutes from the unsaturated zone which can be subsequently transported into the stream. Such complex, spatially and temporally varying processes are hard to capture with field observations alone and therefore modeling approaches are required to predict the system behavior as well as to understand the role of individual factors. In this thesis, we investigate the inter-connectivity of streamthe s and adjacent riparia zones in the context of water and solute exchanges both laterally for bank storage and longitudinally for hyporheic flow through meander bends. Using numerical modeling, the transient effect of stream flow events on solute transport and transformation within the initially unsaturated part of stream banks and meander bends have been simulated using a systematic set of hydrological, chemical and morphological scenarios. A two dimensional variably saturated media groundwater modeling set up was used to explore solute dynamics during bank flows. We simulated exchanges between stream and adjacent riparian zone driven by stream stage fluctuations during stream discharge events. To elucidate the effect of magnitude and duration of discharge events, we developed a number of single discharge event scenarios with systematically varying peak heights and event duration. The dominant solute layer was represented by applying high solute concentration in upper unsaturated riparian zone profile. Simulated results show that bank flows generated by high stream flow events can trigger solute mobilization in near stream riparian soils and subsequently export significant amounts of solutes into the stream. The timing and amount of solute export is linked to the shape of the discharge event. Higher peaks and increased duration significantly enhance solute export, however, peak height is found to be the dominant control for overall lateral mass export. The mobilized solutes are transported towards the stream in two stages (1) by return flow of stream water that was stored in the riparian zone during the event and (2) by vertical movement to the groundwater under gravity drainage from the unsaturated parts of the riparian zone, which lasts for significantly longer time (> 400 days) resulting in a theoretically long tailing of bank outflows and solute mass outfluxes. Our bank flow simulations demonstrate that strong stream discharge events are likely to mobilize and export significant quantity of solutes from near stream riparian zones into the stream. Furthermore, the impact of short-term stream discharge variations on solute exchange may sustain for long times after the flow event. Meanders are prominent morphological features of stream systems which exhibit unique hydrodynamics. The water surface elevation difference across the inner bank of a meander induces lateral hyporheic exchange flow through the intrameander region, leading to solute transport and reactions within intra-meander region. We examine the impact of different meander geometries on the intra-meander hyporheic flow field and solute mobilization under both steady-state and transient flow conditions. In order to explore the impact of meander morphology on intrameander flow, a number of theoretical meander shape scenarios, representing various meander evolution stages, ranging from a typical initial to advanced stage (near cut off ) meander were developed. Three dimensional steady-state numerical groundwater flow simulations including the unsaturated zone were performed for the intra-meander region for all meander scenarios. The meandering stream was implemented in the model by adjusting the top layers of the modeling domain to the streambed elevation. Residence times for the intra-meander region were computed by advective particle tracking across the inner bank of meander. Selected steady state cases were extended to transient flow simulations to evaluate the impact of stream discharge events on the temporal behavior of the water exchange and solute transport in the intra-meander region. Transient hydraulic heads obtained from the surface water model were applied as transient head boundary conditions to the streambed cells of the groundwater model. Similar to the bank storage case, a high concentration of solute (carbon source) representing the dominant solute layer in the riparian profile was added in the unsaturated zone to evaluate the effect of stream flow event on mobilization and transport from the unsaturated part of intrameander region. Additionally, potential chemical reactions of aerobic respiration by the entry of oxygen rich surface water into subsurface as well denitrification due to stream and groundwater borne nitrates were also simulated. The results indicate that intra-meander mean residence times ranging from 18 to 61 days are influenced by meander geometry, as well as the size of the intra-meander area. We found that, intra-meander hydraulic gradient is the major control of RTs. In general, larger intra-meander areas lead to longer flow paths and higher mean intra-meander residence times (MRTs), whereas increased meander sinuosity results in shorter MRTs. The vertical extent of hyporheic flow paths generally decreases with increasing sinuosity. Transient modeling of hyporheic flow through meanders reveals that large stream flow events mobilize solutes from the unsaturated portion of intra-meander region leading to consequent transport into the stream via hyporheic flow. Advective solute transport dominates during the flow event; however significant amount of carbon is also consumed by aerobic respiration and denitrification. These reactions continue after the flow events depending upon the availability of carbon source. The thesis demonstrates that bank flows and intra-meander hyporheic exchange flows trigger solute mobilization from the dominant solute source layers in the RZ. Stream flow events driven water table fluctuations in the stream bank and in the intra-meander region transport substantial amount of solutes from the unsaturated RZ into the stream and therefore have significant potential to alter stream water quality.:Declaration Abstract Zusammenfassung 1 General Introduction 1.1 Background and Motivation 1.2 Hydrology and Riparian zones 1.2.1 Transport processes driven by fluctuation in riparian water table depth 1.2.1.1 Upland control 1.2.1.2 Stream control 1.2.2 Biochemical Transformations within the Riparian Zone 1.3 Types and scales of stream-riparian exchange 1.3.1 Hyporheic Exchange 1.3.1.1 Small Scale Vertical HEF 1.3.1.2 Large Scale lateral HEF 1.3.2 Bank Storage 1.4 Methods for estimation of GW-SW exchanges 1.4.1 Field Methods 1.4.1.1 Direct measurement of water flux 1.4.1.2 Tracer based Methods 1.4.2 Modeling Methods 1.4.2.1 Transient storage models 1.4.2.2 Physically based models 1.5 Research gaps and need 1.6 Objectives of the research 1.7 Thesis Outline 2 Flow and Transport Dynamics during Bank Flows 2.1 Introduction 2.2 Methods 2.2.1 Concept and modeling setup 2.2.2 Numerical Model 2.2.3 Stream discharge events 2.2.4 Model results evaluation 2.3 Results and discussion 2.3.1 Response of water and solute exchange to stream discharge events 2.3.1.1 Water exchange time scales 2.3.1.2 Stream water solute concentration 2.3.2 Solute mobilization within the riparian zone 2.3.3 Influence of peak height and event duration on solute mass export towards the stream 2.3.4 Effects of event hydrograph shape on stream water solute concentration 2.3.5 Model limitations and future studies 2.4 Summary and Conclusions Appendix 2 3 Flow and Transport Dynamics within Intra-Meander Zone 3.1 Introduction 3.2 Methods 3.2.1 Meander Shape Scenarios 3.2.2 Surface Water Simulations 3.2.3 3D Groundwater Flow Simulations with Modeling code MIN3P 3.2.3.1 Steady Flow Simulations 3.2.3.2 Stream flow event and Solute Mobilization Set-up 3.2.4 Reactive Transport 3.3 Results and Discussion 3.3.1 Groundwater heads and flow paths in the saturated intrameander zone 3.3.1.1 Groundwater heads 3.3.1.2 Flow paths and isochrones 3.3.1.3 Vertical extent of flow paths 3.3.2 Intra-Meander Residence Time Distribution 3.3.3 Factors affecting intra-meander flow and residence times 3.3.3.1 intra-meander hydraulic gradient 3.3.3.2 Maximum penetration depth 3.3.3.3 Meander sinuosity 3.3.3.4 intra-meander area (A) 3.3.4 Influence of Discharge Event on intra-meander Flow and Solute Transport 3.3.4.1 Spatial distribution of groundwater head and solute concentration 3.3.4.2 Time scales of intra-meander groundwater heads and solute transport 3.3.4.3 Solute export during stream discharge event 3.3.5 Intra-meander reactive transport during stream discharge event 3.3.5.1 Impact of stream discharge on aerobic respiration and denitrification 3.3.5.2 DOC mass removal during stream discharge event 3.4 Summary and Conclusions Appendix 3 4 General Summary and Conclusions 4.1 Summary 4.2 Conclusions 4.2.1 Flow and Transport Dynamics in Near Stream Riparian Zone (Bank Flows) 4.2.2 Flow and Transport Dynamics within Intra-Meander Zone 4.3 Model Limitations and Future Studies Bibliography Acknowledgement
APA, Harvard, Vancouver, ISO, and other styles
3

Coleman, Anthony M. "Determining the relationship between measured residence time distributions in lateral surface transient storage zones in streams and corresponding physical characteristics." Thesis, 2012. http://hdl.handle.net/1957/35099.

Full text
Abstract:
Surface transient storage (STS) in stream ecosystems serve an important function in retaining nutrients and refugia for aquatic communities. Unfortunately, they can retain contaminants as well. Therefore, it is of importance to determine the residence time distribution (RTD). A RTD of a particular STS zone encompasses the time it takes for the first pulse of water to leave the STS zone, and for the mean residence time of water in that zone, among other things. The RTD of STS is also useful to subtract from the RTD of the total transient storage in streams in order to determine the hyporheic transient storage (HTS) of streams, which is difficult to measure. Currently, there is no definitive method of determining the RTD of STS. They have been determined with tracer injection alone, though this is time consuming and subject to interference from HTS. A relationship between STS physical characteristics and a RTD would be desirable, as this would characterize the time of entrainment of STS based upon a few easily measured physical parameters. This exists for groyne fields and flumes, which both have artificial STS. However, direct application of these equations to natural STS leads to errors due to simplistic geometries. The focus of this study determines RTDs in lateral STS, which is adjacent to the main channel of a stream and a significant proportion of STS, and its relationship to physically measurable parameters of lateral STS. Twenty sites throughout Oregon were each injected with NaCl to determine four residence timescales: Langmuir time (��[subscript L]), negative inverse slope of the normalized concentration curve of the primary gyre (��[subscript 1]), negative inverse slope of the normalized concentration curve of the entire STS zone (��[subscript 2]), and the mean residence time (��[subscript STS]). The RTDs of these sites were then compared to the length, width, and depth of each lateral STS zone, as well as the velocity of the adjacent main channel. This data also was used to calculate dimensionless parameters submergence, a measure of bed roughness, and k, a measure of exchange that relates ��STS to lateral STS and associated parameters. ��[subscript 1] was found to be identical to ��[subscript STS], and ��[subscript 2] could not be defined. ��[subscript STS] was found to be approximately 1.35 times ��[subscript L], the ratio of which (��[subscript L]/��[subscript STS]) is positively correlated with lateral STS submergence. ��[subscript L] and ��[subscript STS] are positively correlated with lateral STS parameters, and inversely correlated with main channel velocity. The value of k from this study was comparable to the value of k from other studies in flumes, and so there is a relationship between RTDs and lateral STS parameters.
Graduation date: 2013
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography