Academic literature on the topic 'Hyperbolic Riemann surfaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hyperbolic Riemann surfaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hyperbolic Riemann surfaces"

1

Aulaskari, Rauno, and Huaihui Chen. "On Classes for Hyperbolic Riemann Surfaces." Canadian Mathematical Bulletin 59, no. 01 (March 2016): 13–29. http://dx.doi.org/10.4153/cmb-2015-033-8.

Full text
Abstract:
AbstractThe Qpspaces of holomorphic functions on the disk, hyperbolic Riemann surfaces or complex unit ball have been studied deeply. Meanwhile, there are a lot of papers devoted to theclasses of meromorphic functions on the disk or hyperbolic Riemann surfaces. In this paper, we prove the nesting property (inclusion relations) ofclasses on hyperbolic Riemann surfaces. The same property for Qp spaces was also established systematically and precisely in earlier work by the authors of this paper.
APA, Harvard, Vancouver, ISO, and other styles
2

Jorgenson, Jay, and Rolf Lundelius. "hyperbolic Riemann surfaces of finite volume." Duke Mathematical Journal 80, no. 3 (December 1995): 785–819. http://dx.doi.org/10.1215/s0012-7094-95-08027-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hu, Zhi, and Runhong Zong. "Hyperbolic Superspaces and Super-Riemann Surfaces." Communications in Mathematical Physics 378, no. 2 (July 16, 2020): 891–915. http://dx.doi.org/10.1007/s00220-020-03801-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ji, Lizhen. "Spectral degeneration of hyperbolic Riemann surfaces." Journal of Differential Geometry 38, no. 2 (1993): 263–313. http://dx.doi.org/10.4310/jdg/1214454296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Haas, Andrew. "Diophantine approximation on hyperbolic Riemann surfaces." Acta Mathematica 156 (1986): 33–82. http://dx.doi.org/10.1007/bf02399200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kong, De-Xing, Kefeng Liu, and De-Liang Xu. "The Hyperbolic Geometric Flow on Riemann Surfaces." Communications in Partial Differential Equations 34, no. 6 (May 14, 2009): 553–80. http://dx.doi.org/10.1080/03605300902768933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Parlier, Hugo. "The homology systole of hyperbolic Riemann surfaces." Geometriae Dedicata 157, no. 1 (May 8, 2011): 331–38. http://dx.doi.org/10.1007/s10711-011-9613-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Keen, Linda. "Hyperbolic Geometry and Spaces of Riemann Surfaces." Mathematical Intelligencer 16, no. 3 (June 1994): 11–19. http://dx.doi.org/10.1007/bf03024351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yanagishita, Masahiro. "Completeness of 𝑝-Weil-Petersson distance." Conformal Geometry and Dynamics of the American Mathematical Society 26, no. 3 (May 10, 2022): 34–45. http://dx.doi.org/10.1090/ecgd/369.

Full text
Abstract:
Our goal of this paper is to research the completeness of the p p -Weil-Petersson distance, which is induced by the p p -Weil-Petersson metric on the p p -integrable Teichmüller space of hyperbolic Riemann surfaces. As a result, we see that the metric is incomplete for all the hyperbolic Riemann surfaces with Lehner’s condition except for the ones that are conformally equivalent to either the unit disk or the punctured unit disk. The proof is based on the one by Wolpert’s original paper, which is given in the case of compact Riemann surfaces.
APA, Harvard, Vancouver, ISO, and other styles
10

Baik, Hyungryul, Farbod Shokrieh, and Chenxi Wu. "Limits of canonical forms on towers of Riemann surfaces." Journal für die reine und angewandte Mathematik (Crelles Journal) 2020, no. 764 (July 1, 2020): 287–304. http://dx.doi.org/10.1515/crelle-2019-0007.

