Journal articles on the topic 'Hydrothermolyse'

To see the other types of publications on this topic, follow the link: Hydrothermolyse.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Hydrothermolyse.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

JEDICKE, Olaf, Michitaka OTA, and Hellmuth DÜMPERT. "Hydrothermolyse combined with solar-energy "A process for a completely use of plant-biomass"." Journal of Advanced Science 13, no. 3 (2001): 251–55. http://dx.doi.org/10.2978/jsas.13.251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chatonnet, Pascal, and Jean-Noël Boidron. "Incidence du traitement thermique du bois de chêne sur sa composition chimique. 1ere partie : définition des paramètres thermiques de la chauffe des fûts en tonnellerie." OENO One 23, no. 2 (June 30, 1989): 77. http://dx.doi.org/10.20870/oeno-one.1989.23.2.1725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
<p style="text-align: justify;">La chauffe des fûts est une opération fondamentale de la fabrication d'une barrique. En effet, poursuivi au-delà des simples nécessités du cintrage, le brûlage (ou bousinage) entraîne l'apparition de nouveaux composés par thermolyse et hydrothermolyse du bois. Ces derniers sont susceptibles d'influencer ultérieurement les propriétés organoleptiques des vins élevés en barriques.</p><p style="text-align: justify;">La chauffe des bois est encore réalisée totalement empiriquement, les écarts entre tonneliers peuvent être importants. De plus, il n'existe pas de classification objective des niveaux de brûlage. L'optimalisation de cette opération passe préalablement par la connaissance de ses caractéristiques thermiques. A cette fin, on a mesuré les températures du bois au cours des processus de cintrage et de brûlage, en fonction de différents modes de chauffe et rythmes d'humidification.</p><p style="text-align: justify;">Les données recueillies permettront d'établir un modèle thermique de la chauffe traditionnelle en tonnellerie qui aidera à mieux comprendre les mécanismes de thermodégradation du bois de chêne. Une prochaine étude précisera l'évolution de la nature et de la quantité des produits de thermolyse en fonction du niveau de brûlage et du gradient thermique du bois. La modélisation de ces réactions devrait permettre l'optimisation de la régularisation de la chauffe du bois en tonnellerie.</p>
3

Pei, Pei, Mark Cannon, Grace Quan, and Erik Kjeang. "Effective hydrogen release from ammonia borane and sodium borohydride mixture through homopolar based dehydrocoupling driven by intermolecular interaction and restrained water supply." Journal of Materials Chemistry A 8, no. 36 (2020): 19050–56. http://dx.doi.org/10.1039/d0ta04720a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ståhl, Marina, Kaarlo Nieminen, and Herbert Sixta. "Hydrothermolysis of pine wood." Biomass and Bioenergy 109 (February 2018): 100–113. http://dx.doi.org/10.1016/j.biombioe.2017.12.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Diwan, Moiz, Victor Diakov, Evgeny Shafirovich, and Arvind Varma. "Noncatalytic hydrothermolysis of ammonia borane." International Journal of Hydrogen Energy 33, no. 4 (February 2008): 1135–41. http://dx.doi.org/10.1016/j.ijhydene.2007.12.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guthrie, Robert D., Sreekumar Ramakrishnan, Phillip F. Britt, A. C. Buchanan, and Burtron H. Davis. "Hydrothermolysis of a Silica-Immobilized Diphenylethane." Energy & Fuels 9, no. 6 (November 1995): 1097–103. http://dx.doi.org/10.1021/ef00054a025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yamanoi, Takashi, Naoshi Inoue, Masaki Fujimoto, Hideaki Sasaura, and Akihiko Murota. "Hydrothermolysis of the Fully Benzylated α-Cyclodextrin." HETEROCYCLES 60, no. 11 (2003): 2425. http://dx.doi.org/10.3987/com-03-9861.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kallury, R. Krishna M. R., Chris Ambidge, Thomas T. Tidwell, David G. B. Boocock, Foster A. Agblevor, and Daniel J. Stewart. "Rapid hydrothermolysis of cellulose and related carbohydrates." Carbohydrate Research 158 (December 1986): 253–61. http://dx.doi.org/10.1016/0008-6215(86)84024-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

González, Guillermo, and Daniel Montané. "Kinetics of dibenzylether hydrothermolysis in supercritical water." AIChE Journal 51, no. 3 (February 16, 2005): 971–81. http://dx.doi.org/10.1002/aic.10362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ohmura, W., S. Ohara, K. Hashida, M. Aoyama, and S. Doi. "Hydrothermolysis of Flavonoids in Relation to Steaming of Japanese Larch Wood." Holzforschung 56, no. 5 (August 26, 2002): 493–97. http://dx.doi.org/10.1515/hf.2002.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Summary Four flavonoid compounds, ((+)-taxifolin, (+)-aromadendrin, quercetin and (−)-naringenin), from Japanese larch (Larix leptolepis) wood were heated at 170 ℃C for 60 min at pH=3.46 (hydrothermolysis treatment). Alphitonin, four taxifolin steric isomers and quercetin were recovered from the treatment of (+)-taxifolin, and maesopsin, four aromadendrin steric isomers and kaempferol from (+)-aromadendrin. The reaction products from (−)-naringenin were found to be a mixture with (+)-naringenin. Quercetin was not changed by the treatment. Possible pathways for the formation of these products are discussed.
11

Fedyaeva, O. N., A. A. Vostrikov, A. V. Shishkin, M. Ya Sokol, N. I. Fedorova, and V. A. Kashirtsev. "Hydrothermolysis of brown coal in cyclic pressurization–depressurization mode." Journal of Supercritical Fluids 62 (February 2012): 155–64. http://dx.doi.org/10.1016/j.supflu.2011.11.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ross, David S., and Indira Jayaweera. "The hydrothermolysis of the picrate anion: kinetics and mechanism." Thermochimica Acta 384, no. 1-2 (February 2002): 155–62. http://dx.doi.org/10.1016/s0040-6031(01)00789-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Hörmeyer, H. F., W. Schwald, G. Bonn, and O. Bobleter. "Hydrothermolysis of Birch Wood as Pretreatment for Enzymatic Saccharification." Holzforschung 42, no. 2 (January 1988): 95–98. http://dx.doi.org/10.1515/hfsg.1988.42.2.95.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Lei, Binglong, Wu Qin, Guiluan Kang, Cheng Peng, and Jianqing Wu. "Desert Rose-Shaped Zircon Synthesized by Low-Temperature Hydrothermolysis." Journal of the American Ceramic Society 98, no. 5 (January 22, 2015): 1626–33. http://dx.doi.org/10.1111/jace.13456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Hörmeyer, H. F., G. Bonn, D. W. Kim, and O. Bobleter. "Enzymatic Saccharification of Cellulosic Materials after Hydrothermolysis and Organosolv Pretreatments." Journal of Wood Chemistry and Technology 7, no. 2 (January 1987): 269–83. http://dx.doi.org/10.1080/02773818708085267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Komova, Oksana V., Valentina I. Simagina, Alena A. Pochtar, Olga A. Bulavchenko, Arcady V. Ishchenko, Galina V. Odegova, Anna M. Gorlova, et al. "Catalytic Behavior of Iron-Containing Cubic Spinel in the Hydrolysis and Hydrothermolysis of Ammonia Borane." Materials 14, no. 18 (September 19, 2021): 5422. http://dx.doi.org/10.3390/ma14185422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The paper presents a comparative study of the activity of magnetite (Fe3O4) and copper and cobalt ferrites with the structure of a cubic spinel synthesized by combustion of glycine-nitrate precursors in the reactions of ammonia borane (NH3BH3) hydrolysis and hydrothermolysis. It was shown that the use of copper ferrite in the studied reactions of NH3BH3 dehydrogenation has the advantages of a high catalytic activity and the absence of an induction period in the H2 generation curve due to the activating action of copper on the reduction of iron. Two methods have been proposed to improve catalytic activity of Fe3O4-based systems: (1) replacement of a portion of Fe2+ cations in the spinel by active cations including Cu2+ and (2) preparation of highly dispersed multiphase oxide systems, involving oxide of copper.
17

