Academic literature on the topic 'Hyperbolic Riemann surfaces'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hyperbolic Riemann surfaces.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hyperbolic Riemann surfaces"
Aulaskari, Rauno, and Huaihui Chen. "On Classes for Hyperbolic Riemann Surfaces." Canadian Mathematical Bulletin 59, no. 01 (March 2016): 13–29. http://dx.doi.org/10.4153/cmb-2015-033-8.
Full textJorgenson, Jay, and Rolf Lundelius. "hyperbolic Riemann surfaces of finite volume." Duke Mathematical Journal 80, no. 3 (December 1995): 785–819. http://dx.doi.org/10.1215/s0012-7094-95-08027-2.
Full textHu, Zhi, and Runhong Zong. "Hyperbolic Superspaces and Super-Riemann Surfaces." Communications in Mathematical Physics 378, no. 2 (July 16, 2020): 891–915. http://dx.doi.org/10.1007/s00220-020-03801-5.
Full textJi, Lizhen. "Spectral degeneration of hyperbolic Riemann surfaces." Journal of Differential Geometry 38, no. 2 (1993): 263–313. http://dx.doi.org/10.4310/jdg/1214454296.
Full textHaas, Andrew. "Diophantine approximation on hyperbolic Riemann surfaces." Acta Mathematica 156 (1986): 33–82. http://dx.doi.org/10.1007/bf02399200.
Full textKong, De-Xing, Kefeng Liu, and De-Liang Xu. "The Hyperbolic Geometric Flow on Riemann Surfaces." Communications in Partial Differential Equations 34, no. 6 (May 14, 2009): 553–80. http://dx.doi.org/10.1080/03605300902768933.
Full textParlier, Hugo. "The homology systole of hyperbolic Riemann surfaces." Geometriae Dedicata 157, no. 1 (May 8, 2011): 331–38. http://dx.doi.org/10.1007/s10711-011-9613-0.
Full textKeen, Linda. "Hyperbolic Geometry and Spaces of Riemann Surfaces." Mathematical Intelligencer 16, no. 3 (June 1994): 11–19. http://dx.doi.org/10.1007/bf03024351.
Full textYanagishita, Masahiro. "Completeness of 𝑝-Weil-Petersson distance." Conformal Geometry and Dynamics of the American Mathematical Society 26, no. 3 (May 10, 2022): 34–45. http://dx.doi.org/10.1090/ecgd/369.
Full textBaik, Hyungryul, Farbod Shokrieh, and Chenxi Wu. "Limits of canonical forms on towers of Riemann surfaces." Journal für die reine und angewandte Mathematik (Crelles Journal) 2020, no. 764 (July 1, 2020): 287–304. http://dx.doi.org/10.1515/crelle-2019-0007.
Full textDissertations / Theses on the topic "Hyperbolic Riemann surfaces"
Aryasomayajula, Naga Venkata Anilatmaja. "Bounds for Green's functions on hyperbolic Riemann surfaces of finite volume." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16828.
Full textIn 2006, in a paper in Compositio titled "Bounds on canonical Green''s functions", J. Jorgenson and J. Kramer have derived optimal bounds for the hyperbolic and canonical Green''s functions defined on a compact hyperbolic Riemann surface. These estimates were derived in terms of invariants coming from hyperbolic geometry of the Riemann surface. As an application, they deduced bounds for the canonical Green''s functions through covers and for families of modular curves. In this thesis, we extend their methods to noncompact hyperbolic Riemann surfaces and derive similar bounds for the hyperbolic and canonical Green''s functions defined on a noncompact hyperbolic Riemann surface.
Cook, Joseph. "Properties of eigenvalues on Riemann surfaces with large symmetry groups." Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/36294.
Full textGhazouani, Selim. "Structures affines complexes sur les surfaces de Riemann." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE022/document.
Full textThis thesis deals with several aspects of branched, complex affine structures on Riemann surfaces.In a first chapter, we study an algebraic invariant of these structures called holonomy, which is a representation of the fundamental group of the underlying surface into the affine group. We prove a theorem characterising such representations that arise as the holonomy of an affine structure.In a second part, we study certain moduli spaces of affine tori which happen to have an additional complex hyperbolic structure. We analyse the geometry of this structures in terms of degenerations of the underlying affine tori.Finally, we narrow our interest to a subclass of affine structures each element of which inducing a family of foliations on the underlying topological surface. We link these foliations to 1-dimensional dynamical systems called affine interval exchange transformations and study a particular case in details
Nualart, Riera Joan. "On the hyperbolic uniformization of Shimura curves with an Atkin-Lehner quotient of genus 0." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/396134.
Full textL’objectiu principal d’aquesta tesi és contribuir a la uniformització hiperbòlica explícita de les corbes de Shimura. Ens restringim a les corbes associades a ordres d’Eichler dins d’àlgebres de quaternions racionals tals que el seu quocient pel grup d’involucions d’Atkin-Lehner és de gènere 0. Aquest cas,tot I que presenta nombroses diferències amb el cas modular clàssic, també hi té certes similituds. Utilitzem aquest fet per a discutir una aproximació al problema de l’obtenció d’uniformitzacions hiperbòliques explícites d’aquestes corbes i d’alguns recobriments, així com també algunes aplicacions, que il·lustrem amb abundants exemples. Per a entendre millor el problema, començarem introduint breument el seu rerefons històric. Després explicarem en detall les nostres contribucions i el contingut de la memòria.
Aryasomayajula, Naga Venkata Anilatmaja [Verfasser], Jürg [Akademischer Betreuer] Kramer, Robin de [Akademischer Betreuer] Jong, and Jay [Akademischer Betreuer] Jorgenson. "Bounds for Green's functions on hyperbolic Riemann surfaces of finite volume / Naga Venkata Anilatmaja Aryasomayajula. Gutachter: Jürg Kramer ; Robin de Jong ; Jay Jorgenson." Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://d-nb.info/1043593225/34.
Full textAlves, Alessandro Ferreira. "Análise dos emparelhamentos de arestas de polígonos hiperbólicos para a construção de constelações de sinais geometricamente uniformes." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261080.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-19T09:31:01Z (GMT). No. of bitstreams: 1 Alves_AlessandroFerreira_D.pdf: 1080224 bytes, checksum: 0748952c3176e9548151bec7e6d9c71d (MD5) Previous issue date: 2011
Resumo: Para projetarmos um sistema de comunicação digital em espaços hiperbólicos é necessário estabelecer um procedimento sistemático de construção de reticulados como elemento base para a construção de constelações de sinais. De outra forma, em codificação de canal é de fundamental importância a caracterização das estruturas algébrica e geométrica associadas a canais discretos sem memória. Neste trabalho, apresentamos a caracterização geométrica de superfícies a partir dos possíveis emparelhamentos das arestas do polígono fundamental hiperbólico com 3 ? n ? 8 lados associado 'a superfície. Esse tratamento geométrico apresenta propriedades importantes na determinação dos reticulados hiperbólicos a serem utilizados no processo de construção de constelações de sinais, a partir de grupos fuchsianos aritméticos e da superfície de Riemann associada. Além disso, apresentamos como exemplo o desenvolvimento algébrico para a determinação dos geradores do grupo fuchsiano 'gama'8 associado ao polígono hiperbólico 'P IND. 8'
Abstract: In order to design a digital communication system in hyperbolic spaces is necessary to establish a systematic procedure of constructing lattices as the basic element for the construction of the signal constellations. On the other hand, in channel coding is of fundamental importance to characterize the geometric and algebraic structures associated with discrete memoryless channels. In this work, we present a geometric characterization of surfaces from the edges of the possible pairings of fundamental hyperbolic polygon with 3 ? n ? 8 sides associated with the surface. This treatment has geometric properties important in determining the hyperbolic lattices to be used in the construction of sets of signals derived from arithmetic Fuchsian groups and the associated Riemann surface
Doutorado
Telecomunicações e Telemática
Doutor em Engenharia Elétrica
Finski, Siarhei. "On some problems of holomorphic analytic torsion." Thesis, Sorbonne Paris Cité, 2019. https://theses.md.univ-paris-diderot.fr/FINSKI_Siarhei_va.pdf.
Full textIn the first context, we study the asymptotics of the analytic torsion, when a Hermitian holomorphic vector bundle is twisted by an increasing power of a positive line bundle. In the second context, we generalize the theory of analytic torsion for surfaces with hyperbolic cusps. Motivated by singularities appearing in complete metrics of constant scalar curvature -1 on stable Riemann surfaces, we suppose that the metric on the surface is smooth outside a finite number points in the neighborhood of which it can to have singularities like Poincaré metric has on a punctured disc. We fix a Hermitian holomorphic vector bundle which has at worst logarithmic singularities in the neighborhood of the marked points. For these data, by renormalizing the trace of the heat operator, we construct the analytic torsion and study its properties. Then we study the properties of the analytic torsion in family setting: we prove the curvature theorem, we study the behavior of the analytic torsion when the cusps are created by degeneration and we give some applications to the moduli spaces of pointed curves
Oliveira, Júnior João de Deus. "Construção de superfícies utilizando o Teorema de Poincaré." Universidade Federal de Viçosa, 2010. http://locus.ufv.br/handle/123456789/4901.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
This study deals with the surface of the compact quotient M2=G where the surface M2 is either the Euclidean plane or the plane spherical or the hyperbolic plane, G is a group of isometries of their surfaces, and this group is generated by matching of edges of polygons. The Poincaré theorem that provides a method of finding the group of isometries G the functions that the pair of edges of the polygons involved. By using this theorem we construct two new pairings of generalized edges (Chapter 4) associated with the tessellations {12η 8,4} e {12μ 12,4}, respectively. These tessellations provide packing of spheres whose packing density is very close to the maximum 3/π. Such pairings are the starting point for finding codes with optimal transmission rates for Multiple-Input Multiple-Output (MIMO).
Este estudo aborda a construção de superfícies compactas pelo quociente M2/G onde a superfície M2 ou é o plano euclidiano, ou é o plano esférico, ou é o plano hiperbólico, G é um grupo de isometrias das respectivas superfícies e esse grupo é gerado pelos emparelhamentos de arestas dos polígonos. O Teorema de Poincaré fornece um método de encontrar o grupo de isometrias G que consiste das funções de emparelhamento de arestas dos polígonos associados. Mediante o uso deste teorema nós construímos dois novos emparelhamentos de arestas generalizados (Capítulo 4), associados as tesselações {12η 8,4} e {12μ 12,4}, respectivamente. Estas tesselações fornecem empacotamento de esferas cuja densidade de empacotamento é bem próxima do valor máximo 3/π. Tais emparelhamentos são o ponto de partida para a busca de códigos com ótimas taxas de transmissão para canais de múltiplas entradas e múltiplas e saídas (MIMO).
Larsson, David. "Algorithmic Construction of Fundamental Polygons for Certain Fuchsian Groups." Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119916.
Full textAigon, Aline. "Transformations hyperboliques et courbes algébriques en genre 2 et 3." Montpellier 2, 2001. http://www.theses.fr/2001MON20129.
Full textBooks on the topic "Hyperbolic Riemann surfaces"
Mochizuki, Shinichi. Conformal and quasiconformal categorical representation of hyperbolic Riemann surfaces. Kyoto, Japan: Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2004.
Find full textRiemann surfaces by way of complex analytic geometry. Providence, R.I: American Mathematical Society, 2011.
Find full textMostly surfaces. Providence, R.I: American Mathematical Society, 2011.
Find full text1941-, Hag Kari, and Broch Ole Jacob, eds. The ubiquitous quasidisk. Providence, Rhode Island: American Mathematical Society, 2012.
Find full textIbragimov, Zair. Topics in several complex variables: First USA-Uzbekistan Conference on Analysis and Mathematical Physics, May 20-23, 2014, California State University, Fullerton, California. Providence, Rhode Island: American Mathematical Society, 2016.
Find full textAbate, Marco. Holomorphic Dynamics on Hyperbolic Riemann Surfaces. de Gruyter GmbH, Walter, 2022.
Find full textAbate, Marco. Holomorphic Dynamics on Hyperbolic Riemann Surfaces. de Gruyter GmbH, Walter, 2022.
Find full textAbate, Marco. Holomorphic Dynamics on Hyperbolic Riemann Surfaces. de Gruyter GmbH, Walter, 2022.
Find full textBorthwick, David. Spectral Theory of Infinite-Area Hyperbolic Surfaces. Birkhauser Verlag, 2016.
Find full textBorthwick, David. Spectral Theory of Infinite-Area Hyperbolic Surfaces. Birkhäuser, 2016.
Find full textBook chapters on the topic "Hyperbolic Riemann surfaces"
Buser, Peter. "Hyperbolic Structures." In Geometry and Spectra of Compact Riemann Surfaces, 1–30. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4992-0_1.
Full textKapovich, Michael. "Teichmüller Theory of Riemann Surfaces." In Hyperbolic Manifolds and Discrete Groups, 119–33. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4913-5_5.
Full textKeen, Linda. "Hyperbolic Geometry and Spaces of Riemann Surfaces." In Mathematical Conversations, 393–403. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0195-0_35.
Full textMednykh, Aleksandr D. "Hyperbolic Riemann Surfaces with the Trivial Group of Automorphisms." In Deformations of Mathematical Structures, 115–25. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2643-1_10.
Full textFujimori, Shoichi, Yu Kawakami, Masatoshi Kokubu, Wayne Rossman, Masaaki Umehara, and Kotaro Yamada. "Hyperbolic Metrics on Riemann Surfaces and Space-Like CMC-1 Surfaces in de Sitter 3-Space." In Recent Trends in Lorentzian Geometry, 1–47. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4897-6_1.
Full textWolpert, Scott A. "RIEMANN SURFACES, MODULI AND HYPERBOLIC GEOMETRY." In Lectures on Riemann Surfaces, 48–98. WORLD SCIENTIFIC, 1989. http://dx.doi.org/10.1142/9789814503365_0002.
Full textDinh, Tien-Cuong, Viet-Anh Nguyen, and Nessim Sibony. "Entropy for hyperbolic Riemann surface laminations II." In Frontiers in Complex Dynamics, edited by Araceli Bonifant, Mikhail Lyubich, and Scott Sutherland. Princeton University Press, 2014. http://dx.doi.org/10.23943/princeton/9780691159294.003.0021.
Full text"5 Continuous dynamics on Riemann surfaces." In Holomorphic Dynamics on Hyperbolic Riemann Surfaces, 294–324. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110601978-005.
Full text"3 Discrete dynamics on Riemann surfaces." In Holomorphic Dynamics on Hyperbolic Riemann Surfaces, 158–211. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110601978-003.
Full text"1 The Schwarz lemma and Riemann surfaces." In Holomorphic Dynamics on Hyperbolic Riemann Surfaces, 1–95. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110601978-001.
Full text