Full text
Abstract:
AbstractWe prove a generalized version of Kazhdan’s theorem for canonical forms on Riemann surfaces. In the classical version, one starts with an ascending sequence {\{S_{n}\rightarrow S\}} of finite Galois covers of a hyperbolic Riemann surface S, converging to the universal cover. The theorem states that the sequence of forms on S inherited from the canonical forms on {S_{n}}’s converges uniformly to (a multiple of) the hyperbolic form. We prove a generalized version of this theorem, where the universal cover is replaced with any infinite Galois cover. Along the way, we also prove a Gauss–Bonnet-type theorem in the context of arbitrary infinite Galois covers.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hyperbolic Riemann surfaces"

1

Aryasomayajula, Naga Venkata Anilatmaja. "Bounds for Green's functions on hyperbolic Riemann surfaces of finite volume." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16828.

Full text
Abstract:
Im Jahr 2006, in einem Papier in Compositio Titel "Bounds auf kanonische Green-Funktionen" J. Jorgenson und J. Kramer, haben optimale Schranken für den hyperbolischen und kanonischen Green-Funktionen auf einem kompakten hyperbolischen Riemannschen Fläche definiert abgeleitet. Diese Schätzungen wurden im Hinblick auf abgeleitete Invarianten aus hyperbolischen Geometrie der Riemannschen Fläche. Als Anwendung abgeleitet sie Schranken für die kanonische Green-Funktionen durch Abdeckungen und für Familien von Modulkurven. In dieser Arbeit erweitern wir ihre Methoden nichtkompakten hyperbolischen Riemann Oberflächen und leiten ähnliche Schranken für den hyperbolischen und kanonischen Green-Funktionen auf einem nichtkompakten hyperbolischen Riemannschen Fläche definiert.
In 2006, in a paper in Compositio titled "Bounds on canonical Green''s functions", J. Jorgenson and J. Kramer have derived optimal bounds for the hyperbolic and canonical Green''s functions defined on a compact hyperbolic Riemann surface. These estimates were derived in terms of invariants coming from hyperbolic geometry of the Riemann surface. As an application, they deduced bounds for the canonical Green''s functions through covers and for families of modular curves. In this thesis, we extend their methods to noncompact hyperbolic Riemann surfaces and derive similar bounds for the hyperbolic and canonical Green''s functions defined on a noncompact hyperbolic Riemann surface.
APA, Harvard, Vancouver, ISO, and other styles
2

Cook, Joseph. "Properties of eigenvalues on Riemann surfaces with large symmetry groups." Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/36294.

Full text
Abstract:
On compact Riemann surfaces, the Laplacian $\Delta$ has a discrete, non-negative spectrum of eigenvalues $\{\lambda_{i}\}$ of finite multiplicity. The spectrum is intrinsically linked to the geometry of the surface. In this work, we consider surfaces of constant negative curvature with a large symmetry group. It is not possible to explicitly calculate the eigenvalues for surfaces in this class, so we combine group theoretic and analytical methods to derive results about the spectrum. In particular, we focus on the Bolza surface and the Klein quartic. These have the highest order symmetry groups among compact Riemann surfaces of genera 2 and 3 respectively. The full automorphism group of the Bolza surface is isomorphic to $\mathrm{GL}_{2}(\mathbb{Z}_{3})\rtimes\mathbb{Z}_{2}. We analyze the irreducible representations of this group and prove that the multiplicity of $\lambda_{1}$ is 3, building on the work of Jenni, and identify the irreducible representation that corresponds to this eigenspace. This proof relies on a certain conjecture, for which we give substantial numerical evidence and a hopeful method for proving. We go on to show that $\lambda_{2}$ has multiplicity 4.
APA, Harvard, Vancouver, ISO, and other styles
3

Ghazouani, Selim. "Structures affines complexes sur les surfaces de Riemann." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE022/document.

Full text
Abstract:
Cette thèse s'intéresse à des aspects divers des structures affines complexes branchées sur les surfaces de Riemann.Dans une première partie, nous étudions un invariant algébrique de ces structures appelé holonomie, qui est une représentation du groupe fondamental de la surface sous-jacente dans le groupe affine. Nous démontrons un théorème caractérisant les représentations se réalisant comme l'holonomie d'une structure affine.Nous nous intéressons ensuite à la géométrie de certains espaces de modules de telles structures qui viennent naturellement avec une structure hyperbolique complexe. Nous décrivons cette géométrie en terme de dégénérescences de structures affines.Enfin, nous regardons une sous-classe de structures affines dont chaque élément induit une famille de feuilletages sur la surface sous-jacente. Nous relions ces feuilletages à des systèmes dynamiques unidimensionnels appelés échanges d'intervalles affines et nous étudions un cas particulier en détails
This thesis deals with several aspects of branched, complex affine structures on Riemann surfaces.In a first chapter, we study an algebraic invariant of these structures called holonomy, which is a representation of the fundamental group of the underlying surface into the affine group. We prove a theorem characterising such representations that arise as the holonomy of an affine structure.In a second part, we study certain moduli spaces of affine tori which happen to have an additional complex hyperbolic structure. We analyse the geometry of this structures in terms of degenerations of the underlying affine tori.Finally, we narrow our interest to a subclass of affine structures each element of which inducing a family of foliations on the underlying topological surface. We link these foliations to 1-dimensional dynamical systems called affine interval exchange transformations and study a particular case in details
APA, Harvard, Vancouver, ISO, and other styles
4

Nualart, Riera Joan. "On the hyperbolic uniformization of Shimura curves with an Atkin-Lehner quotient of genus 0." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/396134.

Full text
Abstract:
The main goal of this thesis is to contribute to the explicit hyperbolic uniformization of Shimura curves. We will restrict to the case of curves attached to Eichler orders in rational quaternion algebras whose maximal Atkin-Lehner quotient has genus 0, which despite multiple differences bears some resemblance to the classical modular case. We will provide an approach to obtain an explicit uniformization of these curves and some of their covers, together with several applications. We will illustrate all the applications with plenty of examples.
L’objectiu principal d’aquesta tesi és contribuir a la uniformització hiperbòlica explícita de les corbes de Shimura. Ens restringim a les corbes associades a ordres d’Eichler dins d’àlgebres de quaternions racionals tals que el seu quocient pel grup d’involucions d’Atkin-Lehner és de gènere 0. Aquest cas,tot I que presenta nombroses diferències amb el cas modular clàssic, també hi té certes similituds. Utilitzem aquest fet per a discutir una aproximació al problema de l’obtenció d’uniformitzacions hiperbòliques explícites d’aquestes corbes i d’alguns recobriments, així com també algunes aplicacions, que il·lustrem amb abundants exemples. Per a entendre millor el problema, començarem introduint breument el seu rerefons històric. Després explicarem en detall les nostres contribucions i el contingut de la memòria.
APA, Harvard, Vancouver, ISO, and other styles
5

Aryasomayajula, Naga Venkata Anilatmaja [Verfasser], Jürg [Akademischer Betreuer] Kramer, Robin de [Akademischer Betreuer] Jong, and Jay [Akademischer Betreuer] Jorgenson. "Bounds for Green's functions on hyperbolic Riemann surfaces of finite volume / Naga Venkata Anilatmaja Aryasomayajula. Gutachter: Jürg Kramer ; Robin de Jong ; Jay Jorgenson." Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://d-nb.info/1043593225/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alves, Alessandro Ferreira. "Análise dos emparelhamentos de arestas de polígonos hiperbólicos para a construção de constelações de sinais geometricamente uniformes." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261080.

Full text
Abstract:
Orientador: Reginaldo Palazzo Junior
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-19T09:31:01Z (GMT). No. of bitstreams: 1 Alves_AlessandroFerreira_D.pdf: 1080224 bytes, checksum: 0748952c3176e9548151bec7e6d9c71d (MD5) Previous issue date: 2011
Resumo: Para projetarmos um sistema de comunicação digital em espaços hiperbólicos é necessário estabelecer um procedimento sistemático de construção de reticulados como elemento base para a construção de constelações de sinais. De outra forma, em codificação de canal é de fundamental importância a caracterização das estruturas algébrica e geométrica associadas a canais discretos sem memória. Neste trabalho, apresentamos a caracterização geométrica de superfícies a partir dos possíveis emparelhamentos das arestas do polígono fundamental hiperbólico com 3 ? n ? 8 lados associado 'a superfície. Esse tratamento geométrico apresenta propriedades importantes na determinação dos reticulados hiperbólicos a serem utilizados no processo de construção de constelações de sinais, a partir de grupos fuchsianos aritméticos e da superfície de Riemann associada. Além disso, apresentamos como exemplo o desenvolvimento algébrico para a determinação dos geradores do grupo fuchsiano 'gama'8 associado ao polígono hiperbólico 'P IND. 8'
Abstract: In order to design a digital communication system in hyperbolic spaces is necessary to establish a systematic procedure of constructing lattices as the basic element for the construction of the signal constellations. On the other hand, in channel coding is of fundamental importance to characterize the geometric and algebraic structures associated with discrete memoryless channels. In this work, we present a geometric characterization of surfaces from the edges of the possible pairings of fundamental hyperbolic polygon with 3 ? n ? 8 sides associated with the surface. This treatment has geometric properties important in determining the hyperbolic lattices to be used in the construction of sets of signals derived from arithmetic Fuchsian groups and the associated Riemann surface
Doutorado
Telecomunicações e Telemática
Doutor em Engenharia Elétrica
APA, Harvard, Vancouver, ISO, and other styles
7

Finski, Siarhei. "On some problems of holomorphic analytic torsion." Thesis, Sorbonne Paris Cité, 2019. https://theses.md.univ-paris-diderot.fr/FINSKI_Siarhei_va.pdf.

Full text
Abstract:
Le but de cette thèse est d'étudier la torsion analytique dans deux contextes différents. Dans le premier contexte, on étudie l'asymptotique de la torsion analytique, quand un fibré vectoriel holomorphe hermitien est tordué par une puissance croissant du fibré en droites positif. Dans le deuxième contexte, on généralise la théorie de la torsion analytique pour des surfaces de Riemann avec des pointes hyperboliques. Motivé par des singularités de la métrique complète de courbure scalaire constante -1 sur des surfaces de Riemann stables épointées, on demande que la métrique sur la surface de Riemann soit lisse seulement en dehors d'un nombre fini des points au voisinage auxquelles elle peut avoir des singularités comme la métrique de Poincaré sur un disque épointé. On fixe un fibré vectoriel holomorphe hermitien qui peut avoir au pire des singularités logarithmiques au voisinage des points marqués. Pour ces données, en renormalisant la trace de l'opérateur de la chaleur, on construit la torsion analytique et on étudie ces propriétés
In the first context, we study the asymptotics of the analytic torsion, when a Hermitian holomorphic vector bundle is twisted by an increasing power of a positive line bundle. In the second context, we generalize the theory of analytic torsion for surfaces with hyperbolic cusps. Motivated by singularities appearing in complete metrics of constant scalar curvature -1 on stable Riemann surfaces, we suppose that the metric on the surface is smooth outside a finite number points in the neighborhood of which it can to have singularities like Poincaré metric has on a punctured disc. We fix a Hermitian holomorphic vector bundle which has at worst logarithmic singularities in the neighborhood of the marked points. For these data, by renormalizing the trace of the heat operator, we construct the analytic torsion and study its properties. Then we study the properties of the analytic torsion in family setting: we prove the curvature theorem, we study the behavior of the analytic torsion when the cusps are created by degeneration and we give some applications to the moduli spaces of pointed curves
APA, Harvard, Vancouver, ISO, and other styles
8

Oliveira, Júnior João de Deus. "Construção de superfícies utilizando o Teorema de Poincaré." Universidade Federal de Viçosa, 2010. http://locus.ufv.br/handle/123456789/4901.

Full text
Abstract:
Made available in DSpace on 2015-03-26T13:45:31Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1613593 bytes, checksum: 9f102a91f9dec62a3656d30b4f7a490c (MD5) Previous issue date: 2010-02-24
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
This study deals with the surface of the compact quotient M2=G where the surface M2 is either the Euclidean plane or the plane spherical or the hyperbolic plane, G is a group of isometries of their surfaces, and this group is generated by matching of edges of polygons. The Poincaré theorem that provides a method of finding the group of isometries G the functions that the pair of edges of the polygons involved. By using this theorem we construct two new pairings of generalized edges (Chapter 4) associated with the tessellations {12η 8,4} e {12μ 12,4}, respectively. These tessellations provide packing of spheres whose packing density is very close to the maximum 3/π. Such pairings are the starting point for finding codes with optimal transmission rates for Multiple-Input Multiple-Output (MIMO).
Este estudo aborda a construção de superfícies compactas pelo quociente M2/G onde a superfície M2 ou é o plano euclidiano, ou é o plano esférico, ou é o plano hiperbólico, G é um grupo de isometrias das respectivas superfícies e esse grupo é gerado pelos emparelhamentos de arestas dos polígonos. O Teorema de Poincaré fornece um método de encontrar o grupo de isometrias G que consiste das funções de emparelhamento de arestas dos polígonos associados. Mediante o uso deste teorema nós construímos dois novos emparelhamentos de arestas generalizados (Capítulo 4), associados as tesselações {12η 8,4} e {12μ 12,4}, respectivamente. Estas tesselações fornecem empacotamento de esferas cuja densidade de empacotamento é bem próxima do valor máximo 3/π. Tais emparelhamentos são o ponto de partida para a busca de códigos com ótimas taxas de transmissão para canais de múltiplas entradas e múltiplas e saídas (MIMO).
APA, Harvard, Vancouver, ISO, and other styles
9

Larsson, David. "Algorithmic Construction of Fundamental Polygons for Certain Fuchsian Groups." Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119916.

Full text
Abstract:
The work of mathematical giants, such as Lobachevsky, Gauss, Riemann, Klein and Poincaré, to name a few, lies at the foundation of the study of the highly structured Riemann surfaces, which allow definition of holomorphic maps, corresponding to analytic maps in the theory of complex analysis. A topological result of Poincaré states that every path-connected Riemann surface can be realised by a construction of identifying congruent points in the complex plane, the Riemann sphere or the hyperbolic plane; just three simply connected surfaces that cover the underlying Riemann surface. This requires the discontinuous action of a discrete subgroup of the automorphisms of the corresponding space. In the hyperbolic plane, which is the richest source for Riemann surfaces, these groups are called Fuchsian, and there are several ways to study the action of such groups geometrically by computing fundamental domains. What is accomplished in this thesis is a combination of the methods found by Reidemeister & Schreier, Singerman and Voight, and thus provides a unified way of finding Dirichlet domains for subgroups of cofinite groups with a given index. Several examples are considered in-depth.
APA, Harvard, Vancouver, ISO, and other styles
10

Aigon, Aline. "Transformations hyperboliques et courbes algébriques en genre 2 et 3." Montpellier 2, 2001. http://www.theses.fr/2001MON20129.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Hyperbolic Riemann surfaces"

