Academic literature on the topic 'Hydroxyle radical'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydroxyle radical.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hydroxyle radical"
Zylber, Jean, Nicole Zylber, Daniel Lefort, Christiane Ferradini, and Bernard Hickel. "Régiosélectivité de la réaction des radicaux hydroxyle et hydroxy-2 propyle-2 avec l'hypoxanthine." Canadian Journal of Chemistry 66, no. 2 (February 1, 1988): 283–87. http://dx.doi.org/10.1139/v88-048.
Full textGallard, H., J. De Laat, and B. Legube. "Étude comparative de la vitesse de décomposition de H2O2 et de l'atrazine par les systèmes Fe(III)/H2O2, Cu(II)/H2O2 et Fe(III)/Cu(II)/H2O2." Revue des sciences de l'eau 12, no. 4 (April 12, 2005): 713–28. http://dx.doi.org/10.7202/705374ar.
Full textZheng, Cheng-Dong, Gang Li, Hu-Qiang Li, Xiao-Jing Xu, Jin-Ming Gao, and An-Ling Zhang. "DPPH-Scavenging Activities and Structure-Activity Relationships of Phenolic Compounds." Natural Product Communications 5, no. 11 (November 2010): 1934578X1000501. http://dx.doi.org/10.1177/1934578x1000501112.
Full textRhim, Tae-Jin, Hee-Sun Jeong, Young-Jin Kim, Doo-Young Kim, Young-Ju Han, Hae-Yon Kwon, and Ki-Rok Kwon. "A study on the comparison of antioxidant effects among cultivated ginseng, and cultivated wild ginseng extracts -Using the measurement of superoxide and hydroxy radical scavenging activities-." Journal of Korean Institute of Herbal Acupuncture 12, no. 2 (June 30, 2009): 7–12. http://dx.doi.org/10.3831/kpi.2009.12.2.007.
Full textChoi, Jeong-Hwan, Dong-Hun Shin, Hye-Bin Kim, Jong-Gook Kim, and Kitae Baek. "One-step Oxidation of Total Organic Carbon, Total Nitrogen, and Total Phosphorous using Wet Chemical Oxidation." Journal of Korean Society of Environmental Engineers 42, no. 12 (December 31, 2020): 603–9. http://dx.doi.org/10.4491/ksee.2020.42.12.603.
Full textVrecko, Karoline, and Gilbert Reibnegger. "Influence of 7,8 Dihydroneopterin and Hyperoxia on Neurite Growth and Tyrosine Hydroxylase Activity of PC 12 Cells." Pteridines 13, no. 3 (August 2002): 94–99. http://dx.doi.org/10.1515/pteridines.2002.13.3.94.
Full textDuwe, A. K., J. Werkmeister, J. C. Roder, R. Lauzon, and U. Payne. "Natural killer cell-mediated lysis involves an hydroxyl radical-dependent step." Journal of Immunology 134, no. 4 (April 1, 1985): 2637–44. http://dx.doi.org/10.4049/jimmunol.134.4.2637.
Full textGebicka, L., and J. L. Gebicki. "Scavenging of oxygen radicals by heme peroxidases." Acta Biochimica Polonica 43, no. 4 (December 31, 1996): 673–78. http://dx.doi.org/10.18388/abp.1996_4463.
Full textBi, Yong Guang, and Chun Chun Liu. "Study on Scavenging Free Radical Activity with Polysaccharides Materials in Chuanxiong Based on Composite Properties of Biomaterials." Advanced Materials Research 583 (October 2012): 244–47. http://dx.doi.org/10.4028/www.scientific.net/amr.583.244.
Full textFlitter, W. D., and R. P. Mason. "The spin trapping of pyrimidine nucleotide free radicals in a Fenton system." Biochemical Journal 261, no. 3 (August 1, 1989): 831–39. http://dx.doi.org/10.1042/bj2610831.
Full textDissertations / Theses on the topic "Hydroxyle radical"
Alkhuraiji, Turki. "Ionisation par faisceau d'électrons de solutions aqueuses de benzènesulfonate et naphthalènesulfonate et sous-produits." Thesis, Poitiers, 2013. http://www.theses.fr/2013POIT2259/document.
Full textThis research belongs to the study of the ionization of aqueous solutions by electron beam (E.B.) as an advanced oxidation process for water treatment. The hydroxyl radical (•OH) and hydrated electron(eaq¯) are the two major active species produced from the ionization of aqueous solutions by high energy electron beam. It has been shown that the generation of additional radicals such as the sulphate radical (SO4•¯) and hydroxyl radical from the reaction of persulfate ion (S2O8¯) or hydrogen peroxide (H2O2) with the hydrated electron, improved the efficiency of this process towards the degradation and mineralization of organic pollutants in aquaeous solution. In the présent work, the degradation and mineralization of naphthalenesulfonate, benzenesulfonate and gallic acid were studied by electron beam irradiation alone and coupled with oxidants (S2O8¯, H2O2).In the absence of oxidant, an absorbed dose of 1,5 kGy leads to total elimnation of these pollutants. The presence of added oxidants usually reduces the radiation dose required. In addition, increasing oxidant concentration or applied dose had a beneficial effect towards the organic carbon removal. It was found that coupling E.B./S2O8¯ has more suitable than E.B./ H2O2 even in the presence of inorganic constituents. The results also highlighted the importance of dissolved oxygen in the system when mineralization is aimed. For each of the molecules studied, oxidation by-products resulting from hydroxylation and aromatic ring opening were identified
Varmenot, Nicolas. "Processus d'oxydation des sulfures organiques par le radical hydroxyle : influence du groupement S-acétyle." Paris 5, 2001. http://www.theses.fr/2001PA05S019.
Full textDemougeot, Céline. "Etude de la toxicité cérébrale du fer et évaluation du N-Acétyl-L-aspartate comme marqueur biochimique de la mort neuronale : application à l'ischémie cérébrale." Dijon, 2001. http://www.theses.fr/2001DIJOPE02.
Full textAbila, Paul-André. "Application de la spectroscopie moléculaire au diagnostic d'un plasma inductif d'argon." Lyon, INSA, 1989. http://www.theses.fr/1989ISAL0074.
Full textEl, Omar Abdel Karim. "Études des réactions primaires en solutions par la radiolyse pulsée picoseconde." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00931405.
Full textBrosse, Fabien. "Influence de la couche limite convective sur la réactivité chimique en Afrique de l'Ouest." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30324/document.
Full textThis thesis focuses on the influence of the convective and cloudy boundary layer on the chemical reactivity in West Africa. To answer this question, high resolution simulations (50m) are performed on the atmospheric model Meso-NH coupled to a detailed chemical scheme representing the gaseous and aqueous phases. This spatial scale allow to explicitly represent the spatial and temporal characteristics of turbulent structures. Thermals in the boundary layer are identified by a conditional sampling based on a radioactive-decay passive scalar. The turbulent transport influence on the redistribution of chemical species depends on the chemical lifetimes of these species. Spatial segregation is created within the convective boundary layer that increases or decreases the mean reaction rates between compounds. AMMA campaign field study, and more recently DACCIWA, are used to define dynamical and chemical forcing of two simulated environments. The first one is representative of a biogenic environment dominated by natural emissions of VOC. The second reproduces a moderately polluted typical urban area of the Guinean Gulf (Cotonou in Benin). For the sake of simplicity, simulations analysis are limited to the chemical reaction between isoprene and OH in the biogenic case, and the reaction between C>2 aldehydes and OH in the anthropogenic case. The convective boundary layer influence is studied at thermal and domain scale. This makes the connection with coarse resolution models for which a hypothesis of perfect and immediate mixing is made, neglecting the spatial variability of chemical species within a grid cell. The first results are based on the gaseous phase only. Cloudy development in the convective boundary layer only affects the vertical transport of chemical species. The simulations show that thermals are preferential reaction zones where the chemical reactivity is the highest. The top of the boundary layer is the region characterized by the highest calculated segregation intensities but of the opposite sign in both environments. In the biogenic environment, the inhomogeneous mixing of isoprene and OH in this zone leads to a maximum decrease of 30% of the mean reaction rate. In the anthropogenic case, the effective rate constant for OH reacting with aldehydes is 16% higher at maximum than the averaged value. The OH reactivity is higher by 15 to 40% inside thermals compared to the surroundings depending on the chemical environment and time of the day. Because thermals occupy a small fraction of the simulated domain, the impact of turbulent motions on the domain-averaged OH total reactivity reaches a maximum 9% decrease for the biogenic case and a maximum of 5% increase for the anthropogenic case. LES simulations including the aqueous reactivity reveal a significant decrease in OH mixing ratios associated to the presence of clouds. Consequently, isoprene and C>2 aldehydes mixing ratios increase at these altitudes
Oppilliart, Sophie. "Etude par échange isotopique du radical tyrosyle en solution et dans la catalase bovine." Phd thesis, Université Paris Sud - Paris XI, 2007. http://tel.archives-ouvertes.fr/tel-00361211.
Full textPar ailleurs, il a été montré au laboratoire que l'identification et la quantification des radicaux formés sur les acides aminés d'une protéine par l'attaque de radicaux hydroxyle sont possibles. Cette méthode est basée sur le marquage au tritium des résidus acides aminés. Notre approche est basée sur la génération de radicaux hydroxyle par radiolyse de l'eau. Les radicaux hydroxyle formés arrachent un hydrogène sur la chaîne latérale des acides aminés et génèrent ainsi un radical carboné. Il est ensuite “réparé” in situ par un composé, le sel sodique de l'acide phénylphosphinique tritié, qui permet d'introduire un atome de tritium à la place de l'hydrogène précédemment arraché. Cet atome de tritium sert de marqueur pour détecter les sites de formation des radicaux.
Nous avons donc utilisé les propriétés de réparation du vecteur tritié pour identifier quelle est la tyrosine impliquée dans les transferts d'électrons de la BLC. Même s'il a été montré par RPE que la disparition du radical porté par la tyrosine est effective en présence de l'agent de réparation, les études de marquage n'ont pas abouti à déterminer l'exacte localisation du radical. Une des raisons invoquées est le manque d'efficacité de l'agent de réparation pour transférer son atome d'hydrogène. C'est pourquoi d'autres composés capables eux aussi de fournir un atome d'hydrogène par voie radicalaire ont été synthétisés puis testés sur ce système enzymatique par une étude de spectroscopie RPE.
En parallèle, nous avons voulu comprendre les mécanismes d'action des ces mêmes composés sur un système modèle en générant des radicaux sur la tyrosine en solution par radiolyse de l'eau. La méthode consiste à produire dans une solution aqueuse de tyrosine des radicaux hydroxyle, qui vont former les radicaux tyrosyle. Les radicaux ainsi générés peuvent être ensuite réparés par un atome de deutérium fourni par un donneur. L'incorporation en deutérium et la régiosélectivité de l'attaque sont ensuite analysées par spectrométrie de masse et RMN 2H. L'irradiation de solution de tyrosine en présence des différents composés choisis s'est révélée difficile à analyser, en raison notamment de la difficulté à déterminer la proportion de radicaux hydroxyle réagissant avec l'agent réparateur au lieu de la tyrosine, mais surtout en raison de l'incorporation inattendue de deutérium dans la tyrosine en l'absence de tout agent de transfert. Ce phénomène jusqu'alors inconnu a, dès lors, retenu toute notre attention. Nous avons alors focalisé nos travaux sur la compréhension des processus intervenant dans l'autoréparation de la tyrosine et ainsi proposé un mécanisme pour expliquer nos observations.
Lallement, Audrey. "Impact des processus photochimiques et biologiques sur la composition chimique du nuage." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC066/document.
Full textIn the context of global warming, more precise knowledge of atmospheric processes is needed to evaluate their impact on the Earth radiative budget. Clouds can limit the increase of temperature but this retroaction is not well understood due to a lack of knowledge of cloud media (like organic fraction composition). From the beginning of atmospheric studies, only chemical, especially radical, reactions was taken into account. However microorganisms metabolically active were found in cloud water arising questions about their role as biocatalyst. They are able to use carboxylic acids as nutriments, to degrade radical precursor (like H2O2) and to survive oxidative stress. The aim of this work is to quantify the impact of photochemical and biological processes on cloud chemistry composition. First, the concentrations of •OH, the most reactive radical, were evaluated and the influence of microorganisms on the concentrations were studied. A new method was developed in artificial medial before direct quantification of steady state •OH concentration in atmospheric waters (rain and cloud waters). Concentrations ranged from 10-17 to 10-15 M and did not change in presence of microorganisms. These measures were lower than concentrations estimated by chemical atmospheric models. A possible explanation was an underestimation of the main sink of this radical (organic matter). To better characterize this fraction, simple aromatic compounds were identified in cloud waters, phenol was found in the 8 samples analyzed. To go further, we studied phenol degradation in detail. Enzyme transcripts involved in phenol degradation were present in cloud water samples showing in situ activity of native bacteria. 93% of tested cultural strains, isolated from cloud waters, were able to degrade phenol. To quantify the relative contribution of radical versus microbial processes allowing phenol degradation, we performed photo-biodegradation experiment with a model strain (Rhodococcus erythropolis PDD-23b-28). Our results showed that these two processes participated equally to phenol degradation, suggesting that microorganisms and radicals can be involved in atmospheric natural remediation
Rabat, Hervé. "Utilisation du spectre UV du radical OH dans la métrologie des hautes températures des gaz chauds et des plasmas." Orléans, 2004. http://www.theses.fr/2004ORLE2050.
Full textJoshi, Prasad. "Isolation and reactivity of hydroxyl radical with astrochemically and atmospherically relevant species studied by Fourier transform infrared spectroscopy." Paris 6, 2012. http://www.theses.fr/2012PA066092.
Full textOH radicals play a fundamental role in the chemistry of interstellar media. The isolation and the characterization of the highly reactive species is challenging and represents an important prerequisite for reactivity studies that might be crucial in different fields such as astrochemistry and atmospheric chemistry. Different experimental approaches were tested to produce OH radicals. First of all, gaseous pure water was subjected to a microwave discharge. The species thus formed were condensed onto a cryogenic mirror maintained at 3 K and further characterized with a Fourier-transform IR spectrometer (FTIR). Under these conditions, radical recombination lead to the formation of a water-ice and the presence of OH radicals cannot be clearly established. Gaseous water was diluted into different rare gases (RG = He, Ne, Ar) prior to their introduction into the microwave discharge source. This approach allows to isolate and characterize OH radicals both in solid phase (RG = He) and in neon matrix (RG = Ne). Further reactivity experiments were carried out between these radicals and small species such as H2O, CO, NO, N2, O2, and CH4 in solid phase as well as in neon matrix
Books on the topic "Hydroxyle radical"
Edney, Edward. Hydroxyl radical rate constant intercomparison study. Research Triangle Park, NC: U.S. Environmental Protection Agency, Atmospheric Sciences Research Laboratory, 1987.
Find full textCrosley, David R. Local measurement of tropospheric HOx: Summary of a workshop held at SRI International, Menlo Park, California, March 23-26, 1992. Hampton, Va: Langley Research Center, 1994.
Find full textSharkey, Paul. Kinetics of hydroxyl radical reactions at low temperatures. Birmingham: University of Birmingham, 1994.
Find full textUnited States. National Aeronautics and Space Administration., ed. Spectroscopic study of combustion diagnostics on hydroxyl radicals: Final research report. Huntsville, Ala: The University of Alabama in Huntsville, 1990.
Find full textB, DeMore William, and United States. National Aeronautics and Space Administration., eds. Temperature-dependent rate constants and substituent effects for the reactions of hydroxyl radicals with three partially fluorinated ethers. 2nd ed. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textB, DeMore William, and United States. National Aeronautics and Space Administration., eds. Temperature-dependent rate constants and substituent effects for the reactions of hydroxyl radicals with three partially fluorinated ethers. 2nd ed. [Washington, DC: National Aeronautics and Space Administration, 1995.
Find full textH, Phillips Donald, and Langley Research Center, eds. An ab initio investigation of possible intermediates in the reaction of hydroxy and hydroperoxyl radicals. [Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1985.
Find full textLacheur, Richard M. Le. Reactions of ozone and hydroxyl radicals with amino acids. Denver, CO: The Foundation and American Water Works Association, 1995.
Find full textBurnett, Elizabeth Beaver. Periodic behaviors in the observed vertical column abundances of atmospheric hydroxyl. [Boca Raton, Fla.?: Florida Atlantic University, 1989.
Find full textCarter, Campbell D. Saturated fluorescence measurements of the hydroxyl radical in laminar high-pressure flames. West Lafayette, Ind: Purdue University, 1990.
Find full textBook chapters on the topic "Hydroxyle radical"
Irvine, William M. "Hydroxyl Radical." In Encyclopedia of Astrobiology, 1167–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1810.
Full textIrvine, William M. "Hydroxyl Radical." In Encyclopedia of Astrobiology, 793–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1810.
Full textIrvine, William M. "Hydroxyl Radical." In Encyclopedia of Astrobiology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1810-4.
Full textBell, David M., Manuela Cirtog, Jean-François Doussin, Hendrik Fuchs, Jan Illmann, Amalia Muñoz, Iulia Patroescu-Klotz, Bénédicte Picquet-Varrault, Mila Ródenas, and Harald Saathoff. "Preparation of Experiments: Addition and In Situ Production of Trace Gases and Oxidants in the Gas Phase." In A Practical Guide to Atmospheric Simulation Chambers, 129–61. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-22277-1_4.
Full textO'Brien, Robert J., and Thomas M. Hard. "Tropospheric Hydroxyl Radical." In Advances in Chemistry, 323–71. Washington, DC: American Chemical Society, 1993. http://dx.doi.org/10.1021/ba-1993-0232.ch012.
Full textIrvine, William M. "Hydroxyl Radical (OH)." In Encyclopedia of Astrobiology, 1396. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_1810.
Full textHoffman, M. Z. "Of Hydroxyl Radicals." In Inorganic Reactions and Methods, 274–75. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145302.ch107.
Full textMcKenzie, Thomas G., Amin Reyhani, Mitchell D. Nothling, and Greg G. Qiao. "Hydroxyl Radical Activated RAFT Polymerization." In ACS Symposium Series, 307–21. Washington, DC: American Chemical Society, 2018. http://dx.doi.org/10.1021/bk-2018-1284.ch014.
Full textJagannathan, Indu, and Jeffrey J. Hayes. "Hydroxyl Radical Footprinting of Protein-DNA Complexes." In Methods in Molecular Biology™, 57–71. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-015-1_5.
Full textCosta, Maria, and Dario Monachello. "Probing RNA Folding by Hydroxyl Radical Footprinting." In Methods in Molecular Biology, 119–42. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-667-2_7.
Full textConference papers on the topic "Hydroxyle radical"
Mooney, C. E., L. C. Anderson, and J. H. Lunsford. "Formation and desorption of hydroxyl radicals during Pt-catalyzed oxidation." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.thii4.
Full textKing, Matthew, and Raoul Kopelman. "Development of a hydroxyl radical nanoprobe." In International Symposium on Biomedical Optics, edited by Gerald E. Cohn. SPIE, 2002. http://dx.doi.org/10.1117/12.469776.
Full textZhao, Yi Yi, Mark P. Wilson, Tao Wang, Igor V. Timoshkin, and Scott J. MacGregor. "Hydroxyl radical production in DC streamer discharge." In 2015 IEEE Pulsed Power Conference (PPC). IEEE, 2015. http://dx.doi.org/10.1109/ppc.2015.7296962.
Full textSears, Trevor J., H. E. Radford, and Mary Ann Moore. "b-Dipole Transitions in X ˜ 2A' t-HOCO Observed by FIR Laser Magnetic Resonance." In High Resolution Spectroscopy. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/hrs.1993.thb1.
Full textDong, Fang, Qinzhao Xue, Jingli Liu, Zhanyong Guo, Hongmao Zhong, and Huili Sun. "The Influence of Amino and Hydroxyl of Chitosan on Hydroxyl Radical Scavenging Activity." In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2009. http://dx.doi.org/10.1109/icbbe.2009.5163624.
Full textZhang, Fenghua, Changzheng Zhou, and Chuanlin Tang. "Capacity of Hydroxyl Radical Produced by Choking Cavitator." In The 3rd International Conference on Machinery, Materials Science and Energy Engineering (ICMMSEE 2015). WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814719391_0024.
Full textKhalil Hasan, Ahmed E., and Ashwani K. Gupta. "Hydroxyl Radical Distribution under Colorless Distributed Combustion Conditions." In 52nd Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2014. http://dx.doi.org/10.2514/6.2014-0459.
Full textDeMore, William B. "Rates of hydroxyl radical reactions with some HFCs." In Environmental Sensing '92, edited by Harold I. Schiff and Ulrich Platt. SPIE, 1993. http://dx.doi.org/10.1117/12.140207.
Full textHan, Ruixia, Gang Li, and Yong-Guan Zhu. "Humic Substances Affect Iron-Driven Hydroxyl Radical Production." In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.15484.
Full textJanik, Ireneusz, and G. Tripathi. "STRUCTURAL CHARACTERIZATION OF HYDROXYL RADICAL ADDUCTS IN AQUEOUS MEDIA." In 70th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2015. http://dx.doi.org/10.15278/isms.2015.th14.
Full textReports on the topic "Hydroxyle radical"
Lee, Y., H. Pennline, and J. Markussen. Flue gas cleanup with hydroxyl radical reactions. Office of Scientific and Technical Information (OSTI), February 1990. http://dx.doi.org/10.2172/7163736.
Full textChan, Cornelius. Laser induced hydroxyl radical fluoresence at atmospheric pressure. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.69.
Full textLester, Marsha I. Quenching Dynamics of Electronically Excited Hydroxyl Radicals. Fort Belvoir, VA: Defense Technical Information Center, May 2008. http://dx.doi.org/10.21236/ada482242.
Full textCalidonna, Sheryl E., and William R. Bradley. The Hydroxyl Radical Reaction Rate Constant and Products of Dimethyl Succinate. Fort Belvoir, VA: Defense Technical Information Center, March 2008. http://dx.doi.org/10.21236/ada489770.
Full textPeterman, Dean R., Gregory P. Horne, Jamie M. Gleason, Anneka J. Miller, and Stephen P. Mezyk. Determine rate of reaction of hydroxyl radical with carboxylic acids and polyaminocarboxylates. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1483694.
Full textLester, M. I. Spectroscopy and reaction dynamics of collision complexes containing hydroxyl radicals. Office of Scientific and Technical Information (OSTI), February 1992. http://dx.doi.org/10.2172/5710534.
Full textPeak, J. G., T. Ito, M. J. Peak, and F. T. Robb. DNA damage produced by exposure of supercoiled plasmid DNA to high- and low-LET ionizing radiation: Effects of hydroxyl radical quenchers. DNA breakage, neutrons, OH radicals. Office of Scientific and Technical Information (OSTI), August 1994. http://dx.doi.org/10.2172/10172487.
Full textCohen, N. A shock tube study of the reactions of the hydroxyl radical with combustion species. Office of Scientific and Technical Information (OSTI), May 1991. http://dx.doi.org/10.2172/5573201.
Full textAtherton, C. S. Predicting tropospheric ozone and hydroxyl radical in a global, three-dimensional, chemistry, transport, and deposition model. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/130611.
Full textCohen, N. A shock tube study of the reactions of the hydroxyl radical with combustion species and pollutants. Office of Scientific and Technical Information (OSTI), August 1992. http://dx.doi.org/10.2172/6645854.
Full text