Journal articles on the topic 'Hypertrophy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hypertrophy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Maron, Barry J., and Carolyn Y. Ho. "Hypertrophic Cardiomyopathy Without Hypertrophy." JACC: Cardiovascular Imaging 2, no. 1 (January 2009): 65–68. http://dx.doi.org/10.1016/j.jcmg.2008.09.008.
Full textStrøm, Claes C., Mogens Kruhøffer, Steen Knudsen, Frank Stensgaard-Hansen, Thomas E. N. Jonassen, Torben F. Ørntoft, Stig Haunsø, and Søren P. Sheikh. "Identification of a Core Set of Genes That Signifies Pathways Underlying Cardiac Hypertrophy." Comparative and Functional Genomics 5, no. 6-7 (2004): 459–70. http://dx.doi.org/10.1002/cfg.428.
Full textLi, Wei-ming, Yi-fan Zhao, Guo-fu Zhu, Wen-hui Peng, Meng-yun Zhu, Xue-jing Yu, Wei Chen, Da-chun Xu, and Ya-wei Xu. "Dual specific phosphatase 12 ameliorates cardiac hypertrophy in response to pressure overload." Clinical Science 131, no. 2 (December 23, 2016): 141–54. http://dx.doi.org/10.1042/cs20160664.
Full textLu, Peilei, Danyu Zhang, Fan Ding, Jialu Ma, Yang K. Xiang, and Meimi Zhao. "Silencing of circCacna1c Inhibits ISO-Induced Cardiac Hypertrophy through miR-29b-2-5p/NFATc1 Axis." Cells 12, no. 12 (June 19, 2023): 1667. http://dx.doi.org/10.3390/cells12121667.
Full textSavchenko, M. I., YU R. Kovalev, and A. P. Kuchinskiy. "HYPERTROPHIC CARDIOMYOPATHY: FIBROSIS OR HYPERTROPHY." "Arterial’naya Gipertenziya" ("Arterial Hypertension") 19, no. 2 (April 28, 2013): 148–55. http://dx.doi.org/10.18705/1607-419x-2013-19-2-148-155.
Full textAbdelbaki, Mourad, A. Boureghda, and N. Hanifi. "Comparative Research Between Sportsman's Heart and Hypertrophic Cardiomyopathy." International Journal of Innovative Research in Medical Science 9, no. 01 (January 10, 2024): 24–27. http://dx.doi.org/10.23958/ijirms/vol09-i01/1802.
Full textMorita, Kozo, Takeshi Miyamoto, Nobuyuki Fujita, Yoshiaki Kubota, Keisuke Ito, Keiyo Takubo, Kana Miyamoto, et al. "Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification." Journal of Experimental Medicine 204, no. 7 (June 18, 2007): 1613–23. http://dx.doi.org/10.1084/jem.20062525.
Full textGu, Wei, Yutong Cheng, Su Wang, Tao Sun, and Zhizhong Li. "PHD Finger Protein 19 Promotes Cardiac Hypertrophy via Epigenetically Regulating SIRT2." Cardiovascular Toxicology 21, no. 6 (February 21, 2021): 451–61. http://dx.doi.org/10.1007/s12012-021-09639-0.
Full textIgnatenko, G. I., G. G. Taradin, and T. E. Kugler. "Specifics of Left Ventricular Hypertrophy and Characteristic of Phenotypic Variants in Patients with Hypertrophic Cardiomyopathy." Russian Archives of Internal Medicine 13, no. 4 (August 16, 2023): 282–93. http://dx.doi.org/10.20514/2226-6704-2023-13-4-282-293.
Full textVilleneuve, C., A. Caudrillier, C. Ordener, N. Pizzinat, A. Parini, and J. Mialet-Perez. "Dose-dependent activation of distinct hypertrophic pathways by serotonin in cardiac cells." American Journal of Physiology-Heart and Circulatory Physiology 297, no. 2 (August 2009): H821—H828. http://dx.doi.org/10.1152/ajpheart.00345.2009.
Full textNosenko, N. M., D. V. Shchehlov, M. Yu Mamonova, and Ya E. Kudelskyi. "Left ventricular hypertrophy: differential diagnosis." Endovascular Neuroradiology 30, no. 4 (March 11, 2020): 49–58. http://dx.doi.org/10.26683/2304-9359-2019-4(30)-49-58.
Full textOlimovna, Oripova Ozoda. "CHARACTERISTICS OF PATHOMORPHOLOGICAL CHANGES IN HYPERTROPHIC CARDIOMYOPATHY." American Journal Of Biomedical Science & Pharmaceutical Innovation 4, no. 6 (June 1, 2024): 70–78. http://dx.doi.org/10.37547/ajbspi/volume04issue06-10.
Full textRaghunathan, Suchi, Ramesh K. Goyal, and Bhoomika M. Patel. "Selective inhibition of HDAC2 by magnesium valproate attenuates cardiac hypertrophy." Canadian Journal of Physiology and Pharmacology 95, no. 3 (March 2017): 260–67. http://dx.doi.org/10.1139/cjpp-2016-0542.
Full textRiedl, Moritz, Christina Witzmann, Matthias Koch, Siegmund Lang, Maximilian Kerschbaum, Florian Baumann, Werner Krutsch, Denitsa Docheva, Volker Alt, and Christian Pfeifer. "Attenuation of Hypertrophy in Human MSCs via Treatment with a Retinoic Acid Receptor Inverse Agonist." International Journal of Molecular Sciences 21, no. 4 (February 20, 2020): 1444. http://dx.doi.org/10.3390/ijms21041444.
Full textNikkholgh, Ahad, Fatemeh Tavakoli, Nasrin Alborzi, and Fatemeh Araste. "Vitamin D Attenuates Cardiac Hypertrophy in Rats through mRNA Regulation of Interleukin-6 and Its Receptor." Research in Cardiovascular Medicine 12, no. 4 (2023): 123–28. http://dx.doi.org/10.4103/rcm.rcm_60_23.
Full textYan, Xiaoying, Ran Zhao, Xiaorong Feng, Jingzhou Mu, Ying Li, Yue Chen, Chunmei Li, et al. "Sialyltransferase7A promotes angiotensin II-induced cardiomyocyte hypertrophy via HIF-1α-TAK1 signalling pathway." Cardiovascular Research 116, no. 1 (March 11, 2019): 114–26. http://dx.doi.org/10.1093/cvr/cvz064.
Full textBazgir, Farhad, Julia Nau, Saeideh Nakhaei-Rad, Ehsan Amin, Matthew J. Wolf, Jeffry J. Saucerman, Kristina Lorenz, and Mohammad Reza Ahmadian. "The Microenvironment of the Pathogenesis of Cardiac Hypertrophy." Cells 12, no. 13 (July 4, 2023): 1780. http://dx.doi.org/10.3390/cells12131780.
Full textGallo, Simona, Annapia Vitacolonna, Alessandro Bonzano, Paolo Comoglio, and Tiziana Crepaldi. "ERK: A Key Player in the Pathophysiology of Cardiac Hypertrophy." International Journal of Molecular Sciences 20, no. 9 (May 1, 2019): 2164. http://dx.doi.org/10.3390/ijms20092164.
Full textSu, Dongmei, Sun Jing, Lina Guan, Qian Li, Huiling Zhang, Xiaobo Gao, and Xu Ma. "Role of Nodal–PITX2C signaling pathway in glucose-induced cardiomyocyte hypertrophy." Biochemistry and Cell Biology 92, no. 3 (June 2014): 183–90. http://dx.doi.org/10.1139/bcb-2013-0124.
Full textHernández Quiles, C., and L. M. Beltrán Romero. "Hypertrophic cardiomyopathy: Beyond left ventricular hypertrophy." Revista Clínica Española (English Edition) 221, no. 6 (June 2021): 343–44. http://dx.doi.org/10.1016/j.rceng.2020.03.005.
Full textSUN, XUE-FENG, QING-JUN WU, YA-LAN BI, YONG HOU, MENG-TAO LI, WEN ZHANG, XUAN ZHANG, et al. "Primary Hypertrophic Osteoarthropathy with Gastric Hypertrophy." Journal of Rheumatology 38, no. 5 (May 2011): 959–60. http://dx.doi.org/10.3899/jrheum.101077.
Full textSilver, Meredith M., and Malcolm D. Silver. "Left ventricular hypertrophy versus hypertrophic cardlomyopathy." Journal of Pediatrics 121, no. 3 (September 1992): 500–501. http://dx.doi.org/10.1016/s0022-3476(05)81824-4.
Full textBorer, Jeffrey S. "Left ventricular hypertrophy in hypertrophic cardiomyopathy." Journal of the American College of Cardiology 44, no. 2 (July 2004): 406–8. http://dx.doi.org/10.1016/j.jacc.2004.04.023.
Full textXie, Xin, Hai-Lian Bi, Song Lai, Yun-Long Zhang, Nan Li, Hua-Jun Cao, Ling Han, Hong-Xia Wang, and Hui-Hua Li. "The immunoproteasome catalytic β5i subunit regulates cardiac hypertrophy by targeting the autophagy protein ATG5 for degradation." Science Advances 5, no. 5 (May 2019): eaau0495. http://dx.doi.org/10.1126/sciadv.aau0495.
Full textGao, Si, Xue-ping Liu, Li-hua Wei, Jing Lu, and Peiqing Liu. "Upregulation of α-enolase protects cardiomyocytes from phenylephrine-induced hypertrophy." Canadian Journal of Physiology and Pharmacology 96, no. 4 (April 2018): 352–58. http://dx.doi.org/10.1139/cjpp-2017-0282.
Full textZhang, Yan, Qiang Da, Siyi Cao, Ke Yan, Zhiguang Shi, Qing Miao, Chen Li, et al. "HINT1 (Histidine Triad Nucleotide-Binding Protein 1) Attenuates Cardiac Hypertrophy Via Suppressing HOXA5 (Homeobox A5) Expression." Circulation 144, no. 8 (August 24, 2021): 638–54. http://dx.doi.org/10.1161/circulationaha.120.051094.
Full textLiu, Yang, Shuang Li, Zhanqun Gao, Shuangjia Li, Qingyun Tan, Yanmei Li, Dongwei Wang, and Qingdong Wang. "Indoleamine 2,3-Dioxygenase 1 (IDO1) Promotes Cardiac Hypertrophy via a PI3K-AKT-mTOR-Dependent Mechanism." Cardiovascular Toxicology 21, no. 8 (May 21, 2021): 655–68. http://dx.doi.org/10.1007/s12012-021-09657-y.
Full textLi, Yu, Bo He, Chao Zhang, Yanji He, Tianyang Xia, and Chunyu Zeng. "Naringenin Attenuates Isoprenaline-Induced Cardiac Hypertrophy by Suppressing Oxidative Stress through the AMPK/NOX2/MAPK Signaling Pathway." Nutrients 15, no. 6 (March 9, 2023): 1340. http://dx.doi.org/10.3390/nu15061340.
Full textTang, Xin, Lihong Pan, Shuang Zhao, Feiyue Dai, Menglin Chao, Hong Jiang, Xuesong Li, et al. "SNO-MLP (S-Nitrosylation of Muscle LIM Protein) Facilitates Myocardial Hypertrophy Through TLR3 (Toll-Like Receptor 3)–Mediated RIP3 (Receptor-Interacting Protein Kinase 3) and NLRP3 (NOD-Like Receptor Pyrin Domain Containing 3) Inflammasome Activation." Circulation 141, no. 12 (March 24, 2020): 984–1000. http://dx.doi.org/10.1161/circulationaha.119.042336.
Full textLiu, Yao-Lung, Chiu-Ching Huang, Chiz-Chung Chang, Che-Yi Chou, Shih-Yi Lin, I.-Kuan Wang, Dennis Jine-Yuan Hsieh, Gwo-Ping Jong, Chih-Yang Huang, and Chao-Min Wang. "Hyperphosphate-Induced Myocardial Hypertrophy through the GATA-4/NFAT-3 Signaling Pathway Is Attenuated by ERK Inhibitor Treatment." Cardiorenal Medicine 5, no. 2 (2015): 79–88. http://dx.doi.org/10.1159/000371454.
Full textLi, Yuhao, Yoshihiko Saito, Koichiro Kuwahara, Xianglu Rong, Ichiro Kishimoto, Masaki Harada, Yuichiro Adachi, et al. "Guanylyl Cyclase-A Inhibits Angiotensin II Type 2 Receptor-Mediated Pro-Hypertrophic Signaling in the Heart." Endocrinology 150, no. 8 (April 16, 2009): 3759–65. http://dx.doi.org/10.1210/en.2008-1353.
Full textGoodman, Craig A., Man Hing Miu, John W. Frey, Danielle M. Mabrey, Hannah C. Lincoln, Yejing Ge, Jie Chen, and Troy A. Hornberger. "A Phosphatidylinositol 3-Kinase/Protein Kinase B-independent Activation of Mammalian Target of Rapamycin Signaling Is Sufficient to Induce Skeletal Muscle Hypertrophy." Molecular Biology of the Cell 21, no. 18 (September 15, 2010): 3258–68. http://dx.doi.org/10.1091/mbc.e10-05-0454.
Full textWehbe, Nadine, Suzanne Nasser, Gianfranco Pintus, Adnan Badran, Ali Eid, and Elias Baydoun. "MicroRNAs in Cardiac Hypertrophy." International Journal of Molecular Sciences 20, no. 19 (September 23, 2019): 4714. http://dx.doi.org/10.3390/ijms20194714.
Full textJohansson, Markus, Benyapa Tangruksa, Sepideh Heydarkhan-Hagvall, Anders Jeppsson, Peter Sartipy, and Jane Synnergren. "Data Mining Identifies CCN2 and THBS1 as Biomarker Candidates for Cardiac Hypertrophy." Life 12, no. 5 (May 12, 2022): 726. http://dx.doi.org/10.3390/life12050726.
Full textPreveden, Andrej, Mirna Usorac, Mirko Todic, Mihaela Preveden, Miodrag Golubovic, and Lazar Velicki. "Electrocardiographic features of patients with hypertrophic cardiomyopathy." Medical review 75, no. 1-2 (2022): 56–61. http://dx.doi.org/10.2298/mpns2202056p.
Full textPrinz, Christian, Lothar Faber, Dieter Horstkotte, Hermann Körperich, Axel Moysich, Nikolaus Haas, Deniz Kececioglu, and Kai Thorsten Laser. "Evaluation of left ventricular torsion in children with hypertrophic cardiomyopathy." Cardiology in the Young 24, no. 2 (February 7, 2013): 245–52. http://dx.doi.org/10.1017/s104795111300005x.
Full textKhatoon, Razia, Swaimanti Sarkar, Aindrila Chattopadhyay, and Debasish Bandyopadhyay. "The cardioprotective potential of melatonin on cardiac hypertrophy: A mechanistic overview." Melatonin Research 6, no. 3 (September 30, 2023): 313–44. http://dx.doi.org/10.32794/mr112500157.
Full textQuddus, Sharmin, Tapati Mandal, Sharmin Reza, Nasreen Sultana, Rahima Parveen, Urnus Islam, and Sadia Sultana. "SPECT Myocardial Perfusion Imaging in the Diagnosis of Apical Hypertrophic Cardiomyopathy- Case Series and Literature Review." Bangladesh Journal of Nuclear Medicine 27, no. 1 (June 23, 2024): 100–106. http://dx.doi.org/10.3329/bjnm.v27i1.71520.
Full textHu, Chengyun, Feibiao Dai, Jiawu Wang, Lai Jiang, Di Wang, Jie Gao, Jun Huang, et al. "Peroxiredoxin-5 Knockdown Accelerates Pressure Overload-Induced Cardiac Hypertrophy in Mice." Oxidative Medicine and Cellular Longevity 2022 (January 29, 2022): 1–12. http://dx.doi.org/10.1155/2022/5067544.
Full textWang, Yao-Sheng, Jing Zhou, Kui Hong, Xiao-Shu Cheng, and Yi-Gang Li. "MicroRNA-223 Displays a Protective Role Against Cardiomyocyte Hypertrophy by Targeting Cardiac Troponin I-Interacting Kinase." Cellular Physiology and Biochemistry 35, no. 4 (2015): 1546–56. http://dx.doi.org/10.1159/000373970.
Full textLysova, I. V., and T. P. Senatorova. "Treatment of hypertrophic gingivitis with laser radiation." Kazan medical journal 69, no. 2 (April 15, 1988): 122. http://dx.doi.org/10.17816/kazmj97214.
Full textGeraets, Ilvy M. E., Will A. Coumans, Agnieszka Strzelecka, Patrick Schönleitner, Gudrun Antoons, Francesco Schianchi, Myrthe M. A. Willemars, et al. "Metabolic Interventions to Prevent Hypertrophy-Induced Alterations in Contractile Properties In Vitro." International Journal of Molecular Sciences 22, no. 7 (March 31, 2021): 3620. http://dx.doi.org/10.3390/ijms22073620.
Full textBrown, Brittany F., Anita Quon, Jason R. B. Dyck, and Joseph R. Casey. "Carbonic anhydrase II promotes cardiomyocyte hypertrophy." Canadian Journal of Physiology and Pharmacology 90, no. 12 (December 2012): 1599–610. http://dx.doi.org/10.1139/y2012-142.
Full textLi, Peng-Long, Hui Liu, Guo-Peng Chen, Ling Li, Hong-Jie Shi, Hong-Yu Nie, Zhen Liu, et al. "STEAP3 (Six-Transmembrane Epithelial Antigen of Prostate 3) Inhibits Pathological Cardiac Hypertrophy." Hypertension 76, no. 4 (October 2020): 1219–30. http://dx.doi.org/10.1161/hypertensionaha.120.14752.
Full textZhang, Haifeng, Shanshan Li, Qiulian Zhou, Qi Sun, Shutong Shen, Yanli Zhou, Yihua Bei, and Xinli Li. "Qiliqiangxin Attenuates Phenylephrine-Induced Cardiac Hypertrophy through Downregulation of MiR-199a-5p." Cellular Physiology and Biochemistry 38, no. 5 (2016): 1743–51. http://dx.doi.org/10.1159/000443113.
Full textYun, Ui Jeong, and Dong Kwon Yang. "Sinapic Acid Inhibits Cardiac Hypertrophy via Activation of Mitochondrial Sirt3/SOD2 Signaling in Neonatal Rat Cardiomyocytes." Antioxidants 9, no. 11 (November 21, 2020): 1163. http://dx.doi.org/10.3390/antiox9111163.
Full textBi, Hai-Lian, Xiao-Li Zhang, Yun-Long Zhang, Xin Xie, Yun-Long Xia, Jie Du, and Hui-Hua Li. "The deubiquitinase UCHL1 regulates cardiac hypertrophy by stabilizing epidermal growth factor receptor." Science Advances 6, no. 16 (April 2020): eaax4826. http://dx.doi.org/10.1126/sciadv.aax4826.
Full textHaq, Syed, Gabriel Choukroun, Zhao Bin Kang, Hardeep Ranu, Takashi Matsui, Anthony Rosenzweig, Jeffrey D. Molkentin, et al. "Glycogen Synthase Kinase-3β Is a Negative Regulator of Cardiomyocyte Hypertrophy." Journal of Cell Biology 151, no. 1 (October 2, 2000): 117–30. http://dx.doi.org/10.1083/jcb.151.1.117.
Full textKang, Peter M., Patrick Yue, Zhilin Liu, Oleg Tarnavski, Natalya Bodyak, and Seigo Izumo. "Alterations in apoptosis regulatory factors during hypertrophy and heart failure." American Journal of Physiology-Heart and Circulatory Physiology 287, no. 1 (July 2004): H72—H80. http://dx.doi.org/10.1152/ajpheart.00556.2003.
Full textChen, Jian-Kang, Jianchun Chen, George Thomas, Sara C. Kozma, and Raymond C. Harris. "S6 kinase 1 knockout inhibits uninephrectomy- or diabetes-induced renal hypertrophy." American Journal of Physiology-Renal Physiology 297, no. 3 (September 2009): F585—F593. http://dx.doi.org/10.1152/ajprenal.00186.2009.
Full text