Academic literature on the topic 'Hydrostatic models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrostatic models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hydrostatic models"
Hasegawa, Tatsuhiko. "Hydrostatic models of Bok globules." Astrophysics and Space Science 119, no. 1 (January 1986): 151–54. http://dx.doi.org/10.1007/bf00648835.
Full textWhite, A. A., B. J. Hoskins, I. Roulstone, and A. Staniforth. "Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic." Quarterly Journal of the Royal Meteorological Society 131, no. 609 (July 1, 2005): 2081–107. http://dx.doi.org/10.1256/qj.04.49.
Full textGibbon, J. D., and D. D. Holm. "Extreme events in solutions of hydrostatic and non-hydrostatic climate models." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, no. 1939 (March 28, 2011): 1156–79. http://dx.doi.org/10.1098/rsta.2010.0244.
Full textDeupree, Robert G. "Multidimensional Hydrodynamic and Hydrostatic Stellar Models." Symposium - International Astronomical Union 215 (2004): 378–87. http://dx.doi.org/10.1017/s0074180900195919.
Full textDuffy, Dean G. "Hydrostatic Adjustment in Nonhydrostatic, Compressible Mesoscale Models." Monthly Weather Review 125, no. 12 (December 1997): 3357–67. http://dx.doi.org/10.1175/1520-0493(1997)125<3357:haincm>2.0.co;2.
Full textAscasibar, Y., A. C. Obreja, and A. I. Díaz. "Hydrostatic photoionization models of the Orion Bar." Monthly Notices of the Royal Astronomical Society 416, no. 2 (July 11, 2011): 1546–55. http://dx.doi.org/10.1111/j.1365-2966.2011.19151.x.
Full textZingale, M., L. J. Dursi, J. ZuHone, A. C. Calder, B. Fryxell, T. Plewa, J. W. Truran, et al. "Mapping Initial Hydrostatic Models in Godunov Codes." Astrophysical Journal Supplement Series 143, no. 2 (December 2002): 539–65. http://dx.doi.org/10.1086/342754.
Full textGuerra, Jorge E., and Paul A. Ullrich. "A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models." Geoscientific Model Development 9, no. 5 (June 1, 2016): 2007–29. http://dx.doi.org/10.5194/gmd-9-2007-2016.
Full textSavoulides, N., K. S. Breuer, S. Jacobson, and F. F. Ehrich. "Low-Order Models for Very Short Hybrid Gas Bearings." Journal of Tribology 123, no. 2 (June 16, 2000): 368–75. http://dx.doi.org/10.1115/1.1308000.
Full textKållberg, P., and A. Montani. "A case study carried out with two different NWP systems." Natural Hazards and Earth System Sciences 6, no. 5 (September 4, 2006): 755–60. http://dx.doi.org/10.5194/nhess-6-755-2006.
Full textDissertations / Theses on the topic "Hydrostatic models"
Ye, Feng. "Derivation of a two-layer non-hydrostatic shallow water model." Thesis, Water Resources Research Center, University of Hawaii at Manoa, 1995. http://hdl.handle.net/10125/21919.
Full textThesis (M. S.)--University of Hawaii at Manoa, 1995.
Includes bibliographical references (leaves 55-59).
UHM: Has both book and microform.
U.S. Geological Survey; project no. 06; grant agreement no. 14-08-0001-G2015
Zhang, Yuli. "Free wobble/nutation of the earth : a new approach for hydrostatic earth models /." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0008/MQ34243.pdf.
Full textLeague, Richard B. "Bond graph model and computer simulation of a hydrostatic drive test stand." Thesis, Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/50042.
Full textMaster of Science
incomplete_metadata
Gonzaga, F. Luis F. "Static pressure drop as affected by moisture and foreign material in rough rice." Thesis, Kansas State University, 1985. http://hdl.handle.net/2097/9843.
Full textBulian, Gabriele. "DEVELOPMENT OF ANALYTICAL NONLINEAR MODELS FOR PARAMETRIC ROLL AND HYDROSTATIC RESTORING VARIATIONS IN REGULAR AND IRREGULAR WAVES." Doctoral thesis, Università degli studi di Trieste, 2006. http://hdl.handle.net/10077/2518.
Full textParametrically excited roll motion has become a relevant technical issue, especially in recent years, due the increasing number of accidents related to this phenomenon. For this reason, its study has attracted the interest of researchers, regulatory bodies and classification societies. The objective of this thesis is the developing of nonlinear analytical models able to provide simplified tools for the analysis of parametrically excited roll motion in longitudinal regular and irregular long crested waves. The sought models will take into account the nonlinearities of restoring and of damping, in order to try filling the gap with the analytical modelling in beam sea. In addition, semi-empirical methodologies will be provided to try extending the usual static approach to ship stability based on the analysis of GZ curve, in a probabilistic framework where the propensity of the ship to exhibit restoring variations in waves is rationally accounted for. The thesis addresses three main topics: the modelling of parametric roll in regular sea (Chapter 2 to Chapter 5), the modelling of parametric roll motion in irregular long crested sea (Chapter 6 and Chapter 7) and the extension of deterministic stability criteria based on the analysis of geometrical GZ curve properties to a probabilistic framework (Chapter 8). Chapter 1 gives an introduction, whereas Chapter 9 reports a series of final remarks. For the regular sea case an analytical model is developed and analysed both in time domain and in frequency domain. In this latter case an approximate analytical solution for the nonlinear response curve in the first parametric resonance region is provided by using the approximate method of averaging. Prediction are compared with experimental results for four ships, and the analytical model is investigated with particular attention to the presence of multiple stable steady states and the inception of chaotic motions. The influence of harmonic components higher than the first one in the fluctuation of the restoring is also investigated. In the case of irregular sea, the Grim's effective wave concept is used to develop an analytical model for the long crested longitudinal sea condition, that allows for an approximate analytical determination of the stochastic stability threshold in the first parametric resonance region. Experimental results are compared with Monte Carlo simulations on a single ship, showing the necessity of a tuning factor reducing the hydrostatically predicted magnitude of parametric excitation. The non-Gaussianity of parametrically excited roll motion is also discussed. Finally, on the basis of the analytical modelling of the restoring term in irregular waves, an extension of the classical deterministic approach to ship static stability in calm water is proposed, to take into account, although is a semi-empirical form, restoring variations in waves. Classical calm water GZ curve is then extended from a deterministic quantity to a stochastic process. By limiting the discussion to the instantaneous ensemble properties of this process, it is shown how it is possible to extend any static stability criterion based on the geometrical properties of the GZ curve, in a rational probabilistic framework taking into account the actual operational area of the ship and the propensity of the ship to show restoring variations in waves. General measures of restoring variations are also discussed, such as the coefficient of variation of metacentric height, restoring lever and area under GZ. Both the short-term and long-term point of view are considered, and the method is applied to three different ships in different geographical areas.
Minář, Petr. "Návrh a optimalizace prostoru hydrostatické kapsy." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229483.
Full textMiller, Adam Charles. "Assessment of Alternate Viscoelastic Contact Models for a Bearing Interface between an Axial Piston Pump Swash Plate and Housing." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1403274866.
Full textCarlsson, Erik. "Modeling Hydrostatic Transmission in Forest Vehicle." Thesis, Linköping University, Department of Electrical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-6864.
Full textHydrostatic transmission is used in many applications where high torque at low speed is demanded. For this project a forest vehicle is at focus. Komatsu Forest would like to have a model for the pressure in the hose between the hydraulic pump and the hydraulic motor. Pressure peaks can arise when the vehicle changes speed or hit a bump in the road, but if a good model is achieved some control action can be developed to reduce the pressure peaks.
For simulation purposes a model has been developed in Matlab-Simulink. The aim has been to get the simulated values to agree as well as possible with the measured values of the pressure and also for the rotations of the pump and the motor.
The greatest challenge has been due to the fact that the pressure is a sum of two flows, if one of these simulated flows is too big the pressure will tend to plus or minus infinity. Therefore it is necessary to develop models for the rotations of the pump and the motor that stabilize the simulated pressure.
Different kinds of models and methods have been tested to achieve the present model. Physical modeling together with a black box model are used. The black box model is used to estimate the torque from the diesel engine. The probable torque from the ground has been calculated. With this setup the simulated and measured values for the pressure agrees well, but the fit for the rotations are not as good.
Marien, Lennart Christopher [Verfasser]. "Towards well-balancing the regional hydrostatic climate model REMO / Lennart Christopher Marien." Hamburg : Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, 2019. http://d-nb.info/1229625690/34.
Full textJúnior, Francival Barbosa. "Analysis of electro-hydrostatic actuator in more electric aircraft." Instituto Tecnológico de Aeronáutica, 2006. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=900.
Full textBooks on the topic "Hydrostatic models"
Haase, Günther. A physical initialization algorithm for non-hydrostatic weather prediction models using radar derived rain rates. St. Augustin [Germany]: Asgard Verlag, 2002.
Find full textCastillo, Henry A. Optimum design of isotropic monocoque and ring-stiffened circular cylindrical shells subject to external hydrostatic pressure. Monterey, California: Naval Postgraduate School, 1992.
Find full textD, Roberts Gary, Gilat Amos, and NASA Glenn Research Center, eds. Implementation of an associative flow rule including hydrostatic stress effects into the high strain rate deformation analysis of polymer matrix composites. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2003.
Find full textRobinson, David N. A hydrostatic stress-dependent anisotropic model of viscoplasticity. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Find full textQ, Tao, Verrilli M. J, and United States. National Aeronautics and Space Administration., eds. A hydrostatic stress-dependent anisotropic model of viscoplasticity. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Find full textUnited States. National Aeronautics and Space Administration., ed. Observational and numerical studies of extreme frontal scale contraction: Final report, NASA project NAG 5-2589, July 1, 1994-August 31, 1995. Raleigh, NC: Dept. of Marine, Earth, and Atmospheric Sciences, North Carolina State University, 1995.
Find full textCanada. Defence Research Establishment Atlantic. Shipmo4: An Updated User's Manual For the Shipmo Computer Program Incorporating an Extended Hydrostatics Capability and an Improved Viscous Roll Damping Model. S.l: s.n, 1987.
Find full textYudaev, Vasiliy. Hydraulics. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/996354.
Full textauthor, Kreter Fabian, Archimedes, and Archimedes, eds. Heureka!: Francisco de Mello über das Archimedische Prinzip. Hildesheim: Georg Olms Verlag, 2015.
Find full textA hydrostatic stress-dependent anisotropic model of viscoplasticity. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Find full textBook chapters on the topic "Hydrostatic models"
Satoh, Masaki. "Vertical discretization of hydrostatic models." In Atmospheric Circulation Dynamics and General Circulation Models, 572–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-13574-3_22.
Full textHasegawa, Tatsuhiko. "Hydrostatic Models of Bok Globules." In Third Asian-Pacific Regional Meeting of the International Astronomical Union, 151–54. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4630-9_35.
Full textJamet, Quentin, Etienne Mémin, Franck Dumas, Long Li, and Pierre Garreau. "Toward a Stochastic Parameterization for Oceanic Deep Convection." In Mathematics of Planet Earth, 143–57. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40094-0_6.
Full textSatoh, Masaki. "Basic equations of hydrostatic general circulation models." In Atmospheric Circulation Dynamics and General Circulation Models, 519–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-13574-3_20.
Full textCarroll, John J., Luis R-Mendez-Nuñez, and Saffet Tanrikulu. "Accurate Pressure Gradient Calculations in Hydrostatic Atmospheric Models." In Interactions between Energy Transformations and Atmospheric Phenomena. A Survey of Recent Research, 149–69. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-017-1911-7_11.
Full textFox-Rabinovitz, Michael S. "Computational Dispersion Properties of 3-D Staggered Grids for Hydrostatic and Non-Hydrostatic Atmospheric Models." In Notes on Numerical Fluid Mechanics (NNFM), 95–101. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-322-89838-8_13.
Full textYoshizaki, Masanori, Chiashi Muroi, Hisaki Eito, Sachie Kanada, Yasutaka Wakazuki, and Akihiro Hashimoto. "Simulations of Forecast and Climate Modes Using Non-Hydrostatic Regional Models." In High Resolution Numerical Modelling of the Atmosphere and Ocean, 129–39. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-49791-4_8.
Full textTalat Odman, M., and Armistead G. Russell. "Mass Conservative Coupling of Non-Hydrostatic Meteorological Models with Air Quality Models." In Air Pollution Modeling and Its Application XIII, 651–60. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4153-0_67.
Full textWolke, Ralf, Oswald Knoth, and Annette Münzenberg-St.Denis. "Online Coupling of Multiscale Chemistry-Transport Models with Non-Hydrostatic Meteorological Models." In Air Pollution Modeling and Its Application XIII, 769–70. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4153-0_98.
Full textWan, L., C. Ovalle, and L. Laiarinandrasana. "Modeling the mechanical response of reinforced rubber in taking into account heat build-up and hydrostatic stress." In Constitutive Models for Rubber XII, 53–58. London: CRC Press, 2022. http://dx.doi.org/10.1201/9781003310266-10.
Full textConference papers on the topic "Hydrostatic models"
Stelling, G. S., and J. van Kester. "Efficient Non Hydrostatic Free Surface Models." In Seventh International Conference on Estuarine and Coastal Modeling. Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40628(268)46.
Full textHao Sun, Thomas Meinlschmidt, and Harald Aschemann. "Passivity-based control of a hydrostatic transmission with unknown disturbances." In 2014 19th International Conference on Methods & Models in Automation & Robotics (MMAR). IEEE, 2014. http://dx.doi.org/10.1109/mmar.2014.6957331.
Full textCoe, Ryan G., and Diana L. Bull. "Sensitivity of a Wave Energy Converter Dynamics Model to Nonlinear Hydrostatic Models." In ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/omae2015-41993.
Full textDanh, Dang Ngoc, and Harald Aschemann. "Comparison of Estimator-Based Compensation Schemes for Hydrostatic Transmissions with Uncertainties." In 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR). IEEE, 2018. http://dx.doi.org/10.1109/mmar.2018.8486052.
Full textRitzke, Joran, Jens Windelberg, and Harald Aschemann. "Fault detection for a hydrostatic drive chain using online parameter estimation." In 2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR). IEEE, 2012. http://dx.doi.org/10.1109/mmar.2012.6347890.
Full textBöhle, M., Y. Gu, and A. Schimpf. "Two Flow Models for Designing Hydrostatic Bearings With Porous Material." In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-4657.
Full textHasebe, Masanobu, and Shigeru Tabeta. "Unsteady Buoyant Jet Simulations Using Dynamic Connection Scheme of Hydrostatic and Non-Hydrostatic Zone." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20666.
Full textPeres, G., F. Reale, and L. Golub. "Hydrostatic models of X-ray coronal loops observed by NIXT." In Electromechanical Coupling of the Solar Atmosphere. AIP, 1992. http://dx.doi.org/10.1063/1.42871.
Full textDanh, Dang Ngoc, and Harald Aschemann. "Tracking Differentiator-Based Sliding Mode Velocity Control of a Hydrostatic Transmission." In 2021 25th International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE, 2021. http://dx.doi.org/10.1109/mmar49549.2021.9528444.
Full textAschemann, Harald, and Julia Kersten. "Observer-based decentralised control of a wind turbine with a hydrostatic transmission." In 2015 20th International Conference on Methods and Models in Automation and Robotics (MMAR ). IEEE, 2015. http://dx.doi.org/10.1109/mmar.2015.7283991.
Full textReports on the topic "Hydrostatic models"
Hodges, Ben R. Evolution of Internal Waves in Hydrostatic Models. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada625163.
Full textHodges, Ben R. Evolution of Internal Waves in Hydrostatic Models. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada626974.
Full textFan, Yalin, Zhitao Yu, and Fengyan Shi. Are Hydrostatic Models Still Capable of Simulating Oceanic Fronts. Fort Belvoir, VA: Defense Technical Information Center, November 2016. http://dx.doi.org/10.21236/ada640860.
Full textAllen, John S. Effects of Turbulence Parameterization Schemes in Hydrostatic and Nonhydrostatic Shelf Circulation Models. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada625208.
Full textAllen, John S. Effects of Turbulence Parameterization Schemes in Hydrostatic and Nonhydrostatic Shelf Circulation Models. Fort Belvoir, VA: Defense Technical Information Center, September 2002. http://dx.doi.org/10.21236/ada627034.
Full textTandon, Samarth, Pablo Cazenave, and Ming Gao. PR-328-103602-R01 Improved Site-Selection Modeling by Correlating ILI with Operational-Geotechnical Data. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 2017. http://dx.doi.org/10.55274/r0010854.
Full textGallacher, Patrick C. A Regional Modeling Study of the South China Sea with High Resolution Hydrostatic and Nonhydrostatic Nested Models of the Luzon Strait. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada573055.
Full textGallacher, Patrick C. A Regional Modeling Study of the South China Sea with High Resolution Hydrostatic and Nonhydrostatic Nested Models of the Luzon Strait. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada573280.
Full textBowlin, Elizabeth, Puneet Agarwal, and Rhett Dotson. PR-201-153718-R02 Integrity Assessment of DTI Pipelines Using High Resolution NDE. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 2018. http://dx.doi.org/10.55274/r0011480.
Full textBettin, Giorgia, David Lord, and David Keith Rudeen. SPR Hydrostatic Column Model Verification and Validation. Office of Scientific and Technical Information (OSTI), October 2015. http://dx.doi.org/10.2172/1235644.
Full text