Academic literature on the topic 'Hyperbolic Riemann surfaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hyperbolic Riemann surfaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hyperbolic Riemann surfaces"

1

Aulaskari, Rauno, and Huaihui Chen. "On Classes for Hyperbolic Riemann Surfaces." Canadian Mathematical Bulletin 59, no. 01 (2016): 13–29. http://dx.doi.org/10.4153/cmb-2015-033-8.

Full text
Abstract:
AbstractThe Qpspaces of holomorphic functions on the disk, hyperbolic Riemann surfaces or complex unit ball have been studied deeply. Meanwhile, there are a lot of papers devoted to theclasses of meromorphic functions on the disk or hyperbolic Riemann surfaces. In this paper, we prove the nesting property (inclusion relations) ofclasses on hyperbolic Riemann surfaces. The same property for Qp spaces was also established systematically and precisely in earlier work by the authors of this paper.
APA, Harvard, Vancouver, ISO, and other styles
2

Jorgenson, Jay, and Rolf Lundelius. "hyperbolic Riemann surfaces of finite volume." Duke Mathematical Journal 80, no. 3 (1995): 785–819. http://dx.doi.org/10.1215/s0012-7094-95-08027-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hu, Zhi, and Runhong Zong. "Hyperbolic Superspaces and Super-Riemann Surfaces." Communications in Mathematical Physics 378, no. 2 (2020): 891–915. http://dx.doi.org/10.1007/s00220-020-03801-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ji, Lizhen. "Spectral degeneration of hyperbolic Riemann surfaces." Journal of Differential Geometry 38, no. 2 (1993): 263–313. http://dx.doi.org/10.4310/jdg/1214454296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Haas, Andrew. "Diophantine approximation on hyperbolic Riemann surfaces." Acta Mathematica 156 (1986): 33–82. http://dx.doi.org/10.1007/bf02399200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kong, De-Xing, Kefeng Liu, and De-Liang Xu. "The Hyperbolic Geometric Flow on Riemann Surfaces." Communications in Partial Differential Equations 34, no. 6 (2009): 553–80. http://dx.doi.org/10.1080/03605300902768933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Parlier, Hugo. "The homology systole of hyperbolic Riemann surfaces." Geometriae Dedicata 157, no. 1 (2011): 331–38. http://dx.doi.org/10.1007/s10711-011-9613-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Keen, Linda. "Hyperbolic Geometry and Spaces of Riemann Surfaces." Mathematical Intelligencer 16, no. 3 (1994): 11–19. http://dx.doi.org/10.1007/bf03024351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yanagishita, Masahiro. "Completeness of 𝑝-Weil-Petersson distance". Conformal Geometry and Dynamics of the American Mathematical Society 26, № 3 (2022): 34–45. http://dx.doi.org/10.1090/ecgd/369.

Full text
Abstract:
Our goal of this paper is to research the completeness of the p p -Weil-Petersson distance, which is induced by the p p -Weil-Petersson metric on the p p -integrable Teichmüller space of hyperbolic Riemann surfaces. As a result, we see that the metric is incomplete for all the hyperbolic Riemann surfaces with Lehner’s condition except for the ones that are conformally equivalent to either the unit disk or the punctured unit disk. The proof is based on the one by Wolpert’s original paper, which is given in the case of compact Riemann surfaces.
APA, Harvard, Vancouver, ISO, and other styles
10

Baik, Hyungryul, Farbod Shokrieh, and Chenxi Wu. "Limits of canonical forms on towers of Riemann surfaces." Journal für die reine und angewandte Mathematik (Crelles Journal) 2020, no. 764 (2020): 287–304. http://dx.doi.org/10.1515/crelle-2019-0007.

Full text
Abstract:
AbstractWe prove a generalized version of Kazhdan’s theorem for canonical forms on Riemann surfaces. In the classical version, one starts with an ascending sequence {\{S_{n}\rightarrow S\}} of finite Galois covers of a hyperbolic Riemann surface S, converging to the universal cover. The theorem states that the sequence of forms on S inherited from the canonical forms on {S_{n}}’s converges uniformly to (a multiple of) the hyperbolic form. We prove a generalized version of this theorem, where the universal cover is replaced with any infinite Galois cover. Along the way, we also prove a Gauss–Bo
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hyperbolic Riemann surfaces"

1

Aryasomayajula, Naga Venkata Anilatmaja. "Bounds for Green's functions on hyperbolic Riemann surfaces of finite volume." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://dx.doi.org/10.18452/16828.

Full text
Abstract:
Im Jahr 2006, in einem Papier in Compositio Titel "Bounds auf kanonische Green-Funktionen" J. Jorgenson und J. Kramer, haben optimale Schranken für den hyperbolischen und kanonischen Green-Funktionen auf einem kompakten hyperbolischen Riemannschen Fläche definiert abgeleitet. Diese Schätzungen wurden im Hinblick auf abgeleitete Invarianten aus hyperbolischen Geometrie der Riemannschen Fläche. Als Anwendung abgeleitet sie Schranken für die kanonische Green-Funktionen durch Abdeckungen und für Familien von Modulkurven. In dieser Arbeit erweitern wir ihre Methoden nichtkompakten hyperbolischen
APA, Harvard, Vancouver, ISO, and other styles
2

Cook, Joseph. "Properties of eigenvalues on Riemann surfaces with large symmetry groups." Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/36294.

Full text
Abstract:
On compact Riemann surfaces, the Laplacian $\Delta$ has a discrete, non-negative spectrum of eigenvalues $\{\lambda_{i}\}$ of finite multiplicity. The spectrum is intrinsically linked to the geometry of the surface. In this work, we consider surfaces of constant negative curvature with a large symmetry group. It is not possible to explicitly calculate the eigenvalues for surfaces in this class, so we combine group theoretic and analytical methods to derive results about the spectrum. In particular, we focus on the Bolza surface and the Klein quartic. These have the highest order symmetry group
APA, Harvard, Vancouver, ISO, and other styles
3

Ghazouani, Selim. "Structures affines complexes sur les surfaces de Riemann." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE022/document.

Full text
Abstract:
Cette thèse s'intéresse à des aspects divers des structures affines complexes branchées sur les surfaces de Riemann.Dans une première partie, nous étudions un invariant algébrique de ces structures appelé holonomie, qui est une représentation du groupe fondamental de la surface sous-jacente dans le groupe affine. Nous démontrons un théorème caractérisant les représentations se réalisant comme l'holonomie d'une structure affine.Nous nous intéressons ensuite à la géométrie de certains espaces de modules de telles structures qui viennent naturellement avec une structure hyperbolique complexe. Nou
APA, Harvard, Vancouver, ISO, and other styles
4

Nualart, Riera Joan. "On the hyperbolic uniformization of Shimura curves with an Atkin-Lehner quotient of genus 0." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/396134.

Full text
Abstract:
The main goal of this thesis is to contribute to the explicit hyperbolic uniformization of Shimura curves. We will restrict to the case of curves attached to Eichler orders in rational quaternion algebras whose maximal Atkin-Lehner quotient has genus 0, which despite multiple differences bears some resemblance to the classical modular case. We will provide an approach to obtain an explicit uniformization of these curves and some of their covers, together with several applications. We will illustrate all the applications with plenty of examples.<br>L’objectiu principal d’aquesta tesi és contrib
APA, Harvard, Vancouver, ISO, and other styles
5

Aryasomayajula, Naga Venkata Anilatmaja [Verfasser], Jürg [Akademischer Betreuer] Kramer, Robin de [Akademischer Betreuer] Jong, and Jay [Akademischer Betreuer] Jorgenson. "Bounds for Green's functions on hyperbolic Riemann surfaces of finite volume / Naga Venkata Anilatmaja Aryasomayajula. Gutachter: Jürg Kramer ; Robin de Jong ; Jay Jorgenson." Berlin : Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2013. http://d-nb.info/1043593225/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alves, Alessandro Ferreira. "Análise dos emparelhamentos de arestas de polígonos hiperbólicos para a construção de constelações de sinais geometricamente uniformes." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/261080.

Full text
Abstract:
Orientador: Reginaldo Palazzo Junior<br>Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação<br>Made available in DSpace on 2018-08-19T09:31:01Z (GMT). No. of bitstreams: 1 Alves_AlessandroFerreira_D.pdf: 1080224 bytes, checksum: 0748952c3176e9548151bec7e6d9c71d (MD5) Previous issue date: 2011<br>Resumo: Para projetarmos um sistema de comunicação digital em espaços hiperbólicos é necessário estabelecer um procedimento sistemático de construção de reticulados como elemento base para a construção de constelações de sinais. De outra forma, em co
APA, Harvard, Vancouver, ISO, and other styles
7

Finski, Siarhei. "On some problems of holomorphic analytic torsion." Thesis, Sorbonne Paris Cité, 2019. https://theses.md.univ-paris-diderot.fr/FINSKI_Siarhei_va.pdf.

Full text
Abstract:
Le but de cette thèse est d'étudier la torsion analytique dans deux contextes différents. Dans le premier contexte, on étudie l'asymptotique de la torsion analytique, quand un fibré vectoriel holomorphe hermitien est tordué par une puissance croissant du fibré en droites positif. Dans le deuxième contexte, on généralise la théorie de la torsion analytique pour des surfaces de Riemann avec des pointes hyperboliques. Motivé par des singularités de la métrique complète de courbure scalaire constante -1 sur des surfaces de Riemann stables épointées, on demande que la métrique sur la surface de Rie
APA, Harvard, Vancouver, ISO, and other styles
8

Oliveira, Júnior João de Deus. "Construção de superfícies utilizando o Teorema de Poincaré." Universidade Federal de Viçosa, 2010. http://locus.ufv.br/handle/123456789/4901.

Full text
Abstract:
Made available in DSpace on 2015-03-26T13:45:31Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1613593 bytes, checksum: 9f102a91f9dec62a3656d30b4f7a490c (MD5) Previous issue date: 2010-02-24<br>Coordenação de Aperfeiçoamento de Pessoal de Nível Superior<br>This study deals with the surface of the compact quotient M2=G where the surface M2 is either the Euclidean plane or the plane spherical or the hyperbolic plane, G is a group of isometries of their surfaces, and this group is generated by matching of edges of polygons. The Poincaré theorem that provides a method of finding the group of i
APA, Harvard, Vancouver, ISO, and other styles
9

Larsson, David. "Algorithmic Construction of Fundamental Polygons for Certain Fuchsian Groups." Thesis, Linköpings universitet, Matematik och tillämpad matematik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-119916.

Full text
Abstract:
The work of mathematical giants, such as Lobachevsky, Gauss, Riemann, Klein and Poincaré, to name a few, lies at the foundation of the study of the highly structured Riemann surfaces, which allow definition of holomorphic maps, corresponding to analytic maps in the theory of complex analysis. A topological result of Poincaré states that every path-connected Riemann surface can be realised by a construction of identifying congruent points in the complex plane, the Riemann sphere or the hyperbolic plane; just three simply connected surfaces that cover the underlying Riemann surface. This require
APA, Harvard, Vancouver, ISO, and other styles
10

Aigon, Aline. "Transformations hyperboliques et courbes algébriques en genre 2 et 3." Montpellier 2, 2001. http://www.theses.fr/2001MON20129.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Hyperbolic Riemann surfaces"

1

Mochizuki, Shinichi. Conformal and quasiconformal categorical representation of hyperbolic Riemann surfaces. Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Riemann surfaces by way of complex analytic geometry. American Mathematical Society, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mostly surfaces. American Mathematical Society, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

1941-, Hag Kari, and Broch Ole Jacob, eds. The ubiquitous quasidisk. American Mathematical Society, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ibragimov, Zair. Topics in several complex variables: First USA-Uzbekistan Conference on Analysis and Mathematical Physics, May 20-23, 2014, California State University, Fullerton, California. American Mathematical Society, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abate, Marco. Holomorphic Dynamics on Hyperbolic Riemann Surfaces. de Gruyter GmbH, Walter, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Abate, Marco. Holomorphic Dynamics on Hyperbolic Riemann Surfaces. de Gruyter GmbH, Walter, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Abate, Marco. Holomorphic Dynamics on Hyperbolic Riemann Surfaces. de Gruyter GmbH, Walter, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Borthwick, David. Spectral Theory of Infinite-Area Hyperbolic Surfaces. Birkhauser Verlag, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Borthwick, David. Spectral Theory of Infinite-Area Hyperbolic Surfaces. Birkhäuser, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hyperbolic Riemann surfaces"

1

Buser, Peter. "Hyperbolic Structures." In Geometry and Spectra of Compact Riemann Surfaces. Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4992-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kapovich, Michael. "Teichmüller Theory of Riemann Surfaces." In Hyperbolic Manifolds and Discrete Groups. Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4913-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Keen, Linda. "Hyperbolic Geometry and Spaces of Riemann Surfaces." In Mathematical Conversations. Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0195-0_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mednykh, Aleksandr D. "Hyperbolic Riemann Surfaces with the Trivial Group of Automorphisms." In Deformations of Mathematical Structures. Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2643-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fujimori, Shoichi, Yu Kawakami, Masatoshi Kokubu, Wayne Rossman, Masaaki Umehara, and Kotaro Yamada. "Hyperbolic Metrics on Riemann Surfaces and Space-Like CMC-1 Surfaces in de Sitter 3-Space." In Recent Trends in Lorentzian Geometry. Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4897-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wolpert, Scott A. "RIEMANN SURFACES, MODULI AND HYPERBOLIC GEOMETRY." In Lectures on Riemann Surfaces. WORLD SCIENTIFIC, 1989. http://dx.doi.org/10.1142/9789814503365_0002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dinh, Tien-Cuong, Viet-Anh Nguyen, and Nessim Sibony. "Entropy for hyperbolic Riemann surface laminations II." In Frontiers in Complex Dynamics, edited by Araceli Bonifant, Mikhail Lyubich, and Scott Sutherland. Princeton University Press, 2014. http://dx.doi.org/10.23943/princeton/9780691159294.003.0021.

Full text
Abstract:
This chapter studies Riemann surface foliations with tame singular points. It shows that the hyperbolic entropy of a Brody hyperbolic foliation by Riemann surfaces with linearizable isolated singularities on a compact complex surface is finite. The chapter then proves the finiteness of the entropy in the local setting near a singular point in any dimension, using a division of a neighborhood of a singular point into adapted cells. Next, the chapter estimates the modulus of continuity for the Poincaré metric along the leaves of the foliation, using notion of conformally (R,δ‎)-close maps. The estimate holds for foliations on manifolds of higher dimension.
APA, Harvard, Vancouver, ISO, and other styles
8

"5 Continuous dynamics on Riemann surfaces." In Holomorphic Dynamics on Hyperbolic Riemann Surfaces. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110601978-005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"3 Discrete dynamics on Riemann surfaces." In Holomorphic Dynamics on Hyperbolic Riemann Surfaces. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110601978-003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"1 The Schwarz lemma and Riemann surfaces." In Holomorphic Dynamics on Hyperbolic Riemann Surfaces. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110601978-001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!