Journal articles on the topic 'Hyperelastic anisotropic material'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hyperelastic anisotropic material.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gurvich, Mark R. "On Characterization of Anisotropic Elastomeric Materials for Structural Analysis." Rubber Chemistry and Technology 77, no. 1 (March 1, 2004): 115–30. http://dx.doi.org/10.5254/1.3547805.
Full textChanda, Arnab, Subhodip Chatterjee, and Vivek Gupta. "Soft composite based hyperelastic model for anisotropic tissue characterization." Journal of Composite Materials 54, no. 28 (June 23, 2020): 4525–34. http://dx.doi.org/10.1177/0021998320935560.
Full textAnsari, Mohd Zahid, Sang Kyo Lee, and Chong Du Cho. "Hyperelastic Muscle Simulation." Key Engineering Materials 345-346 (August 2007): 1241–44. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.1241.
Full textCudny, Marcin, and Katarzyna Staszewska. "A hyperelastic model for soils with stress-induced and inherent anisotropy." Acta Geotechnica 16, no. 7 (March 5, 2021): 1983–2001. http://dx.doi.org/10.1007/s11440-021-01159-z.
Full textNam, Tran Huu. "Using FEM for large deformation analysis of inflated air-spring cylindrical shell made of rubber-textile cord composite." Vietnam Journal of Mechanics 28, no. 1 (April 17, 2006): 10–20. http://dx.doi.org/10.15625/0866-7136/28/1/5474.
Full textChanda, Arnab, and Christian Callaway. "Tissue Anisotropy Modeling Using Soft Composite Materials." Applied Bionics and Biomechanics 2018 (2018): 1–9. http://dx.doi.org/10.1155/2018/4838157.
Full textSokolova, M. Yu, and D. V. Khristich. "FINITE STRAINS OF NONLINEAR ELASTIC ANISOTROPIC MATERIALS." Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, no. 70 (2021): 103–16. http://dx.doi.org/10.17223/19988621/70/9.
Full textVladimirov, Ivaylo N., Michael P. Pietryga, Yalin Kiliclar, Vivian Tini, and Stefanie Reese. "Failure modelling in metal forming by means of an anisotropic hyperelastic-plasticity model with damage." International Journal of Damage Mechanics 23, no. 8 (January 16, 2014): 1096–132. http://dx.doi.org/10.1177/1056789513518953.
Full textHashemi, Sanaz S., Masoud Asgari, and Akbar Rasoulian. "An experimental study of nonlinear rate-dependent behaviour of skeletal muscle to obtain passive mechanical properties." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 234, no. 6 (March 5, 2020): 590–602. http://dx.doi.org/10.1177/0954411920909705.
Full textChatelin, Simon, Caroline Deck, and Rémy Willinger. "An anisotropic viscous hyperelastic constitutive law for brain material finite-element modeling." Journal of Biorheology 27, no. 1-2 (December 6, 2012): 26–37. http://dx.doi.org/10.1007/s12573-012-0055-6.
Full textNam, Tran Huu. "Identification parameters of material model and large deformation analysis of inflated air-spring shell made of rubber-textile cord composite." Vietnam Journal of Mechanics 27, no. 2 (July 1, 2005): 118–28. http://dx.doi.org/10.15625/0866-7136/27/2/5721.
Full textQu, Zhipeng, Wei He, Mingyun Lv, and Houdi Xiao. "Large-Strain Hyperelastic Constitutive Model of Envelope Material under Biaxial Tension with Different Stress Ratios." Materials 11, no. 9 (September 19, 2018): 1780. http://dx.doi.org/10.3390/ma11091780.
Full textDjeridi, Rachid, and Mohand Ould Ouali. "Numerical Implementation and Finite Element Analysis of Anisotropic Hyperelastic Biomaterials - Influence of Fibers Orientation." Key Engineering Materials 554-557 (June 2013): 2414–23. http://dx.doi.org/10.4028/www.scientific.net/kem.554-557.2414.
Full textSuda, Masaki, and Akihiro Matsuda. "902 Development of an anisotropic hyperelastic material model which is considering stress softening." Proceedings of Ibaraki District Conference 2013.21 (2013): 17–18. http://dx.doi.org/10.1299/jsmeibaraki.2013.21.17.
Full textDiani, Julie, Mathias Brieu, and Pierre Gilormini. "Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material." International Journal of Solids and Structures 43, no. 10 (May 2006): 3044–56. http://dx.doi.org/10.1016/j.ijsolstr.2005.06.045.
Full textVu, Ngoc-Hung, Xuan-Tan Pham, Vincent François, and Jean-Christophe Cuillière. "Characterization of multilayered carbon-fiber–reinforced thermoplastic composites for assembly process." Journal of Thermoplastic Composite Materials 32, no. 5 (May 1, 2018): 673–89. http://dx.doi.org/10.1177/0892705718772878.
Full textPuso, M. A., and J. A. Weiss. "Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation." Journal of Biomechanical Engineering 120, no. 1 (February 1, 1998): 62–70. http://dx.doi.org/10.1115/1.2834308.
Full textAzarov, Daniil. "Mechanical-Geometrical Modeling Of The Hyperelastic Materials At Uniaxial Stretching." Journal of Physics: Conference Series 2131, no. 5 (December 1, 2021): 052017. http://dx.doi.org/10.1088/1742-6596/2131/5/052017.
Full textNdlovu, Zwelihle, Dawood Desai, Thanyani Pandelani, Harry Ngwangwa, and Fulufhelo Nemavhola. "Biaxial Estimation of Biomechanical Constitutive Parameters of Passive Porcine Sclera Soft Tissue." Applied Bionics and Biomechanics 2022 (February 28, 2022): 1–11. http://dx.doi.org/10.1155/2022/4775595.
Full textPeng, X. Q., Z. Y. Guo, and B. Moran. "An Anisotropic Hyperelastic Constitutive Model With Fiber-Matrix Shear Interaction for the Human Annulus Fibrosus." Journal of Applied Mechanics 73, no. 5 (May 16, 2005): 815–24. http://dx.doi.org/10.1115/1.2069987.
Full textYao, Yuan, Xiaoshuang Huang, Xiongqi Peng, Pengfei Liu, and Gong Youkun. "An anisotropic hyperelastic constitutive model for plain weave fabric considering biaxial tension coupling." Textile Research Journal 89, no. 3 (December 20, 2017): 434–44. http://dx.doi.org/10.1177/0040517517748495.
Full textGong, Youkun, Dongxiu Yan, Yuan Yao, Ran Wei, Hongling Hu, Peng Xu, and Xiongqi Peng. "An Anisotropic Hyperelastic Constitutive Model with Tension–Shear Coupling for Woven Composite Reinforcements." International Journal of Applied Mechanics 09, no. 06 (September 2017): 1750083. http://dx.doi.org/10.1142/s1758825117500831.
Full textBHAT, SUBRAYA KRISHNA, NORIYUKI SAKATA, and HIROSHI YAMADA. "IDENTIFICATION OF UNIAXIAL DEFORMATION BEHAVIOR AND ITS INITIAL TANGENT MODULUS FOR ATHEROMATOUS INTIMA IN THE HUMAN CAROTID ARTERY AND THORACIC AORTA USING THREE-PARAMETER ISOTROPIC HYPERELASTIC MODELS." Journal of Mechanics in Medicine and Biology 20, no. 03 (April 2020): 2050014. http://dx.doi.org/10.1142/s0219519420500141.
Full textFerreira, João, Marco Parente, and Renato Jorge. "Modeling of soft tissues with damage." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 231, no. 1-2 (August 19, 2016): 131–39. http://dx.doi.org/10.1177/1464420716662295.
Full textBaer, Anthony E., Tod A. Laursen, Farshid Guilak, and Lori A. Setton. "The Micromechanical Environment of Intervertebral Disc Cells Determined by a Finite Deformation, Anisotropic, and Biphasic Finite Element Model." Journal of Biomechanical Engineering 125, no. 1 (February 1, 2003): 1–11. http://dx.doi.org/10.1115/1.1532790.
Full textBalzani, Daniel, Simone Deparis, Simon Fausten, Davide Forti, Alexander Heinlein, Axel Klawonn, Alfio Quarteroni, Oliver Rheinbach, and Joerg Schröder. "Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains." International Journal for Numerical Methods in Biomedical Engineering 32, no. 10 (December 7, 2015): e02756. http://dx.doi.org/10.1002/cnm.2756.
Full textGurvich, Mark R. "On Multi-Scale Modeling of Elastomeric Laminated Composites for Structural Analysis." Rubber Chemistry and Technology 79, no. 2 (May 1, 2006): 217–32. http://dx.doi.org/10.5254/1.3547934.
Full textGuccione, J. M., A. D. McCulloch, and L. K. Waldman. "Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model." Journal of Biomechanical Engineering 113, no. 1 (February 1, 1991): 42–55. http://dx.doi.org/10.1115/1.2894084.
Full textCasaroli, Gloria, Fabio Galbusera, René Jonas, Benedikt Schlager, Hans-Joachim Wilke, and Tomaso Villa. "A novel finite element model of the ovine lumbar intervertebral disc with anisotropic hyperelastic material properties." PLOS ONE 12, no. 5 (May 4, 2017): e0177088. http://dx.doi.org/10.1371/journal.pone.0177088.
Full textFerreira, J. P. S., M. P. L. Parente, M. Jabareen, and R. M. Natal Jorge. "A general framework for the numerical implementation of anisotropic hyperelastic material models including non-local damage." Biomechanics and Modeling in Mechanobiology 16, no. 4 (January 25, 2017): 1119–40. http://dx.doi.org/10.1007/s10237-017-0875-9.
Full textNolan, D. R., C. Lally, and J. P. McGarry. "Understanding the deformation gradient in Abaqus and key guidelines for anisotropic hyperelastic user material subroutines (UMATs)." Journal of the Mechanical Behavior of Biomedical Materials 126 (February 2022): 104940. http://dx.doi.org/10.1016/j.jmbbm.2021.104940.
Full textTOUNGARA, MAMADOU, GREGORY CHAGNON, and CHRISTIAN GEINDREAU. "NUMERICAL ANALYSIS OF THE WALL STRESS IN ABDOMINAL AORTIC ANEURYSM: INFLUENCE OF THE MATERIAL MODEL NEAR-INCOMPRESSIBILITY." Journal of Mechanics in Medicine and Biology 12, no. 01 (March 2012): 1250005. http://dx.doi.org/10.1142/s0219519412004442.
Full textPagac, Marek, David Schwarz, Jana Petru, and Stanislav Polzer. "3D printed polyurethane exhibits isotropic elastic behavior despite its anisotropic surface." Rapid Prototyping Journal 26, no. 8 (June 26, 2020): 1371–78. http://dx.doi.org/10.1108/rpj-02-2019-0027.
Full textLiu, Mingrui, Lidong Wang, and Xiongqi Peng. "Testing, characterizing, and forming of glass twill fabric/polypropylene prepregs." Journal of Composite Materials 53, no. 28-30 (May 24, 2019): 3939–50. http://dx.doi.org/10.1177/0021998319851215.
Full textVu, Ngoc-Hung, Xuan-Tan Pham, Vincent François, and Jean-Christophe Cuillière. "Inverse procedure for mechanical characterization of multi-layered non-rigid composite parts with applications to the assembly process." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 17 (July 7, 2019): 6167–76. http://dx.doi.org/10.1177/0954406219861126.
Full textBeter, Julia, Bernd Schrittesser, Gerald Meier, Bernhard Lechner, Mohammad Mansouri, Peter Filipp Fuchs, and Gerald Pinter. "The Tension-Twist Coupling Mechanism in Flexible Composites: A Systematic Study Based on Tailored Laminate Structures Using a Novel Test Device." Polymers 12, no. 12 (November 24, 2020): 2780. http://dx.doi.org/10.3390/polym12122780.
Full textIwamoto, Takeshi, Mohammed Cherkaoui, and Esteban P. Busso. "A Numerical Investigation of Interface Dynamics during Martensitic Transformation in a Shape Memory Alloy Using the Level-Set Method." Key Engineering Materials 340-341 (June 2007): 1199–204. http://dx.doi.org/10.4028/www.scientific.net/kem.340-341.1199.
Full textFerreira, Elisabete, Joaquim Pinho-da-Cruz, and António Andrade-Campos. "Development of an Optimized Loading Path for Material Parameters Identification." Key Engineering Materials 554-557 (June 2013): 2200–2211. http://dx.doi.org/10.4028/www.scientific.net/kem.554-557.2200.
Full textMohammadi, H., D. Boughner, L. E. Millon, and W. K. Wan. "Design and simulation of a poly(vinyl alcohol)—bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 223, no. 6 (July 9, 2009): 697–711. http://dx.doi.org/10.1243/09544119jeim493.
Full textYAMADA, Hiroshi. "F-0801 Development of finite element analysis program of incompressible transversely isotropic hyperelastic material for the vascular anisotropic deformation." Proceedings of the JSME annual meeting IV.01.1 (2001): 1–2. http://dx.doi.org/10.1299/jsmemecjo.iv.01.1.0_1.
Full textSun, Shulei, and Wenguo Chen. "An Anisotropic Hyperelastic Constitutive Model with Bending Stiffness Interaction for Cord-Rubber Composites: Comparison of Simulation Results with Experimental Data." Mathematical Problems in Engineering 2020 (July 24, 2020): 1–7. http://dx.doi.org/10.1155/2020/6750369.
Full textTurner, Josh A., Gary H. Menary, Peter J. Martin, and Shiyong Yan. "Modelling the Temperature Dependent Biaxial Response of Poly(ether-ether-ketone) Above and Below the Glass Transition for Thermoforming Applications." Polymers 11, no. 6 (June 12, 2019): 1042. http://dx.doi.org/10.3390/polym11061042.
Full textTa, Anh-Tuan, Nadia Labed, Frédéric Holweck, Alain Thionnet, and François Peyraut. "A new invariant-based method for building biomechanical behavior laws – Application to an anisotropic hyperelastic material with two fiber families." International Journal of Solids and Structures 50, no. 14-15 (July 2013): 2251–58. http://dx.doi.org/10.1016/j.ijsolstr.2013.03.033.
Full textFiorito, Marco, Daniel Fovargue, Adela Capilnasiu, Myrianthi Hadjicharalambous, David Nordsletten, Ralph Sinkus, and Jack Lee. "Impact of axisymmetric deformation on MR elastography of a nonlinear tissue-mimicking material and implications in peri-tumour stiffness quantification." PLOS ONE 16, no. 7 (July 9, 2021): e0253804. http://dx.doi.org/10.1371/journal.pone.0253804.
Full textJaramillo, Héctor E. "Evaluation of the Use of the Yeoh and Mooney-Rivlin Functions as Strain Energy Density Functions for the Ground Substance Material of the Annulus Fibrosus." Mathematical Problems in Engineering 2018 (November 7, 2018): 1–10. http://dx.doi.org/10.1155/2018/1570142.
Full textMa, Baoshun, Jia Lu, Robert E. Harbaugh, and Madhavan L. Raghavan. "Nonlinear Anisotropic Stress Analysis of Anatomically Realistic Cerebral Aneurysms." Journal of Biomechanical Engineering 129, no. 1 (July 21, 2006): 88–96. http://dx.doi.org/10.1115/1.2401187.
Full textKuchumov, Alex G., Aleksandr Khairulin, Marina Shmurak, Artem Porodikov, and Andrey Merzlyakov. "The Effects of the Mechanical Properties of Vascular Grafts and an Anisotropic Hyperelastic Aortic Model on Local Hemodynamics during Modified Blalock–Taussig Shunt Operation, Assessed Using FSI Simulation." Materials 15, no. 8 (April 7, 2022): 2719. http://dx.doi.org/10.3390/ma15082719.
Full textComunale, Giulia, Luigi Di Micco, Daniela Paola Boso, Francesca Maria Susin, and Paolo Peruzzo. "Numerical Models Can Assist Choice of an Aortic Phantom for In Vitro Testing." Bioengineering 8, no. 8 (July 21, 2021): 101. http://dx.doi.org/10.3390/bioengineering8080101.
Full textKroon, M. "An Efficient Method for Material Characterisation of Hyperelastic Anisotropic Inhomogeneous Membranes Based on Inverse Finite-Element Analysis and an Element Partition Strategy." Quarterly Journal of Mechanics and Applied Mathematics 63, no. 2 (April 18, 2010): 201–25. http://dx.doi.org/10.1093/qjmam/hbq004.
Full textNilsson, K. F., and B. Stora˚kers. "On Interface Crack Growth in Composite Plates." Journal of Applied Mechanics 59, no. 3 (September 1, 1992): 530–38. http://dx.doi.org/10.1115/1.2893756.
Full text