1

Mochizuki, Shinichi. Conformal and quasiconformal categorical representation of hyperbolic Riemann surfaces. Kyoto, Japan: Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Riemann surfaces by way of complex analytic geometry. Providence, R.I: American Mathematical Society, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mostly surfaces. Providence, R.I: American Mathematical Society, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1941-, Hag Kari, and Broch Ole Jacob, eds. The ubiquitous quasidisk. Providence, Rhode Island: American Mathematical Society, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ibragimov, Zair. Topics in several complex variables: First USA-Uzbekistan Conference on Analysis and Mathematical Physics, May 20-23, 2014, California State University, Fullerton, California. Providence, Rhode Island: American Mathematical Society, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abate, Marco. Holomorphic Dynamics on Hyperbolic Riemann Surfaces. de Gruyter GmbH, Walter, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abate, Marco. Holomorphic Dynamics on Hyperbolic Riemann Surfaces. de Gruyter GmbH, Walter, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Abate, Marco. Holomorphic Dynamics on Hyperbolic Riemann Surfaces. de Gruyter GmbH, Walter, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Borthwick, David. Spectral Theory of Infinite-Area Hyperbolic Surfaces. Birkhauser Verlag, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Borthwick, David. Spectral Theory of Infinite-Area Hyperbolic Surfaces. Birkhäuser, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hyperbolic Riemann surfaces"

1

Buser, Peter. "Hyperbolic Structures." In Geometry and Spectra of Compact Riemann Surfaces, 1–30. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4992-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kapovich, Michael. "Teichmüller Theory of Riemann Surfaces." In Hyperbolic Manifolds and Discrete Groups, 119–33. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4913-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Keen, Linda. "Hyperbolic Geometry and Spaces of Riemann Surfaces." In Mathematical Conversations, 393–403. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0195-0_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mednykh, Aleksandr D. "Hyperbolic Riemann Surfaces with the Trivial Group of Automorphisms." In Deformations of Mathematical Structures, 115–25. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2643-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fujimori, Shoichi, Yu Kawakami, Masatoshi Kokubu, Wayne Rossman, Masaaki Umehara, and Kotaro Yamada. "Hyperbolic Metrics on Riemann Surfaces and Space-Like CMC-1 Surfaces in de Sitter 3-Space." In Recent Trends in Lorentzian Geometry, 1–47. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4897-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wolpert, Scott A. "RIEMANN SURFACES, MODULI AND HYPERBOLIC GEOMETRY." In Lectures on Riemann Surfaces, 48–98. WORLD SCIENTIFIC, 1989. http://dx.doi.org/10.1142/9789814503365_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dinh, Tien-Cuong, Viet-Anh Nguyen, and Nessim Sibony. "Entropy for hyperbolic Riemann surface laminations II." In Frontiers in Complex Dynamics, edited by Araceli Bonifant, Mikhail Lyubich, and Scott Sutherland. Princeton University Press, 2014. http://dx.doi.org/10.23943/princeton/9780691159294.003.0021.

Full text
Abstract:
This chapter studies Riemann surface foliations with tame singular points. It shows that the hyperbolic entropy of a Brody hyperbolic foliation by Riemann surfaces with linearizable isolated singularities on a compact complex surface is finite. The chapter then proves the finiteness of the entropy in the local setting near a singular point in any dimension, using a division of a neighborhood of a singular point into adapted cells. Next, the chapter estimates the modulus of continuity for the Poincaré metric along the leaves of the foliation, using notion of conformally (R,δ‎)-close maps. The estimate holds for foliations on manifolds of higher dimension.
APA, Harvard, Vancouver, ISO, and other styles
8

"5 Continuous dynamics on Riemann surfaces." In Holomorphic Dynamics on Hyperbolic Riemann Surfaces, 294–324. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110601978-005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"3 Discrete dynamics on Riemann surfaces." In Holomorphic Dynamics on Hyperbolic Riemann Surfaces, 158–211. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110601978-003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"1 The Schwarz lemma and Riemann surfaces." In Holomorphic Dynamics on Hyperbolic Riemann Surfaces, 1–95. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110601978-001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography