Journal articles on the topic 'Hyperfine interactions'

To see the other types of publications on this topic, follow the link: Hyperfine interactions.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Hyperfine interactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Pasquevich, A. F., M. Uhrmacher, L. Ziegeler, and K. P. Lieb. "Hyperfine interactions ofCd111inGa2O3." Physical Review B 48, no. 14 (October 1, 1993): 10052–62. http://dx.doi.org/10.1103/physrevb.48.10052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

San-Fabian, Emilio, and Serafin Fraga. "Hyperfine-structure interactions: preliminary results." Canadian Journal of Physics 66, no. 7 (July 1, 1988): 583–85. http://dx.doi.org/10.1139/p88-099.

Full text
Abstract:
Hyperfine-structure splittings have been evaluated for the SL ground states of some chosen atoms (11B, 11C, 13C, 14N, 17O, 19F, and 27Al) using a program developed at this laboratory. The program predicts the energy levels of many-electron atoms within the framework of a configuration-interaction treatment, using a Hamiltonian operator that includes the electrostatic interaction, the specific-mass correction, the SL nonsplitting terms, the fine-structure couplings, and the hyperfine-structure interactions. The agreement with experimental data is satisfactory.
APA, Harvard, Vancouver, ISO, and other styles
3

Hanzawa, Katsurou. "Hyperfine Interactions in CeB6." Journal of the Physical Society of Japan 69, no. 2 (February 15, 2000): 510–25. http://dx.doi.org/10.1143/jpsj.69.510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brill, A. S. "Hyperfine interactions in H2N." Canadian Journal of Physics 86, no. 6 (June 1, 2008): 767–81. http://dx.doi.org/10.1139/p07-205.

Full text
Abstract:
All of the hyperfine interactions associated with localized and delocalized electron spin in the four isotopes of the triatomic radical H2N are treated. With nuclear Zeeman energy included, the resulting magnetic-field-dependent nuclear spin states are used to calculate the energies and nuclear spin-state mixing of the nuclear levels and the corresponding hyperfine effects upon electron paramagnetic resonance (EPR) transition energies and nuclear state transition probabilities. In the absence of nuclear spin-state mixing there would be, for example, 10 EPR transitions in D2 15N and 15 in D2 14N, all ΔmI = 0 fully allowed. In the presence of mixing, there are 243 in D2 15N and 729 in D2 14N, with large differences in probability among transitions, many 0 or small. Because of numerous (at least partially allowed) transitions, spectra from isotopes of H2 N radicals are the superposition of signals at greatly different levels of saturation. In this report, EPR spectra from D2 15N models, with either N or 2D hyperfine interaction suppressed, are simulated as a function of microwave frequency and power × spin-lattice relaxation time product. A large range of microwave frequency (and, concomitantly, magnetic field strength) will be needed to evaluate the effect of the nuclear Zeeman energy. The experimental requirements for microwave power and low temperature (long spin-lattice relaxation rate) are quantified.PACS Nos.: 33.15.Pw, 33.35.+r, 33.25.+k
APA, Harvard, Vancouver, ISO, and other styles
5

Lin, Wei, Stewart E. Novick, Masaru Fukushima, and Wolfgang Jäger. "Hyperfine Interactions in HSiCl." Journal of Physical Chemistry A 106, no. 34 (August 2002): 7703–6. http://dx.doi.org/10.1021/jp020710m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Toh, Pek Lan, Shukri Sulaiman, Mohamed Ismail Mohamed Ibrahim, and Lee Sin Ang. "Density Functional Theory Studies of Electronic Structures and Hyperfine Interactions of Muonium in Imidazole." Applied Mechanics and Materials 749 (April 2015): 134–38. http://dx.doi.org/10.4028/www.scientific.net/amm.749.134.

Full text
Abstract:
We carried out ab initio electronic structure calculations in the frameworks of the Density Functional Theory (DFT) to study the electronic structures and hyperfine interaction of muonium (Mu) in imidazole (C3H4N2) and 1–methylimidazole (CH3C3H3N2). The local energy minima and hyperfine interactions of the Mu trapped at the three studies sites were determined by performing geometry optimization procedure. The results show the total energies for all three studied sites are close to one another. The Mu hyperfine interactions were also determined, with the corresponding values vary from 343.00 MHz to 471.28 MHz for the imidazole–Mu cluster, and from 380.21 MHz – 465.57 MHz to 475.93 MHz for the cluster of 1–methylimidazole–Mu, respectively.
APA, Harvard, Vancouver, ISO, and other styles
7

Kaufmann, E. N. "Hyperfine Interactions: Lost in America." MRS Bulletin 11, no. 6 (December 1986): 57. http://dx.doi.org/10.1557/s0883769400054324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cederberg, J., J. Ward, G. McAlister, G. Hilk, E. Beall, and D. Olson. "The hyperfine interactions in CsF." Journal of Chemical Physics 111, no. 18 (November 8, 1999): 8396–99. http://dx.doi.org/10.1063/1.480213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Deutch, B. I., and H. de Waard. "Hyperfine Interactions — Editorial policy statement." Hyperfine Interactions 88, no. 1 (December 1994): V—VI. http://dx.doi.org/10.1007/bf02068695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kalvius, G. M. "Hyperfine interactions using nuclear techniques." Hyperfine Interactions 26, no. 1-4 (November 1985): 1107–11. http://dx.doi.org/10.1007/bf02354653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bleaney, B. "Hyperfine interactions-un peu d'histoire." Hyperfine Interactions 63, no. 1-4 (February 1991): 3–11. http://dx.doi.org/10.1007/bf02395979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ruggiero, N. G., D. C. Cook, and A. S. Edelstein. "Magnetic hyperfine interactions in GdAl3." Hyperfine Interactions 54, no. 1-4 (July 1990): 689–94. http://dx.doi.org/10.1007/bf02396113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zhuravlev, N. A., A. V. Dmitriev, A. A. Lakhtin, A. G. Maksimov, V. L. Volkov, and R. N. Pletnev. "Hyperfine interactions in type ? NaXV2O5." Journal of Structural Chemistry 31, no. 6 (1991): 899–903. http://dx.doi.org/10.1007/bf00752160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zacate, Matthew O., and William E. Evenson. "Stochastic hyperfine interactions modeling library." Computer Physics Communications 182, no. 4 (April 2011): 1061–77. http://dx.doi.org/10.1016/j.cpc.2010.12.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zacate, M. O., and W. E. Evenson. "Fluctuating hyperfine interactions: computational implementation." Hyperfine Interactions 197, no. 1-3 (April 2010): 229–32. http://dx.doi.org/10.1007/s10751-010-0242-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Minamisono, Tadanori. "Beta decay and hyperfine interactions." Hyperfine Interactions 21, no. 1-4 (January 1985): 103–41. http://dx.doi.org/10.1007/bf02061981.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Lunghi, Alessandro, and Stefano Sanvito. "How do phonons relax molecular spins?" Science Advances 5, no. 9 (September 2019): eaax7163. http://dx.doi.org/10.1126/sciadv.aax7163.

Full text
Abstract:
The coupling between electronic spins and lattice vibrations is fundamental for driving relaxation in magnetic materials. The debate over the nature of spin-phonon coupling dates back to the 1940s, but the role of spin-spin, spin-orbit, and hyperfine interactions has never been fully established. Here, we present a comprehensive study of the spin dynamics of a crystal of Vanadyl-based molecular qubits by means of first-order perturbation theory and first-principles calculations. We quantitatively determine the role of the Zeeman, hyperfine, and electronic spin dipolar interactions in the direct mechanism of spin relaxation. We show that, in a high magnetic field regime, the modulation of the Zeeman Hamiltonian by the intramolecular components of the acoustic phonons dominates the relaxation mechanism. In low fields, hyperfine coupling takes over, with the role of spin-spin dipolar interaction remaining the less important for the spin relaxation.
APA, Harvard, Vancouver, ISO, and other styles
18

Zhu, Chengcheng, Hailing Wang, Ben Chen, Yini Chen, Tao Yang, Jianping Yin, and Jinjun Liu. "Fine and hyperfine interactions of PbF studied by laser-induced fluorescence spectroscopy." Journal of Chemical Physics 157, no. 8 (August 28, 2022): 084307. http://dx.doi.org/10.1063/5.0099716.

Full text
Abstract:
The fine and hyperfine interactions in PbF have been studied using the laser-induced fluorescence (LIF) spectroscopy method. Cold PbF molecular beam was produced by laser-ablating a Pb rod under jet-cooled conditions, followed by the reaction with SF6. The LIF excitation spectrum of the (0, 0) band in the B2Σ+– X2Π1/2 system of the 208PbF, 207PbF, and 206PbF isotopologues has been recorded with rotational, fine structure, and hyperfine-structure resolution. Transitions in the LIF spectrum were assigned and combined with the previous X2Π3/2– X2Π1/2 emission spectrum in the near-infrared region [Ziebarth et al., J. Mol. Spectrosc. 191, 108–116 (1998)] and the X2Π1/2 state pure rotational spectrum of PbF [Mawhorter et al., Phys. Rev. A 84, 022508 (2011)] in a global fit to derive the rotational, spin–orbit, spin–rotation, and hyperfine interaction parameters of the ground ( X2Π1/2) and the excited ( B2Σ+) electronic states. Molecular constants determined in the present work are compared with previously reported values. Particularly, the significance of the hyperfine parameters, A⊥ and A‖, of 207Pb is discussed.
APA, Harvard, Vancouver, ISO, and other styles
19

LI ZI-RONG, MENG QING-AN, GAO QI-JUAN, SUN KE, and WEI YU-NIAN. "ANISOTROPIC HYPERFINE INTERACTIONS IN Fe4N ALLOY." Acta Physica Sinica 45, no. 2 (1996): 314. http://dx.doi.org/10.7498/aps.45.314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

INAMURA, Takashi T. "Nagaoka’s atomic model and hyperfine interactions." Proceedings of the Japan Academy, Series B 92, no. 4 (2016): 121–34. http://dx.doi.org/10.2183/pjab.92.121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Akai, Hisazumi, Masako Akai, S. Blügel, B. Drittler, H. Ebert, Kiyoyuki Terakura, R. Zeller, and P. H. Dederiches. "Theory of Hyperfine Interactions in Metals." Progress of Theoretical Physics Supplement 101 (1990): 11–77. http://dx.doi.org/10.1143/ptps.101.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Terakura, Kiyoyuki, Noriaki Hamada, Katayama Yoshida, Toshiharu Hoshino, and Toshio Asada. "Hyperfine Interactions for Impurities in Semiconductors." Progress of Theoretical Physics Supplement 101 (1990): 79–104. http://dx.doi.org/10.1143/ptps.101.79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Cabrera-Pasca, G. A., J. Mestnik-Filho, A. W. Carbonari, and R. N. Saxena. "Study of hyperfine interactions in GdIn3." Journal of Applied Physics 113, no. 17 (May 7, 2013): 17E133. http://dx.doi.org/10.1063/1.4797624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Chlan, V., P. Novák, H. Štěpánková, J. Englich, J. Kuriplach, and D. Nižňanský. "Hyperfine interactions in lutetium iron garnet." Journal of Applied Physics 99, no. 8 (April 15, 2006): 08M903. http://dx.doi.org/10.1063/1.2158687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Unterricker, S. "Hyperfine Interactions in Chromium Chalcogenide Spinels." Isotopenpraxis Isotopes in Environmental and Health Studies 27, no. 2 (January 1991): 69–72. http://dx.doi.org/10.1080/10256019108622471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Anikeenok, O. A., M. A. Augustyniak-Jabłokow, T. A. Ivanova, P. Reiche, R. Uecker, and Yu V. Yablokov. "Supertransferred hyperfine interactions in layer LaSrGa0.995Cu0.005O4." Physica B: Condensed Matter 325 (January 2003): 246–55. http://dx.doi.org/10.1016/s0921-4526(02)01535-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kouřil, Karel, Vojtěch Chlan, Helena Štěpánková, Pavel Novák, Karel Knížek, Jiří Hybler, Tsuyoshi Kimura, Yuji Hiraoka, and Josef Buršík. "Hyperfine interactions in magnetoelectric hexaferrite system." Journal of Magnetism and Magnetic Materials 322, no. 9-12 (May 2010): 1243–45. http://dx.doi.org/10.1016/j.jmmm.2009.03.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Thomas, Stephanie L., and Ian Carmichael. "Hyperfine interactions in muonium-containing radicals." Physica B: Condensed Matter 374-375 (March 2006): 290–94. http://dx.doi.org/10.1016/j.physb.2005.11.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Rams, M., K. Królas, P. Bonville, Y. S. Kwon, and F. Gonzalez-Jimenez. "Hyperfine interactions in mixed valence Yb3S4." Physica B: Condensed Matter 259-261 (January 1999): 271–72. http://dx.doi.org/10.1016/s0921-4526(98)00953-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Łątka, Kazimierz, Roman Kmieć, Andrzej W. Pacyna, Ratikanta Mishra, and Rainer Pöttgen. "Magnetism and hyperfine interactions in Gd2Ni2Mg." Solid State Sciences 3, no. 5 (June 2001): 545–58. http://dx.doi.org/10.1016/s1293-2558(01)01172-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Alboom, Antoine Van, Valdirene G. De Resende, Eddy De Grave, and J. Alexandra M. Gómez. "Hyperfine interactions in szomolnokite (FeSO4·H2O)." Journal of Molecular Structure 924-926 (April 2009): 448–56. http://dx.doi.org/10.1016/j.molstruc.2008.10.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

OYAMADA, A. "Temperature-dependent hyperfine interactions in CePdAl." Physica B: Condensed Matter 329-333 (May 2003): 578–79. http://dx.doi.org/10.1016/s0921-4526(02)02455-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Vagner, I. D., and T. Maniv. "Hyperfine interactions in quantum Hall systems." Physica B: Condensed Matter 204, no. 1-4 (January 1995): 141–48. http://dx.doi.org/10.1016/0921-4526(94)00254-s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Litterst, F. J., J. Moser, W. Potzel, U. Potzel, G. M. Kalvius, L. Asch, J. Gal, and J. C. Spirlet. "Pressure-dependent hyperfine interactions in NpAl2." Physica B+C 144, no. 1 (December 1986): 41–43. http://dx.doi.org/10.1016/0378-4363(86)90288-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Anselmino, M., D. B. Lichtenberg, and E. Predazzi. "Quark color-hyperfine interactions in baryons." Zeitschrift für Physik C Particles and Fields 48, no. 4 (December 1990): 605–12. http://dx.doi.org/10.1007/bf01614695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Budnick, J. I. "Hyperfine interactions using non-nuclear techniques." Hyperfine Interactions 26, no. 1-4 (November 1985): 1113–18. http://dx.doi.org/10.1007/bf02354654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sanchez, J. P., J. M. Friedt, K. Tomala, and F. Holtzberg. "155Gd Mössbauer hyperfine interactions in GdS." Physics Letters A 111, no. 1-2 (August 1985): 83–85. http://dx.doi.org/10.1016/0375-9601(85)90810-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Saini, J. S., A. K. Singh, V. K. Garg, S. K. Jaireth, and K. Chandra. "Mössbauer hyperfine interactions in natural wolframites." Hyperfine Interactions 35, no. 1-4 (April 1987): 907–11. http://dx.doi.org/10.1007/bf02394521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Vachon, M.-A., G. Koutroulakis, V. F. Mitrović, A. P. Reyes, P. Kuhns, R. Coldea, and Z. Tylczynski. "Anisotropic transferred hyperfine interactions in Cs2CuCl4." Journal of Physics: Condensed Matter 20, no. 29 (July 1, 2008): 295225. http://dx.doi.org/10.1088/0953-8984/20/29/295225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Akai, H., M. Akai, S. Blugel, B. Drittler, H. Ebert, K. Terakura, R. Zeller, and P. H. Dederichs. "Theory of Hyperfine Interactions in Metals." Progress of Theoretical Physics Supplement 101 (May 16, 2013): 11–77. http://dx.doi.org/10.1143/ptp.101.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Terakura, K., N. Hamada, H. Y. Katayama, T. Hoshino, and T. Asada. "Hyperfine Interactions for Impurities in Semiconductors." Progress of Theoretical Physics Supplement 101 (May 16, 2013): 79–104. http://dx.doi.org/10.1143/ptp.101.79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Leskova, Yu V., A. E. Nikiforov, L. É. Gonchar’, S. É. Popov, and A. A. Mozhegorov. "Hyperfine interactions in charge ordered manganites." Physics of the Solid State 50, no. 9 (September 2008): 1716–18. http://dx.doi.org/10.1134/s1063783408090242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Dova, M. T., P. C. Rivas, J. A. Martínez, M. C. Caracoche, and A. R. López García. "Hyperfine interactions in Li2ZrF6 and Li2HfF6." Hyperfine Interactions 30, no. 3 (August 1986): 199–204. http://dx.doi.org/10.1007/bf02396915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Abdelgadir, M. A., L. Häggstrom, T. Sundqvist, and H. Fjellvåg. "Hyperfine interactions in MnAs probed by57Fe." Hyperfine Interactions 41, no. 1 (December 1988): 475–78. http://dx.doi.org/10.1007/bf02400431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kesten, J., M. Uhrmacher, and K. P. Lieb. "Hyperfine interactions of111Cd impurities in Cr2O3." Hyperfine Interactions 59, no. 1-4 (August 1990): 309–12. http://dx.doi.org/10.1007/bf02401235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fu, C. L., A. J. Freeman, and S. C. Hong. "Hyperfine interactions at surfaces and interfaces." Hyperfine Interactions 49, no. 1-4 (June 1989): 393. http://dx.doi.org/10.1007/bf02405151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ohtsubo, T., M. Tanigaki, S. Fukuda, Y. Nakayama, S. Takeda, N. Nakamura, H. Tanji, et al. "Hyperfine interactions of12B in BN (hexagonal)." Hyperfine Interactions 78, no. 1-4 (1993): 185–90. http://dx.doi.org/10.1007/bf00568137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kaczmarek, W. A. "Magnetic Hyperfine Interactions in BaIn1.5Fe10.5O19 Ferrite." physica status solidi (a) 120, no. 1 (July 16, 1990): K79—K83. http://dx.doi.org/10.1002/pssa.2211200144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Pszczola, J., D. Best, L. Klimek, and M. Forker. "Hyperfine interactions of CexDy1−xFe2 intermetallics." Journal of Magnetism and Magnetic Materials 92, no. 1 (November 1990): 101–8. http://dx.doi.org/10.1016/0304-8853(90)90685-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Corzilius, B., E. Ramić, and K. P. Dinse. "HYSCORE analysis of nitrogen hyperfine interactions." Applied Magnetic Resonance 30, no. 3-4 (June 2006): 499–512. http://dx.doi.org/10.1007/bf03166214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography