Academic literature on the topic 'Hyperbolic dynamical systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hyperbolic dynamical systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hyperbolic dynamical systems"
Bandtlow, Oscar F., Wolfram Just, and Julia Slipantschuk. "A numerical study of rigidity of hyperbolic splittings in simple two-dimensional maps." Nonlinearity 37, no. 4 (March 4, 2024): 045007. http://dx.doi.org/10.1088/1361-6544/ad2b58.
Full textBarinova, Marina K., and Evgenia K. Shustova. "Dynamical properties of direct products of discrete dynamical systems." Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva 24, no. 1 (March 31, 2022): 21–30. http://dx.doi.org/10.15507/2079-6900.24.202201.21-30.
Full textWhittaker, Michael. "Spectral triples for hyperbolic dynamical systems." Journal of Noncommutative Geometry 7, no. 2 (2013): 563–82. http://dx.doi.org/10.4171/jncg/127.
Full textGogolev, Andrey, Pedro Ontaneda, and Federico Rodriguez Hertz. "New partially hyperbolic dynamical systems I." Acta Mathematica 215, no. 2 (2015): 363–93. http://dx.doi.org/10.1007/s11511-016-0135-3.
Full textLokutsievskii, L. V. "Fractal structure of hyperbolic Lipschitzian dynamical systems." Russian Journal of Mathematical Physics 19, no. 1 (March 2012): 27–43. http://dx.doi.org/10.1134/s1061920812010050.
Full textCARVALHO, ALEXANDRE N., JOSÉ A. LANGA, and JAMES C. ROBINSON. "Lower semicontinuity of attractors for non-autonomous dynamical systems." Ergodic Theory and Dynamical Systems 29, no. 6 (February 3, 2009): 1765–80. http://dx.doi.org/10.1017/s0143385708000850.
Full textBlankers, Vance, Tristan Rendfrey, Aaron Shukert, and Patrick Shipman. "Julia and Mandelbrot Sets for Dynamics over the Hyperbolic Numbers." Fractal and Fractional 3, no. 1 (February 20, 2019): 6. http://dx.doi.org/10.3390/fractalfract3010006.
Full textPesin, Ya B. "Dynamical systems with generalized hyperbolic attractors: hyperbolic, ergodic and topological properties." Ergodic Theory and Dynamical Systems 12, no. 1 (March 1992): 123–51. http://dx.doi.org/10.1017/s0143385700006635.
Full textCong, Nguyen Dinh. "Structural stability of linear random dynamical systems." Ergodic Theory and Dynamical Systems 16, no. 6 (December 1996): 1207–20. http://dx.doi.org/10.1017/s0143385700009998.
Full textREY-BELLET, LUC, and LAI-SANG YOUNG. "Large deviations in non-uniformly hyperbolic dynamical systems." Ergodic Theory and Dynamical Systems 28, no. 2 (April 2008): 587–612. http://dx.doi.org/10.1017/s0143385707000478.
Full textDissertations / Theses on the topic "Hyperbolic dynamical systems"
Ponce, Gabriel. "Fine ergodic properties of partially hyperbolic dynamical systems." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-20032015-113539/.
Full textSeja f : T3 → T3 um difeomorfismo C2 parcialmente hiperbólico, homotópico a um automorfismo de Anosov linear e preservando a medida de volume m. Provamos que se f é Kolmogorov então f é Bernoulli. Estudamos as características da desintegração atômica da medida de volume quando esta ocorre. Provamos que se a medida de volume m tem desintegração atômica nas folhas centrais então a desintegração tem um átomo por folha central. Apresentamos uma condição, a qual depende apenas do expoente de Lyapunov central do difeomorfismo, que garante desintegração atômica da medida de volume. Construímos uma família aberta de difeomorfismos satisfazendo esta condição, o que gerou os primeiros exemplos de folheações que são mensuráveis e ao mesmo tempo minimais. Nesta mesma construção damos os primeiros exemplos de difeomorfismos parcialmente hiperbólicos com expoente de Lyapunov central nulo e homotópico a um Anosov linear.
Petty, Taylor Michael. "Nonlocally Maximal Hyperbolic Sets for Flows." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5558.
Full textAl-Nayef, Anwar Ali Bayer, and mikewood@deakin edu au. "Semi-hyperbolic mappings in Banach spaces." Deakin University. School of Computing and Mathematics, 1997. http://tux.lib.deakin.edu.au./adt-VDU/public/adt-VDU20051208.110247.
Full textGaito, Stephen Thomas. "Shadowing of weakly pseudo-hyperbolic pseudo-orbits in discrete dynamical systems." Thesis, University of Warwick, 1992. http://wrap.warwick.ac.uk/109461/.
Full textWaddington, Simon. "Prime orbit theorems for closed orbits and knots in hyperbolic dynamical systems." Thesis, University of Warwick, 1992. http://wrap.warwick.ac.uk/109425/.
Full textCanestrari, Giovanni. "On the Kolmogorov property of a class of infinite measure hyperbolic dynamical systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22352/.
Full textLeclerc, Gaétan. "Nonlinearity, fractals, Fourier decay - harmonic analysis of equilibrium states for hyperbolic dynamical systems." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS264.
Full textThis PhD lies at the intersection between fractal geometry and hyperbolic dynamics. Being given a (low dimensional) hyperbolic dynamical system in some euclidean space, let us consider a fractal compact invariant subset, and an invariant probability measure supported on this fractal set with good statistical properties, such as the measure of maximal entropy. The question is the following: does the Fourier transform of the measure exhibit power decay ? Our main goal is to give evidence, for several families of hyperbolic dynamical systems, that nonlinearity of the dynamics is enough to prove such decay results. These statements will be obtained using a powerful tool from the field of additive combinatorics: the sum-product phenomenon
Canalias, Vila Elisabet. "Contributions to Libration Orbit Mission Design using Hyperbolic Invariant Manifolds." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/5927.
Full textEl problema restringit de tres cossos és un model per estudiar el moviment d'un cos de massa infinitessimal sota l'atracció gravitatòria de dos cossos molt massius. Els cinc punts d'equilibri d'aquest model, en especial L1 i L2, han estat motiu de nombrosos estudis per aplicacions pràctiques en les últimes dècades (SOHO, Genesis...).
Genèricament, qualsevol missió en òrbita al voltant del punt L2 del sistema Terra-Sol es veu afectat per ocultacions degudes a l'ombra de la Terra. Si l'òrbita és al voltant de L1, els eclipsis són deguts a la forta influència electromagnètica del Sol. D'entre els diferents tipus d'òrbites de libració, les òrbites de Lissajous resulten de la combinació de dues oscil.lacions perpendiculars. El seu principal avantatge és que les amplituds de les oscil.lacions poden ser escollides independentment i això les fa adapatables als requeriments de cada missió. La necessitat d'estratègies per evitar eclipsis en òrbites de Lissajous entorn dels punts L1 i L2 motivaren la primera part de la tesi. En aquesta part es presenta una eina per la planificació de maniobres en òrbites de Lissajous que no només serveix per solucionar el problema d'evitar els eclipsis, sinó també per trobar trajectòries de transferència entre òrbites d'amplituds diferents i planificar rendez-vous.
Per altra banda, existeixen canals de baix cost que uneixen els punts L1 i L2 d'un sistema donat i representen una manera natural de transferir d'una regió de libració a l'altra. Gràcies al seu caràcter hiperbòlic, una òrbita de libració té uns objectes invariants associats: les varietats estable i inestable. Si tenim present que la varietat estable està formada per trajectòries que tendeixen cap a l'òrbita a la qual estan associades quan el temps avança, i que la varietat inestable fa el mateix però enrera en el temps, una intersecció entre una varietat estable i una d'inestable proporciona un camí asimptòtic entre les òrbites corresponents. Un mètode per trobar connexions d'aquest tipus entre òrbites planes entorn de L1 i L2 es presenta a la segona part de la tesi, i s'hi inclouen els resultats d'aplicar aquest mètode als casos dels problemes restringits Sol Terra i Terra-Lluna.
La idea d'intersecar varietats hiperbòliques es pot aplicar també en la cerca de camins de baix cost entre les regions de libració del sistema Sol-Terra i Terra-Lluna. Si existissin camins naturals de les òrbites de libració solars cap a les lunars, s'obtindria una manera barata d'anar a la Lluna fent servir varietats invariants, cosa que no es pot fer de manera directa. I a l'inversa, un camí de les regions de libració lunars cap a les solars permetria, per exemple, que una estació fos col.locada en òrbita entorn del punt L2 lunar i servís com a base per donar servei a les missions que operen en òrbites de libració del sistema Sol-Terra. A la tercera part de la tesi es presenten mètodes per trobar trajectòries de baix cost que uneixen la regió L2 del sistema Terra-Lluna amb la regió L2 del sistema Sol-Terra, primer per òrbites planes i més endavant per òrbites de Lissajous, fent servir dos problemes de tres cossos acoblats. Un cop trobades les trajectòries en aquest model simplificat, convé refinar-les per fer-les més realistes. Una metodologia per obtenir trajectòries en efemèrides reals JPL a partir de les trobades entre òrbites de Lissajous en el model acoblat es presenta a la part final de la tesi. Aquestes trajectòries necessiten una maniobra en el punt d'acoblament, que és reduïda en el procés de refinat, arribant a obtenir trajectòries de cost zero quan això és possible.
This PhD. thesis lies within the field of astrodynamics. It provides solutions to problems which have been identified in mission design near libration points, by using dynamical systems theory.
The restricted three body problem is a well known model to study the motion of an infinitesimal mass under the gravitational attraction of two massive bodies. Its five equilibrium points, specially L1 and L2, have been the object of several studies aimed at practical applications in the last decades (SOHO, Genesis...).
In general, any mission in orbit around L2 of the Sun-Earth system is affected by occultations due to the shadow of the Earth. When the orbit is around L1, the eclipses are caused by the strong electromagnetic influence of the Sun. Among all different types of libration orbits, Lissajous type ones are the combination of two perpendicular oscillations. Its main advantage is that the amplitudes of the oscillations can be chosen independently and this fact makes Lissajous orbits more adaptable to the requirements of each particular mission than other kinds of libration motions. The need for eclipse avoidance strategies in Lissajous orbits around L1 and L2 motivated the first part of the thesis. It is in this part where a tool for planning maneuvers in Lissajous orbits is presented, which not only solves the eclipse avoidance problem, but can also be used for transferring between orbits having different amplitudes and for planning rendez-vous strategies.
On the other hand, there exist low cost channels joining the L1 and L2 points of a given sistem, which represent a natural way of transferring from one libration region to the other one. Furthermore, there exist hyperbolic invariant objects, called stable and unstable manifolds, which are associated with libration orbits due to their hyperbolic character. If we bear in mind that the stable manifold of a libration orbit consists of trajectories which tend to the orbit as time goes by, and that the unstable manifold does so but backwards in time, any intersection between a stable and an unstable manifold will provide an asymptotic path between the corresponding libration orbits. A methodology for finding such asymptotic connecting paths between planar orbits around L1 and L2 is presented in the second part of the dissertation, including results for the particular cases of the Sun-Earth and Earth-Moon problems.
Moreover, the idea of intersecting hyperbolic manifolds can be applied in the search for low cost paths joining the libration regions of different problems, such as the Sun-Earth and the Earth-Moon ones. If natural paths from the solar libration regions to the lunar ones was found, it would provide a cheap way of transferring to the Moon from the vicinity of the Earth, which is not possible in a direct way using invariant manifolds. And the other way round, paths from the lunar libration regions to the solar ones would allow for the placement of a station in orbit around the lunar L2, providing services to solar libration missions, for instance. In the third part of the thesis, a methodology for finding low cost trajectories joining the lunar L2 region and the solar L2 region is presented. This methodology was developed in a first step for planar orbits and in a further step for Lissajous type orbits, using in both cases two coupled restricted three body problems to model the Sun-Earth-Moon spacecraft four body problem. Once trajectories have been found in this simplified model, it is convenient to refine them to more realistic models. A methodology for obtaining JPL real ephemeris trajectories from the initial ones found in the coupled models is presented in the last part of the dissertation. These trajectories need a maneuver at the coupling point, which can be reduced in the refinement process until low cost connecting trajectories in real ephemeris are obtained (even zero cost, when possible).
Högele, Michael, and Ilya Pavlyukevich. "Metastability of Morse-Smale dynamical systems perturbed by heavy-tailed Lévy type noise." Universität Potsdam, 2014. http://opus.kobv.de/ubp/volltexte/2014/7063/.
Full textCanadell, Cano Marta. "Computation of Normally Hyperbolic Invariant Manifolds." Doctoral thesis, Universitat de Barcelona, 2014. http://hdl.handle.net/10803/277215.
Full textL’objecte d’estudi dels Sistemes Dinàmics és l’evolució dels sistemes respecte del temps. Per aquesta raó, els Sistemes Dinàmics presenten moltes aplicacions en altres àrees de la Ciència, com ara la Física, Biologia, Economia, etc. i tenen nombroses interaccions amb altres parts de les Matemàtiques. Els objectes invariants organitzen el comportament global d’un sistema dinàmic, els més simples dels quals són els punts fixos i les òrbites periòdiques (així com les seves corresponents varietats invariants). Les Varietats Invariants Normalment Hiperbòliques (NHIM forma abreviada provinent de l’anglès) són alguns d’aquests objectes invariants. Aquests objectes posseeixen la propietat de persistir sota petites pertorbacions del sistema. Les NHIM estan caracteritzades pel fet que les direccions en els punts de la varietat presenten una divisió en components tangent, estable i inestable. L’índex de creixement de les direccions estables (per les quals la iteració endavant del sistema tendeix cap a zero) i inestables (per les quals la iteració enrere del sistema tendeix cap a zero) domina l’índex de creixement de les direccions tangents. La robustesa de les varietats invariants normalment hiperbòliques les fa de gran utilitat a l’hora d’estudiar la dinàmica global. Per aquesta raó, tant la teoria com el càlcul d’aquests objectes sós molt importants per al coneixement general d’un sistema dinàmic. L’objectiu principal d’aquesta tesi és desenvolupar algoritmes eficients pel càlcul de varietats invariants normalment hiperbòliques, donar-ne resultats teòrics rigorosos i implementar-los per a explorar nous fenòmens matemàtics. Per simplicitat, considerarem el problema per a sistemes dinàmics discrets, ja que és ben conegut que el cas discret implica el cas continu usant operadors d’evolució. Considerem així difeomorfismes donats per F : Rm → Rm i un d-tor F-invariant parametritzat per K : Td → Rm. És a dir, existeix un difeomorfisme f : Td → Td (la dinàmica interna) tal que satisfà l’equació F ◦ K = K ◦ f, (0.1) anomenada equació d’invariància. La nostra finalitat és solucionar aquesta equació d’invariància considerant dos possibles escenaris: un en el qual no coneixem quina és la dinàmica interna del tor (on K i f són les nostres incògnites), veure Capítol 4, i un altre en el qual imposem que la dinàmica interna sigui una rotació rígida amb freqüència quasi-periòdica (on K és una incògnita i f és la rotació rígida), pel qual necessitarem, a més a més, afegir un paràmetre ajustador a l’equació (0.1), veure Capítols 2 i 3. En ambdós casos també estarem interessats en el càlcul dels fibrats invariants tangent i normals.
Books on the topic "Hyperbolic dynamical systems"
Anosov, D. V. Dynamical Systems IX: Dynamical Systems with Hyperbolic Behaviour. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995.
Find full textV, Anosov D., ed. Dynamical systems with hyperbolic behavior. Berlin: Springer-Verlag, 1995.
Find full textWiggins, Stephen. Normally Hyperbolic Invariant Manifolds in Dynamical Systems. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-4312-0.
Full textBarreira, Luis. Ergodic Theory, Hyperbolic Dynamics and Dimension Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textAvila, Artur. Cocycles over partially hyperbolic maps. Paris: Société mathématique de France, 2013.
Find full textBarreira, Luis. Dynamical Systems: An Introduction. London: Springer London, 2013.
Find full textA, Rand D., and Ferreira Flávio, eds. Fine structures of hyperbolic diffeomorphisms. Berlin: Springer, 2009.
Find full textGaito, Stephen Thomas. Shadowing of weakly pseudo-hyperbolic pseudo-orbits in discrete dynamical systems. [s.l.]: typescript, 1992.
Find full textW, Bates Peter. Existence and persistence of invariant manifolds for semiflows in Banach space. Providence, R.I: American Mathematical Society, 1998.
Find full textWaddington, Simon. Prime orbit theorems for closed orbits and knots in hyperbolic dynamical systems. [s.l.]: typescript, 1992.
Find full textBook chapters on the topic "Hyperbolic dynamical systems"
Barreira, Luis, and Claudia Valls. "Hyperbolic Dynamics I." In Dynamical Systems, 87–112. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4835-7_5.
Full textBarreira, Luis, and Claudia Valls. "Hyperbolic Dynamics II." In Dynamical Systems, 113–51. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4835-7_6.
Full textAraújo, Vitor, and Marcelo Viana. "Hyperbolic Dynamical Systems." In Mathematics of Complexity and Dynamical Systems, 740–54. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1806-1_45.
Full textAraújo, Vitor, and Marcelo Viana. "Hyperbolic Dynamical Systems." In Encyclopedia of Complexity and Systems Science, 4723–37. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-30440-3_279.
Full textKuznetsov, Sergey P. "Dynamical Systems and Hyperbolicity." In Hyperbolic Chaos, 3–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-23666-2_1.
Full textBarreira, Luís, and Claudia Valls. "Hyperbolic Dynamics." In Dynamical Systems by Example, 135–67. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15915-3_10.
Full textBarreira, Luís, and Claudia Valls. "Hyperbolic Dynamics." In Dynamical Systems by Example, 35–47. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15915-3_4.
Full textShub, Michael. "Hyperbolic Sets." In Global Stability of Dynamical Systems, 20–32. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4757-1947-5_4.
Full textPalmer, Ken. "Hyperbolic Sets of Diffeomorphisms." In Shadowing in Dynamical Systems, 21–55. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4757-3210-8_2.
Full textEllis, David B., and Michael G. Branton. "Non-self-similar attractors of hyperbolic iterated function systems." In Dynamical Systems, 158–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0082829.
Full textConference papers on the topic "Hyperbolic dynamical systems"
Miranda-Reyes, C., G. Fernandez-Anaya, and J. J. Flores-Godoy. "Preservation of hyperbolic equilibrium points and synchronization in dynamical systems." In 2008 5th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE, 2008. http://dx.doi.org/10.1109/iceee.2008.4723367.
Full textZhao, Yan, and Huaguang Zhang. "Anticontrol of Chaos for Discrete-time Dynamical Systems via Fuzzy Hyperbolic Models." In 2008 IEEE International Conference on Networking, Sensing and Control (ICNSC). IEEE, 2008. http://dx.doi.org/10.1109/icnsc.2008.4525190.
Full textJedrzejewski, F. "Entropy and Lyapunov Exponents Relationships in Stochastic Dynamical Systems." In ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-1822.
Full textDíaz, Jesús Ildefonso, and Alicia Arjona. "Stabilization of a hyperbolic/elliptic system modelling the viscoelastic-gravitational deformation in a multilayered Earth." In The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0066.
Full textLesniewski, Piotr, and Andrzej Bartoszewicz. "Hyperbolic tangent based switching reaching law for discrete time sliding mode control of dynamical systems." In 2015 International Workshop on Recent Advances in Sliding Modes (RASM 2015). IEEE, 2015. http://dx.doi.org/10.1109/rasm.2015.7154589.
Full textLowrie, Robert, and Jim Morel. "Discontinuous Galerkin for stiff hyperbolic systems." In 14th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3307.
Full textDietiker, Jean-Francois, Klaus Hoffmann, and James Forsythe. "Assessment of computational boundary conditions for hyperbolic systems." In 14th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3350.
Full textGanesan, Vaahini, Tuhin K. Das, Jeffrey L. Kauffman, and Nazanin Rahnavard. "Including Vibration Characteristics Within Compressive Sensing Formulations for Structural Monitoring of Beams." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5213.
Full textBurns, John A., and Eugene M. Cliff. "Control of hyperbolic PDE systems with actuator dynamics." In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC). IEEE, 2014. http://dx.doi.org/10.1109/cdc.2014.7039829.
Full textLuo, Albert C. J., and Chuanping Liu. "On Symmetric Periodic Motions With Different Excitation Periods in a Discontinuous System With a Hyperbolic Boundary." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23310.
Full textReports on the topic "Hyperbolic dynamical systems"
Bond, W., Maria Seale, and Jeffrey Hensley. A dynamic hyperbolic surface model for responsive data mining. Engineer Research and Development Center (U.S.), April 2022. http://dx.doi.org/10.21079/11681/43886.
Full text