Eswaran, Sudha, Senthil Subramaniam, Scott Geleynse, Kristin Brandt, Michael Wolcott, and Xiao Zhang. "Techno-economic analysis of catalytic hydrothermolysis pathway for jet fuel production." Renewable and Sustainable Energy Reviews 151 (November 2021): 111516. http://dx.doi.org/10.1016/j.rser.2021.111516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang, Junshe, Yu Zhao, Daniel L. Akins, and Jae W. Lee. "Calorimetric and Microscopic Studies on the Noncatalytic Hydrothermolysis of Ammonia Borane." Industrial & Engineering Chemistry Research 50, no. 18 (September 21, 2011): 10407–13. http://dx.doi.org/10.1021/ie200878u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Jiang, Weikun, Shubin Wu, Lucian A. Lucia, and Jiangyong Chu. "Effect of side-chain structure on hydrothermolysis of lignin model compounds." Fuel Processing Technology 166 (November 2017): 124–30. http://dx.doi.org/10.1016/j.fuproc.2017.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Schwald, W., and O. Bobleter. "Hydrothermolysis of Cellulose Under Static and Dynamic Conditions at High Temperatures." Journal of Carbohydrate Chemistry 8, no. 4 (September 1989): 565–78. http://dx.doi.org/10.1080/07328308908048017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Islam, Mohammad Nazrul, Golam Taki, Masud Rana, and Jeong-Hun Park. "Yield of Phenolic Monomers from Lignin Hydrothermolysis in Subcritical Water System." Industrial & Engineering Chemistry Research 57, no. 14 (March 19, 2018): 4779–84. http://dx.doi.org/10.1021/acs.iecr.7b05062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hirth, Th, and E. U. Franck. "Oxidation and Hydrothermolysis of Hydrocarbons in Supercritical Water at High Pressures." Berichte der Bunsengesellschaft für physikalische Chemie 97, no. 9 (September 1993): 1091–97. http://dx.doi.org/10.1002/bbpc.19930970905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kim, Youn Chul, Ryuichi Higuchi, and Tetsuya Komori. "Thermal Degradation of Glycosides, VI. Hydrothermolysis of Cardenolide and Flavonoid Glycosides." Liebigs Annalen der Chemie 1992, no. 6 (June 26, 1992): 575–79. http://dx.doi.org/10.1002/jlac.1992199201100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kim, Youn Chul, Ryuichi Higuchi, and Tetsuya Komori. "Thermal Degradation of Glycosides, V. Hydrothermolysis of Triterpenoid and Steroid Glycosides." Liebigs Annalen der Chemie 1992, no. 5 (May 19, 1992): 453–59. http://dx.doi.org/10.1002/jlac.199219920181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Diwan, Moiz, Hyun Tae Hwang, Ahmad Al-Kukhun, and Arvind Varma. "Hydrogen generation from noncatalytic hydrothermolysis of ammonia borane for vehicle applications." AIChE Journal 57, no. 1 (March 3, 2010): 259–64. http://dx.doi.org/10.1002/aic.12240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Burtscher, Eduard, Ortwin Bobleter, Wolfgang Schwald, Roland Concin, and Hanno Binder. "Chromatographic analysis of biomass reaction products produced by hydrothermolysis of poplar wood." Journal of Chromatography A 390, no. 2 (January 1987): 401–12. http://dx.doi.org/10.1016/s0021-9673(01)94391-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

McGarvey, Elspeth, and Wallace E. Tyner. "A stochastic techno-economic analysis of the catalytic hydrothermolysis aviation biofuel technology." Biofuels, Bioproducts and Biorefining 12, no. 3 (February 22, 2018): 474–84. http://dx.doi.org/10.1002/bbb.1863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Suacharoen, Sirinart, and Duangamol Nuntasri Tungasmita. "Hydrothermolysis of carbohydrates to levulinic acid using metal supported on porous aluminosilicate." Journal of Chemical Technology & Biotechnology 88, no. 8 (December 17, 2012): 1538–44. http://dx.doi.org/10.1002/jctb.4000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Suryawati, Lilis, Mark R. Wilkins, Danielle D. Bellmer, Raymond L. Huhnke, Niels O. Maness, and Ibrahim M. Banat. "Simultaneous saccharification and fermentation of Kanlow switchgrass pretreated by hydrothermolysis usingKluyveromyces marxianusIMB4." Biotechnology and Bioengineering 101, no. 5 (December 1, 2008): 894–902. http://dx.doi.org/10.1002/bit.21965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Griebl, Alexandra, Thomas Lange, Hedda Weber, Walter Milacher, and Herbert Sixta. "Xylo-Oligosaccharide (XOS) Formation through Hydrothermolysis of Xylan Derived from Viscose Process." Macromolecular Symposia 232, no. 1 (December 2005): 107–20. http://dx.doi.org/10.1002/masy.200551413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Jung, Chan-Duck, Ju-Hyun Yu, In-Yong Eom, and Kyung-Sik Hong. "Sugar yields from sunflower stalks treated by hydrothermolysis and subsequent enzymatic hydrolysis." Bioresource Technology 138 (June 2013): 1–7. http://dx.doi.org/10.1016/j.biortech.2013.03.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Marçal, Adriano de Figueiredo, Luiz Ferreira de França, and Nadia Cristina Fernandes Corrêa. "Hydrothermal treatment of empty fruit bunch (EFB) aimed at increased production of reducing sugars." BioResources 13, no. 3 (July 27, 2018): 6911–21. http://dx.doi.org/10.15376/biores.13.3.6911-6921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The waste generated from the palm oil production chain is increasing. The purpose of this work is to enable more effective use of empty fruit bunches (EFB) to produce reducing sugars by a hydrothermal treatment process (hydrothermolysis) at elevated pressures and temperatures. The EFB was dried and milled to obtain three different granulometries: thin (> 60 mesh), medium (28 to 60 mesh), and thick (< 28 mesh). The operating conditions were defined using a complete factorial design of 25, while considering the variables as particle size (thin, medium, and thick), solid/liquid ratio (1/13.33 and 1/20), temperature (130 and 170 ºC), reactor pressure using CO2 (150 bar and 200 bar), and reaction time (10 and 20 min). The reactional system converted the EFB into 17.5% and 57.9% of reducing sugars, for thin and medium samples, respectively, which were performed under the same conditions. The statistical analysis indicated that the main effects for hydrothermal treatment are time and temperature.
33

Yulianto, Mohamad Endy, Rizka Amalia, Vita Paramita, Indah Hartati, and Qurrotun A’yuni Khoirun Nisa’. "Autocatalytic Hydrolysis of Palm Oil for Fatty Acid Production by Using Hydrothermolysis Process." IOP Conference Series: Materials Science and Engineering 1053, no. 1 (February 1, 2021): 012065. http://dx.doi.org/10.1088/1757-899x/1053/1/012065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Eswaran, Sudha, Senthil Subramaniam, Scott Geleynse, Kristin Brandt, Michael Wolcott, and Xiao Zhang. "Dataset for techno-economic analysis of catalytic hydrothermolysis pathway for jet fuel production." Data in Brief 39 (December 2021): 107514. http://dx.doi.org/10.1016/j.dib.2021.107514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kallury, R. Krishna Mohan Rao, Thomas T. Tidwell, Foster A. Agblevor, David C. B. Boocock, and Martin Holysh. "Rapid Hydrothermolysis of Poplar Wood: Comparison of Sapwood, Heartwood, Bark, and Isolated Lignin." Journal of Wood Chemistry and Technology 7, no. 3 (January 1987): 353–71. http://dx.doi.org/10.1080/02773818708085274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Liu, Kan, Hasan K. Atiyeh, Oscar Pardo-Planas, Thaddeus C. Ezeji, Victor Ujor, Jonathan C. Overton, Kalli Berning, Mark R. Wilkins, and Ralph S. Tanner. "Butanol production from hydrothermolysis-pretreated switchgrass: Quantification of inhibitors and detoxification of hydrolyzate." Bioresource Technology 189 (August 2015): 292–301. http://dx.doi.org/10.1016/j.biortech.2015.04.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Brill, T. B., and A. J. Belsky. "Self-Reaction and Hydrothermolysis of Cyanamide(NH2CN) in H2O at High Pressure and Temperature." REVIEW OF HIGH PRESSURE SCIENCE AND TECHNOLOGY 7 (1998): 1379–82. http://dx.doi.org/10.4131/jshpreview.7.1379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

KIM, Y. C., R. HIGUCHI, and T. KOMORI. "ChemInform Abstract: Thermal Degradation of Glycosides. Part 5. Hydrothermolysis of Triterpenoid and Steroid Glycosides." ChemInform 23, no. 37 (August 21, 2010): no. http://dx.doi.org/10.1002/chin.199237286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

KIM, Y. C., R. HIGUCHI, and T. KOMORI. "ChemInform Abstract: Thermal Degradation of Glycosides. Part 6. Hydrothermolysis of Cardenolide and Flavonoid Glycosides." ChemInform 23, no. 41 (August 21, 2010): no. http://dx.doi.org/10.1002/chin.199241231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wang, Caiwei, Shouyu Zhang, Shunyan Wu, Zhongyao Cao, Yifan Zhang, Hao Li, Fenghao Jiang, and Junfu Lyu. "Effect of oxidation processing on the preparation of post-hydrothermolysis acid from cotton stalk." Bioresource Technology 263 (September 2018): 289–96. http://dx.doi.org/10.1016/j.biortech.2018.05.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hashmi, Syed Farhan, Heidi Meriö-Talvio, Kati Johanna Hakonen, Kyösti Ruuttunen, and Herbert Sixta. "Hydrothermolysis of organosolv lignin for the production of bio-oil rich in monoaromatic phenolic compounds." Fuel Processing Technology 168 (December 2017): 74–83. http://dx.doi.org/10.1016/j.fuproc.2017.09.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hashmi, Syed Farhan, Leena Pitkänen, Anne Usvalampi, Heidi Meriö-Talvio, Kyösti Ruuttunen, and Herbert Sixta. "Effect of metal formates on hydrothermolysis of organosolv lignin for the production of bio-oil." Fuel 271 (July 2020): 117573. http://dx.doi.org/10.1016/j.fuel.2020.117573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Nazos, Antonios, Dorothea Politi, Georgios Giakoumakis, and Dimitrios Sidiras. "Simulation and Optimization of Lignocellulosic Biomass Wet- and Dry-Torrefaction Process for Energy, Fuels and Materials Production: A Review." Energies 15, no. 23 (November 30, 2022): 9083. http://dx.doi.org/10.3390/en15239083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This review deals with the simulation and optimization of the dry- and wet-torrefaction processes of lignocellulosic biomass. The torrefaction pretreatment regards the production of enhanced biofuels and other materials. Dry torrefaction is a mild pyrolytic treatment method under an oxidative or non-oxidative atmosphere and can improve lignocellulosic biomass solid residue heating properties by reducing its oxygen content. Wet torrefaction usually uses pure water in an autoclave and is also known as hydrothermal carbonization, hydrothermal torrefaction, hot water extraction, autohydrolysis, hydrothermolysis, hot compressed water treatment, water hydrolysis, aqueous fractionation, aqueous liquefaction or solvolysis/aquasolv, or pressure cooking. In the case of treatment with acid aquatic solutions, wet torrefaction is called acid-catalyzed wet torrefaction. Wet torrefaction produces fermentable monosaccharides and oligosaccharides as well as solid residue with enhanced higher heating value. The simulation and optimization of dry- and wet-torrefaction processes are usually achieved using kinetic/thermodynamic/thermochemical models, severity factors, response surface methodology models, artificial neural networks, multilayer perceptron neural networks, multivariate adaptive regression splines, mixed integer linear programming, Taguchi experimental design, particle swarm optimization, a model-free isoconversional approach, dynamic simulation modeling, and commercial simulation software. Simulation of the torrefaction process facilitates the optimization of the pretreatment conditions.
44

Pińkowska, Hanna, Małgorzata Krzywonos, Paweł Wolak, and Adrianna Złocińska. "Production of uronic acids by hydrothermolysis of pectin as a model substance for plant biomass waste." Green Processing and Synthesis 8, no. 1 (January 28, 2019): 683–90. http://dx.doi.org/10.1515/gps-2019-0039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract The hydrolysis of high methyl ester citrus-apple pectin as a model substance for plant biomass waste rich in pectin fraction resulting in an uronic acids was performed in a batch reactor using subcritical water. The effects of the reaction temperature and time on the composition of the products contained in the separated liquid fractions were studied. The optimal experimental design methodology was used for modelling and optimizing the yield of uronic acids. In good agreement with experimental results (R2 = 0.986), the model predicts an optimal yield of uronic acids (approx. 77.3 g kg-1 ± 0.7 g kg-1) at a temperature and a time of about 155°C and 36 min. Uronic acids were isolated from reaction mixture using the ion exchange method. Higher temperature and longer holding time resulted in a greater degree of thermal degradation of uronic acids and simultaneously higher yield of losses and gas fractions
45

Agblevor, F. A., and D. G. B. Boocock. "The Origins of Phenol Produced in the Rapid Hydrothermolysis and Alkaline Hydrolysis of Hybrid Poplar Lignins." Journal of Wood Chemistry and Technology 9, no. 2 (June 1989): 167–88. http://dx.doi.org/10.1080/02773818908050292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hwang, Hyun Tae, Ahmad Al-Kukhun, and Arvind Varma. "Hydrogen for Vehicle Applications from Hydrothermolysis of Ammonia Borane: Hydrogen Yield, Thermal Characteristics, and Ammonia Formation." Industrial & Engineering Chemistry Research 49, no. 21 (November 3, 2010): 10994–1000. http://dx.doi.org/10.1021/ie100520r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Pińkowska, Hanna, Paweł Wolak, and Adrianna Złocińska. "Hydrothermal decomposition of xylan as a model substance for plant biomass waste – Hydrothermolysis in subcritical water." Biomass and Bioenergy 35, no. 9 (October 2011): 3902–12. http://dx.doi.org/10.1016/j.biombioe.2011.06.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mongkolpichayarak, Isara, Duangkamon Jiraroj, Wipark Anutrasakda, Chawalit Ngamcharussrivichai, Joseph S. M. Samec, and Duangamol Nuntasri Tungasmita. "Cr/MCM-22 catalyst for the synthesis of levulinic acid from green hydrothermolysis of renewable biomass resources." Journal of Catalysis 405 (January 2022): 373–84. http://dx.doi.org/10.1016/j.jcat.2021.12.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Castro, Jean F., Carolina Parra, Mauricio Yáñez-S, Jonathan Rojas, Regis Teixeira Mendonça, Jaime Baeza, and Juanita Freer. "Optimal Pretreatment of Eucalyptus globulus by Hydrothermolysis and Alkaline Extraction for Microbial Production of Ethanol and Xylitol." Industrial & Engineering Chemistry Research 52, no. 16 (April 12, 2013): 5713–20. http://dx.doi.org/10.1021/ie301859x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Pińkowska, Hanna, Paweł Wolak, and Esther Oliveros. "Hydrothermolysis of rapeseed cake in subcritical water. Effect of reaction temperature and holding time on product composition." Biomass and Bioenergy 64 (May 2014): 50–61. http://dx.doi.org/10.1016/j.biombioe.2014.03.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography