Journal articles on the topic 'Hydrological'

To see the other types of publications on this topic, follow the link: Hydrological.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Hydrological.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Javadinejad, Safieh. "A review on homogeneity across hydrological regions." Resources Environment and Information Engineering 3, no. 1 (2021): 124–37. http://dx.doi.org/10.25082/reie.2021.01.004.

Full text
Abstract:
Hydrologic classification is the method of scientifically arranging streams, rivers or catchments into groups with the most similarity of flow regime features and use it to recognize hydrologically homogenous areas. Previous homogeneous attempts were depended on overabundance of hydrologic metrics that considers features of variability of flows that are supposed to be meaningful in modelling physical progressions in the basins. This research explains the techniques of hydrological homogeneity through comparing past and existing methods; in addition it provides a practical framework for hydrological homogeneity that illustrates serious elements of the classification process.
APA, Harvard, Vancouver, ISO, and other styles
2

Visser-Quinn, Annie, Lindsay Beevers, and Sandhya Patidar. "Replication of ecologically relevant hydrological indicators following a modified covariance approach to hydrological model parameterization." Hydrology and Earth System Sciences 23, no. 8 (August 9, 2019): 3279–303. http://dx.doi.org/10.5194/hess-23-3279-2019.

Full text
Abstract:
Abstract. Hydrological models can be used to assess the impact of hydrologic alteration on the river ecosystem. However, there are considerable limitations and uncertainties associated with the replication of ecologically relevant hydrological indicators. Vogel and Sankarasubramanian's 2003 (Water Resources Research) covariance approach to model evaluation and parameterization represents a shift away from algorithmic model calibration with traditional performance measures (objective functions). Using the covariance structures of the observed input and simulated output time series, it is possible to assess whether the selected hydrological model is able to capture the relevant underlying processes. From this plausible parameter space, the region of parameter space which best captures (replicates) the characteristics of a hydrological indicator may be identified. In this study, a modified covariance approach is applied to five hydrologically diverse case study catchments with a view to replicating a suite of ecologically relevant hydrological indicators identified through catchment-specific hydroecological models. The identification of the plausible parameter space (here n≈20) is based on the statistical importance of these indicators. Evaluation is with respect to performance and consistency across each catchment, parameter set, and the 40 ecologically relevant hydrological indicators considered. Timing and rate of change indicators are the best and worst replicated respectively. Relative to previous studies, an overall improvement in consistency is observed. This study represents an important advancement towards the robust application of hydrological models for ecological flow studies.
APA, Harvard, Vancouver, ISO, and other styles
3

Lee, Eunhyung, and Sanghyun Kim. "Characterization of soil moisture response patterns and hillslope hydrological processes through a self-organizing map." Hydrology and Earth System Sciences 25, no. 11 (November 8, 2021): 5733–48. http://dx.doi.org/10.5194/hess-25-5733-2021.

Full text
Abstract:
Abstract. Hydrologic events can be characterized as particular combinations of hydrological processes on a hillslope scale. To configure hydrological mechanisms, we analyzed a dataset using an unsupervised machine learning algorithm to cluster the hydrologic events based on the dissimilarity distances between the weighting components of a self-organizing map (SOM). The time series of soil moisture was measured at 30 points (at 10 locations with three different depths) for 356 rainfall events on a steep, forested hillslope between 2007 and 2016. The soil moisture features for hydrologic events can be effectively represented by the antecedent soil moisture, soil moisture difference index, and standard deviation of the peak-to-peak time between rainfall and soil moisture response. Five clusters were delineated for hydrologically meaningful event classifications in the SOM representation. The two-dimensional spatial weighting patterns in the SOM provided more insights into the relationships between rainfall characteristics, antecedent wetness, and soil moisture response at different locations and depths. The distinction of the classified events could be explained by several rainfall features and antecedent soil moisture conditions that resulted in different patterns attributable to combinations of hillslope hydrological processes, vertical flow, and lateral flow along either surface or subsurface boundaries for the upslope and downslope areas.
APA, Harvard, Vancouver, ISO, and other styles
4

Zuo, Q., and S. Liang. "Effects of dams on river flow regime based on IHA/RVA." Proceedings of the International Association of Hydrological Sciences 368 (May 7, 2015): 275–80. http://dx.doi.org/10.5194/piahs-368-275-2015.

Full text
Abstract:
Abstract. The river hydrologic regime is a driving force of the river ecosystem. Operation of dams and sluices has significant impacts on rivers’ hydrological situation. Taking the example of the Shaying River, the Jieshou hydrologic section was selected to study the influence of the sluice and all its upstream dams on the hydrologic regime. Using 55 years of measured daily flows at Jieshou hydrologic station, the hydrological date were divided into two series as pre- and post-impact periods. Based on the IHA, the range of variability in 33 flow parameters was calculated, and the hydrologic alteration associated with dams and sluices operation was quantified. Using the RVA method, hydrologic alteration at the stream gauge site was assessed to demonstrate the influence of dams on the hydrological condition. The results showed that dams have a strong influence on the regime; the river eco-hydrological targets calculated in this study can afford some support for water resources and ecosystem management of Shaying River.
APA, Harvard, Vancouver, ISO, and other styles
5

Haché, Mario, Taha B. M. J. Ouarda, Pierre Bruneau, and Bernard Bobée. "Estimation régionale par la méthode de l'analyse canonique des corrélations: comparaison des types de variables hydrologiques." Canadian Journal of Civil Engineering 29, no. 6 (December 1, 2002): 899–910. http://dx.doi.org/10.1139/l02-085.

Full text
Abstract:
It is often necessary to estimate extreme events at sites where little or no hydrometric data are available. In such cases, one may use a regional estimation procedure, utilizing data available from other sites in the same hydrologic region. In general, a regional flood frequency procedure consists of two steps: determination of hydrologically homogeneous region and regional estimation. This paper presents the development of a regional flood frequency procedure based on canonical correlation analysis and multiple regression: (i) the canonical correlation analysis allows us to link a set of hydrological variables and a set of physiographical and (or) meteorological variables and, therefore, to determine the hydrological neighborhood of an ungauged site; (ii) the multiple regression allows us to transfer data from sites of the homogeneous region to the target site. The developed methodology was applied to the Saint-Maurice river region (Quebec, Canada). Using a jackknife procedure, several pairs of hydrological variables were compared to identify the most appropriate grouping. Key words: regionalization, frequency analysis, canonical correlation analysis, multiple regression.
APA, Harvard, Vancouver, ISO, and other styles
6

Vu, T. T., J. Kiesel, B. Guse, and N. Fohrer. "Towards an improved understanding of hydrological change – linking hydrologic metrics and multiple change point tests." Journal of Water and Climate Change 10, no. 4 (November 16, 2018): 743–58. http://dx.doi.org/10.2166/wcc.2018.068.

Full text
Abstract:
Abstract Understanding the connections between climate, anthropogenic impacts, and hydrology is fundamental for assessing future climate change. However, a comprehensive methodology is lacking to understand significant changes in the discharge regime and their causes. We propose an approach that links change point tests with hydrologic metrics applied to two Vietnamese catchments where both climatic and anthropogenic changes are observed. The change points in discharge series are revealed by six widely used change point tests. Then, 171 hydrologic metrics are investigated to evaluate all possible hydrological changes that occurred between the pre- and post-change point period. The tests showed sufficient capabilities to detect hydrological changes caused by precipitation alterations and damming. Linking the change point tests to the hydrological metrics had three benefits: (1) the significance of each detected change point was evaluated, (2) we found which test responds to which hydrologic metric, and (3) we were able to disentangle the hydrological impacts of the climatic and anthropogenic changes. Due to its objectivity, the presented method can improve the interpretation of anthropogenic changes and climate change impacts on the hydrological system.
APA, Harvard, Vancouver, ISO, and other styles
7

Swannack, Todd, Jeffery Wozniak, William E. Grant, and Stephen E. Davis. "A Tool for Rapid Assessment of Hydrological Connectivity Patterns in Texas Coastal Wetlands: Linkages between Tidal Creeks and Coastal Ponds." Texas Water Journal 10, no. 1 (June 5, 2019): 46–59. http://dx.doi.org/10.21423/twj.v10i1.7073.

Full text
Abstract:
Coastal salt marshes are heterogeneous, spatially complex ecosystems. The degree of hydrological connectivity in these systems can be a significant driver in the flux of energy, organisms, and nutrients across the marsh landscape. In tidally driven systems, the frequency and magnitude of hydrological connection events results in the creation of a matrix of intermittently connected coastal wetland habitats, some of which may be hydrologically isolated or partially drained at any given time. Previous approaches to understanding landscape-level hydrologic connectivity patterns have required either intensive long-term monitoring or spatially explicit modeling. In this paper, we first describe a 13-month field study in the Guadalupe Estuary of the Texas Gulf Coast that linked hydrological connectivity patterns between a saltwater pond to water levels in an adjacent tidal creek and nearby San Antonio Bay. We next describe the integration of these field data with high-resolution digital elevation models and environmental parameters to develop a spatially explicit model that is a Simulation of Landscape-level Oscillations in Salt Marsh Hydroperiod (SLOSH). We evaluated the ability of SLOSH to simulate trends in landscape-level patterns of hydrological connectivity between a tidal creek and an inland marsh pond. Magnitude and periodicity of simulated and observed water-level fluctuations in the pond were similar. Highest creek water levels, resulting in high frequency and duration of hydrological connectivity with the pond, corresponded with the highest bay water levels, which occurred during September and October. Lowest creek water levels, resulting in low frequency and duration of hydrological connectivity, corresponded with the lowest bay water levels, which occurred during December through February. By simulating the pulsing structure of salt marsh hydrology, SLOSH creates the foundation on which to assess how additional drivers (precipitation, wind, freshwater inflows, etc.) can influence coastal marsh hydrology and overall ecology. Citation: Swannack TM, Wozniak JR, Grant WE, Davis SE III. 2019. A tool for rapid assessment of hydrological connectivity patterns in Texas coastal wetlands: linkages between tidal creeks and coastal ponds. Texas Water Journal. 10(1):46-59. Available from: https://doi.org/10.21423/twj.v10i1.7073.
APA, Harvard, Vancouver, ISO, and other styles
8

Maio, Joanne Di, and Lynda D. Corkum. "Relationship between the spatial distribution of freshwater mussels (Bivalvia: Unionidae) and the hydrological variability of rivers." Canadian Journal of Zoology 73, no. 4 (April 1, 1995): 663–71. http://dx.doi.org/10.1139/z95-078.

Full text
Abstract:
Hydrological variability refers to the differences in the patterns of flow among rivers. Drainage basins in southwestern Ontario and southeastern Michigan were selected a priori using records of flow variability. Hydrological variability was then used as a macrohabitat measure of mussel habitat. The distribution and relative abundance of mussels were determined in drainage basins of two hydrologically different types, three event responsive (i.e., hydrologically flashy) and three stable (i.e., hydrologically stable). Eleven event and 10 stable sites were sampled once each from 18 to 30 August 1993. Fifteen species of unionids were found in the study area (13 in event rivers and 9 in stable rivers), with different relative abundances in each regime. Multivariate analyses revealed that there are distinct mussel communities based on the hydrological variability of the river. Amblema plicata, Pyganodon grandis, and Fusconaia flava characterized event sites and Elliptio dilatata, Lampsilis radiata, and Lasmigona costata characterized stable sites. We propose that some unionids can be associated with river types with specific hydrological features and their distribution can be predicted using flow-related stream attributes.
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Gang, Wenjuan Hua, Xing Fang, Chuanhai Wang, and Xiaoning Li. "Distributed-Framework Basin Modeling System: II. Hydrologic Modeling System." Water 13, no. 5 (March 9, 2021): 744. http://dx.doi.org/10.3390/w13050744.

Full text
Abstract:
A distributed-framework hydrologic modeling system (DF-HMS) is a primary and significant component of a distributed-framework basin modeling system (DFBMS), which simulates the hydrological processes and responses after rainfall at the basin scale, especially for non-homogenous basins. The DFBMS consists of 11 hydrological feature units (HFUs) involving vertical and horizontal geographic areas in a basin. Appropriate hydrologic or hydraulic methods are adopted for different HFUs to simulate corresponding hydrological processes. The digital basin generation model is first developed to determine the essential information for hydrologic and hydraulic simulation. This paper mainly describes two significant HFUs contained in the DF-HMS for hydrologic modeling: Hilly sub-watershed and plain overland flow HFUs. A typical hilly area application case study in the Three Gorges area is introduced, which demonstrates DF-HMS’s good performance in comparison with the observed streamflow at catchment outlets.
APA, Harvard, Vancouver, ISO, and other styles
10

Faye, Cheikh. "Rainfall and Discharge Variability in the Senegal River Basin Based on the IHA/RVA." Indonesian Journal of Social and Environmental Issues (IJSEI) 4, no. 1 (April 30, 2023): 100–116. http://dx.doi.org/10.47540/ijsei.v4i1.711.

Full text
Abstract:
The hydrological regime of a river is a driving force of its ecosystem. The operation of dams and locks has significant impacts on the hydrological situation of rivers. The objective of this study was to study the change and variability of precipitation and hydrological data in the Senegal River basin and to assess the change in the discharge regime of the Senegal River caused by the operation of the Manantali hydroelectric dam. Based on the IHA (Indicators of Hydrologic Alteration), a range of variability of thirty-three hydrological parameters was calculated and the hydrological alteration associated with the functioning of the dam was quantified. Using the RVA (Range of Variability Approach) method, the hydrological alteration at the Bakel site was evaluated and showed the influence of the dam on the hydrological state. The results showed a strong influence of the dam on the hydrological regime. The fluvial eco-hydrological objectives calculated in this study can constitute certain support for the management of water resources and ecosystems of the Senegal River basin.
APA, Harvard, Vancouver, ISO, and other styles
11

Zhang, Lei, Desmond Ofosu Anim, and Amos T. Kabo-Bah. "Integration of Geographical Information Science (GIS) Technology in Hydrological Modeling: A Critical Review." Advanced Materials Research 838-841 (November 2013): 2284–91. http://dx.doi.org/10.4028/www.scientific.net/amr.838-841.2284.

Full text
Abstract:
Current trends in hydrological modeling depend on spatial datasets, complex computational tasks and representation. As the need for the development of hydrological modeling capabilities have evolved, its integration with geographic information system (GIS) has provided a significant contribution to the efforts of hydrologic models. It serves the role of providing support in data capturing and improving hydrological modeling efforts by giving tools for effective analysis. This integration of GIS technology and hydrological modeling has resulted in great value and presents potential benefits to modelers and engineers. This paper reviewed critically, current trends of GIS technology in hydrological modeling. It also discussed the existing drawbacks as well as reviewed the future trends and prospects of this integration.
APA, Harvard, Vancouver, ISO, and other styles
12

Singh, Shailesh Kumar, and András Bárdossy. "Calibration of hydrological models on hydrologically unusual events." Advances in Water Resources 38 (March 2012): 81–91. http://dx.doi.org/10.1016/j.advwatres.2011.12.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Liu, Yue, Jian-yun Zhang, Amgad Elmahdi, Qin-li Yang, Xiao-xiang Guan, Cui-shan Liu, Rui-min He, and Guo-qing Wang. "Transferability of a lumped hydrologic model, the Xin'anjiang model based on similarity in climate and geography." Water Supply 21, no. 5 (February 25, 2021): 2191–201. http://dx.doi.org/10.2166/ws.2021.055.

Full text
Abstract:
Abstract Hydrological experiments are essential to understanding the hydrological cycles and promoting the development of hydrologic models. Model parameter transfers provide a new way of doing hydrological forecasts and simulations in ungauged catchments. To study the transferability of model parameters for hydrological modelling and the influence of parameter transfers on hydrological simulations, the Xin'anjiang model (XAJ model), which is a lumped hydrologic model based on a saturation excess mechanism that has been widely applied in different climate regions of the world, was applied to a low hilly catchment in eastern China, the Chengxi experimental watershed (CXEW). The suitability of the XAJ model was tested in the eastern branch catchment of CXEW and the calibrated model parameters of the eastern branch catchment were then transferred to the western branch catchment and the entire watershed of the CXEW. The results show that the XAJ model performs well for the calibrated eastern branch catchment at both daily and monthly scales on hydrological modelling with the NSEs over 0.6 and the REs less than 2.0%. Besides, the uncalibrated catchments of the western branch catchment and the entire watershed of the CSEW share similarities in climate (the precipitation) and geography (the soil texture and vegetation cover) with the calibrated catchment, the XAJ model and the transferred model parameters can capture the main features of the hydrological processes in both uncalibrated catchments (western catchments and the entire watershed). This transferability of the model is useful for a scarce data region to simulate the hydrological process and its forecasting.
APA, Harvard, Vancouver, ISO, and other styles
14

Pla-Rabes, Sergi, Manuel Toro, Bart Van De Vijver, Carlos Rochera, Juan Antonio Villaescusa, Antonio Camacho, and Antonio Quesada. "Stability and endemicity of benthic diatom assemblages from different substrates in a maritime stream on Byers Peninsula, Livingston Island, Antarctica: the role of climate variability." Antarctic Science 25, no. 2 (March 20, 2013): 254–69. http://dx.doi.org/10.1017/s0954102012000922.

Full text
Abstract:
AbstractDiatom assemblages from four different substrates from a stream on Byers Peninsula were analysed during the summer. The substrate type was the main factor explaining the variability in the diatom assemblages. Sandy biofilms showed a higher diversity and a greater number of endemic species. Two main hydrological regimes were observed: 1) a hydrologically unstable period with high variability in stream flow and successive freezing and thawing periods, 2) a late summer hydrologically stable period, characterized by low stream velocity and variability. The structure of the diatom communities was different between the two hydrological periods, although the substrate modulated the difference. The diatom assemblages showed low similarity among the substrates and high dominance of endemic species during early summer. The late summer community showed high dominance of motile cosmopolitan species on all substrate types. As the length of both hydrological regimes would ultimately be driven by climatic variability, the predicted climate warming could reduce overall stream diversity. Hence, subtle changes could alter the length of both hydrological periods. The relationship between diatom species association with different substrates and hydrological regimes could be relevant for tracking past climate variability using diatom palaeorecords.
APA, Harvard, Vancouver, ISO, and other styles
15

Abbas, Ather, Laurie Boithias, Yakov Pachepsky, Kyunghyun Kim, Jong Ahn Chun, and Kyung Hwa Cho. "AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods." Geoscientific Model Development 15, no. 7 (April 8, 2022): 3021–39. http://dx.doi.org/10.5194/gmd-15-3021-2022.

Full text
Abstract:
Abstract. Machine learning has shown great promise for simulating hydrological phenomena. However, the development of machine-learning-based hydrological models requires advanced skills from diverse fields, such as programming and hydrological modeling. Additionally, data pre-processing and post-processing when training and testing machine learning models are a time-intensive process. In this study, we developed a python-based framework that simplifies the process of building and training machine-learning-based hydrological models and automates the process of pre-processing hydrological data and post-processing model results. Pre-processing utilities assist in incorporating domain knowledge of hydrology in the machine learning model, such as the distribution of weather data into hydrologic response units (HRUs) based on different HRU discretization definitions. The post-processing utilities help in interpreting the model's results from a hydrological point of view. This framework will help increase the application of machine-learning-based modeling approaches in hydrological sciences.
APA, Harvard, Vancouver, ISO, and other styles
16

Yu, Cui Song, and Xiao Na Guo. "Hydrological Frequency Calculation Method Study of Urban Rivers Runoff under Changing Environment." Applied Mechanics and Materials 170-173 (May 2012): 2023–26. http://dx.doi.org/10.4028/www.scientific.net/amm.170-173.2023.

Full text
Abstract:
The consistency of hydrological series has been destroyed by the impact of human activities and climate change. Hydrological series is consist of certain component and random element. The random and certain components of hydrological series are identified and separated through statistic analysis. The certain element is determined by using hydrologic model while the consistancy of random element is confirmed directly by hydrological frequency curve. And then add them together. The runoff series of the Huangtai Hydrometric Station in the Xiaoqing River is for example. It proves effective and feasible and the result accord with the reality of the basin.
APA, Harvard, Vancouver, ISO, and other styles
17

Nordin, N. A. S., Z. Hassan, N. M. Noor, A. N. Kamarudzaman, and A. S. A. Ahmadni. "Assessing Hydrological Response in the Timah-Tasoh Reservoir Sub-Catchments: Calibration and Validation using the HEC-HMS Model." IOP Conference Series: Earth and Environmental Science 1303, no. 1 (February 1, 2024): 012029. http://dx.doi.org/10.1088/1755-1315/1303/1/012029.

Full text
Abstract:
Abstract Hydrological modelling is a tool that is frequently used for assessing the hydrological response of a basin as a result of precipitation. It is also a vital component as water resources and environmental planning management. The study deals with calibrating and validating the hydrological response in the sub-catchments of the Timah-Tasoh reservoir using the hydrological model named Hydrologic Engineering Center – Hydrologic Modelling System (HEC-HMS). This study uses the SCS Curve Number, the SCS Unit Hydrograph, the constant monthly baseflow, and lag routing for the model development. The model was simulated for ten (10) years for calibration and nine (9) years for validation. The model calibration and validation efficiency were assessed using the coefficient of correlation (R). The findings show that the HEC-HMS model performs satisfactorily in simulating the observed daily inflow series, with the R-value of 0.4902-0.5139 during calibration and 0.5047-0.5559 during validation process. Thus, the result obtained from this study can be used as a preliminary development of hydrological modelling of the catchment of the Timah-Tasoh reservoir and can be used for extend application such as water inflow forecasting, impact of land use to the reservoir and others.
APA, Harvard, Vancouver, ISO, and other styles
18

Shu, Lele, Paul Ullrich, Xianhong Meng, Christopher Duffy, Hao Chen, and Zhaoguo Li. "rSHUD v2.0: advancing the Simulator for Hydrologic Unstructured Domains and unstructured hydrological modeling in the R environment." Geoscientific Model Development 17, no. 2 (January 19, 2024): 497–527. http://dx.doi.org/10.5194/gmd-17-497-2024.

Full text
Abstract:
Abstract. Hydrological modeling is a crucial component in hydrology research, particularly for projecting future scenarios. However, achieving reproducibility and automation in distributed hydrological modeling research for modeling, simulation, and analysis is challenging. This paper introduces rSHUD v2.0, an innovative, open-source toolkit developed in the R environment to enhance the deployment and analysis of the Simulator for Hydrologic Unstructured Domains (SHUD). The SHUD is an integrated surface–subsurface hydrological model that employs a finite-volume method to simulate hydrological processes at various scales. The rSHUD toolkit includes pre- and post-processing tools, facilitating reproducibility and automation in hydrological modeling. The utility of rSHUD is demonstrated through case studies of the Shale Hills Critical Zone Observatory in the USA and the Waerma watershed in China. The rSHUD toolkit's ability to quickly and automatically deploy models while ensuring reproducibility has facilitated the implementation of the Global Hydrological Data Cloud (https://ghdc.ac.cn, last access: 1 September 2023), a platform for automatic data processing and model deployment. This work represents a significant advancement in hydrological modeling, with implications for future scenario projections and spatial analysis.
APA, Harvard, Vancouver, ISO, and other styles
19

P. C., Shakti, Tsuyoshi Nakatani, and Ryohei Misumi. "Hydrological Simulation of Small River Basins in Northern Kyushu, Japan, During the Extreme Rainfall Event of July 5–6, 2017." Journal of Disaster Research 13, no. 2 (March 19, 2018): 396–409. http://dx.doi.org/10.20965/jdr.2018.p0396.

Full text
Abstract:
Extreme rainfall and associated flooding are common during the summer in Japan. Heavy rain caused extensive damage in many parts of Kyushu, Japan, on July 5–6, 2017. Many small mountainous river basins were subject to the core of this heavy rainfall event and were flooded, but no hydrological measurements were taken in most of these flooded basins during the event. There are few gauging stations in this mountainous region, and most that do exist are designed to monitor the larger watersheds. Consequently, it is difficult to determine the hydrological properties of the small subbasins within these larger watersheds. Therefore, to improve our understanding of the basic hydrological processes that affect small ungauged mountain river basins during periods of intense rainfall, a quasi-distributed model (i.e. the Hydrologic Engineering Center-Hydrologic Modeling System, HEC-HMS) was used in this study. The Hikosan (area: 65 km2) and Akatani (area: 21 km2) mountainous river basins were selected for the hydrological simulations. The model was validated using the Hikosan River basin because observational data are available from the outlet of this basin. However, there is no record of any hydrological observations for the Akatani River basin. Therefore, reference parameters from the Hikosan River basin were used for hydrological analysis of the Akatani River basin. This was possible because the basins are close to one another and have similar physiographic and topographic properties. The simulations of both basins, and the associated uncertainties, are discussed in detail in this paper. Based on the hydrological simulations, an attempt was made to analyze the maximum flood discharge caused by the event. The results generated using this approach to hydrological simulations in small ungauged basins could contribute to the management of water resources in these and other river basins during future extreme rain events.
APA, Harvard, Vancouver, ISO, and other styles
20

Krzeminska, D. M., T. A. Bogaard, J. P. Malet, and L. P. H. van Beek. "A model of hydrological and mechanical feedbacks of preferential fissure flow in a slow-moving landslide." Hydrology and Earth System Sciences 17, no. 3 (March 5, 2013): 947–59. http://dx.doi.org/10.5194/hess-17-947-2013.

Full text
Abstract:
Abstract. The importance of hydrological processes for landslide activity is generally accepted. However, the relationship between precipitation, hydrological responses and movement is not straightforward. Groundwater recharge is mostly controlled by the hydrological material properties and the structure (e.g., layering, preferential flow paths such as fissures) of the unsaturated zone. In slow-moving landslides, differential displacements caused by the bedrock structure complicate the hydrological regime due to continuous opening and closing of the fissures, creating temporary preferential flow paths systems for infiltration and groundwater drainage. The consecutive opening and closing of fissure aperture control the formation of a critical pore water pressure by creating dynamic preferential flow paths for infiltration and groundwater drainage. This interaction may explain the seasonal nature of the slow-moving landslide activity, including the often observed shifts and delays in hydrological responses when compared to timing, intensity and duration of precipitation. The main objective of this study is to model the influence of fissures on the hydrological dynamics of slow-moving landslide and the dynamic feedbacks between fissures, hydrology and slope stability. For this we adapt the spatially distributed hydrological and slope stability model (STARWARS) to account for geotechnical and hydrological feedbacks, linking between hydrological response of the landside and the dynamics of the fissure network and applied the model to the hydrologically controlled Super-Sauze landslide (South French Alps).
APA, Harvard, Vancouver, ISO, and other styles
21

Krzeminska, D. M., T. A. Bogaard, J. P. Malet, and L. P. H van Beek. "A model of hydrological and mechanical feedbacks of preferential fissure flow in a slow-moving landslide." Hydrology and Earth System Sciences Discussions 9, no. 10 (October 1, 2012): 11161–97. http://dx.doi.org/10.5194/hessd-9-11161-2012.

Full text
Abstract:
Abstract. The importance of hydrological processes for landslide activity is generally accepted. However, the relationship between precipitation, hydrological responses and movement is not straightforward. Groundwater recharge is mostly controlled by the hydrological material properties and the structure (e.g. layering, preferential flow paths such as fissures) of the unsaturated zone. In slow-moving landslides, differential displacements caused by the bedrock structure complicate the hydrological regime due to continuous opening and closing of the fissures, creating temporary preferential flow paths systems for infiltration and groundwater drainage. The consecutive opening and closing of fissure aperture control the formation of a critical pore water pressure by creating dynamic preferential flow paths for infiltration and groundwater drainage. This interaction may explain the seasonal nature of the slow-moving landslide activity, including the often observed shifts and delays in hydrological responses when compared to timing, intensity and duration of precipitation. The main objective of this study is to model the influence of fissures on the hydrological dynamics of slow-moving landslide and the dynamic feedbacks between fissures, hydrology and slope stability. For this we adapt the spatially distributed hydrological and slope stability model (STARWARS) to account for geotechnical and hydrological feedbacks, linking between hydrological response of the landside and the dynamics of the fissure network and applied the model to the hydrologically controlled Super-Sauze landslide (South French Alps).
APA, Harvard, Vancouver, ISO, and other styles
22

Jehn, Florian U., Konrad Bestian, Lutz Breuer, Philipp Kraft, and Tobias Houska. "Using hydrological and climatic catchment clusters to explore drivers of catchment behavior." Hydrology and Earth System Sciences 24, no. 3 (March 5, 2020): 1081–100. http://dx.doi.org/10.5194/hess-24-1081-2020.

Full text
Abstract:
Abstract. The behavior of every catchment is unique. Still, we seek for ways to classify them as this helps to improve hydrological theories. In this study, we use hydrological signatures that were recently identified as those with the highest spatial predictability to cluster 643 catchments from the CAMELS dataset. We describe the resulting clusters concerning their behavior, location and attributes. We then analyze the connections between the resulting clusters and the catchment attributes and relate this to the co-variability of the catchment attributes in the eastern and western US. To explore whether the observed differences result from clustering catchments by either climate or hydrological behavior, we compare the hydrological clusters to climatic ones. We find that for the overall dataset climate is the most important factor for the hydrological behavior. However, depending on the location, either aridity, snow or seasonality has the largest influence. The clusters derived from the hydrological signatures partly follow ecoregions in the US and can be grouped into four main behavior trends. In addition, the clusters show consistent low flow behavior, even though the hydrological signatures used describe high and mean flows only. We can also show that most of the catchments in the CAMELS dataset have a low range of hydrological behaviors, while some more extreme catchments deviate from that trend. In the comparison of climatic and hydrological clusters, we see that the widely used Köppen–Geiger climate classification is not suitable to find hydrologically similar catchments. However, in comparison with novel, hydrologically based continuous climate classifications, some clusters follow the climate classification very directly, while others do not. From those results, we conclude that the signal of the climatic forcing can be found more explicitly in the behavior of some catchments than in others. It remains unclear if this is caused by a higher intra-catchment variability of the climate or a higher influence of other catchment attributes, overlaying the climate signal. Our findings suggest that very different sets of catchment attributes and climate can cause very similar hydrological behavior of catchments – a sort of equifinality of the catchment response.
APA, Harvard, Vancouver, ISO, and other styles
23

Cushman, S. "Hydrological." Interdisciplinary Studies in Literature and Environment 12, no. 1 (January 1, 2005): 224. http://dx.doi.org/10.1093/isle/12.1.224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zhao, Liang, Yu Liu, and Yong Luo. "Assessing Hydrological Connectivity Mitigated by Reservoirs, Vegetation Cover, and Climate in Yan River Watershed on the Loess Plateau, China: The Network Approach." Water 12, no. 6 (June 18, 2020): 1742. http://dx.doi.org/10.3390/w12061742.

Full text
Abstract:
Hydrologic connectivity is related to the water-mediated transport of matter, energy, and organisms within or between elements of the hydrologic cycle. It reflects the hydrological consequences caused by topographic, land cover, and climatic factors, and is an important tool to characterize and predict the hydrological responses to climate and landscape change. In the Loess Plateau region, a large number of reservoirs have been constructed to trap sediment and storage water for drinking, irrigation, and industries. The land cover has been significantly reshaped in the past decades. These changes may alter the watershed hydrological connectivity. In this study, we mapped the spatial pattern of hydrological connectivity with consideration of reservoir impedances, mitigation of climate, and land cover in the Yan River watershed on the Loess Plateau by using the network index (NI) approach that is based on topographical wetness index. Three wetness indices were used, i.e., topographical wetness index (TWI), SAGA (System for Automated Geoscientific Analyses) wetness index (WIS), and wetness index adopted aridity index (AI) determined by precipitation and evapotranspiration (WIPE). In addition, the effective catchment area (ECA) was also employed to reveal the connectivity of reservoirs and river networks to water source areas. Results show that ECA of reservoirs and rivers account for 35% and 65%, respectively; the hydrological connectivity to the reservoir was lower than that to the river networks. The normalized hydrological connectivity revealed that the connectivity to river channels maintained the same distribution pattern but with a decreased range after construction of reservoirs. As revealed by comparing the spatial patterns of hydrological connectivity quantified by NI based on WIS and WIPE respectively, vegetation cover patterns had significantly alternated watershed hydrological connectivity. These results imply a decreased volume of flow in river channels after reservoir construction, but with same temporal period of flow dynamic. It is illustrated that the network index (NI) is suitable to quantify the hydrological connectivity and it is dynamic in the context of human intervention and climate change.
APA, Harvard, Vancouver, ISO, and other styles
25

P. C., Shakti, Tsuyoshi Nakatani, and Ryohei Misumi. "The Role of the Spatial Distribution of Radar Rainfall on Hydrological Modeling for an Urbanized River Basin in Japan." Water 11, no. 8 (August 16, 2019): 1703. http://dx.doi.org/10.3390/w11081703.

Full text
Abstract:
Recently, the use of gridded rainfall data with high spatial resolutions in hydrological applications has greatly increased. Various types of radar rainfall data with varying spatial resolutions are available in different countries worldwide. As a result of the variety in spatial resolutions of available radar rainfall data, the hydrological community faces the challenge of selecting radar rainfall data with an appropriate spatial resolution for hydrological applications. In this study, we consider the impact of the spatial resolution of radar rainfall on simulated river runoff to better understand the impact of radar resolution on hydrological applications. Very high-resolution polarimetric radar rainfall (XRAIN) data are used as input for the Hydrologic Engineering Center–Hydrologic Modeling System (HEC-HMS) to simulate runoff from the Tsurumi River Basin, Japan. A total of 20 independent rainfall events from 2012–2015 were selected and categorized into isolated/convective and widespread/stratiform events based on their distribution patterns. First, the hydrological model was established with basin and model parameters that were optimized for each individual rainfall event; then, the XRAIN data were rescaled at various spatial resolutions to be used as input for the model. Finally, we conducted a statistical analysis of the simulated results to determine the optimum spatial resolution for radar rainfall data used in hydrological modeling. Our results suggest that the hydrological response was more sensitive to isolated or convective rainfall data than it was to widespread rain events, which are best simulated at ≤1 km and ≤5 km, respectively; these results are applicable in all sub-basins of the Tsurumi River Basin, except at the river outlet.
APA, Harvard, Vancouver, ISO, and other styles
26

Schulze, R. E. "Impacts of global climate change in a hydrologically vulnerable region: challenges to South African hydrologists." Progress in Physical Geography: Earth and Environment 21, no. 1 (March 1997): 113–36. http://dx.doi.org/10.1177/030913339702100107.

Full text
Abstract:
South Africa is already hydrologically vulnerable and this is likely to be exacerbated by both nonpermanent ENSO-related as well as more permanently greenhouse-gas forced climate changes. Climate change effects are explained by way of the hydrological equation. This serves as a backdrop to a brief review, in a hydrological context, of projected perturbations to temperature, rainfall and potential evaporation, over southern Africa. Methodologies for simulating hydro logical responses to climate change are assessed. These include more direct GCM-derived output, with some emphasis on recent advances in climatic downscaling, and the application of appro priate hydrological models for use in impact studies. Scale problems of importance to hydrologists are highlighted. Directions to which climate change-related hydrological research efforts should be expended in South Africa are summarized, before two case study simulations, one a general sensitivity study of hydrological responses to changes in rainfall over southern Africa, the other a more specific hydrological response study to the El Niño of the 1982-83 season, are presented. The article concludes with a discussion on whether or not water resources practitioners in South Africa should respond to climate change.
APA, Harvard, Vancouver, ISO, and other styles
27

Janicka, Ewelina, Jolanta Kanclerz, Tropikë Agaj, and Katarzyna Gizińska. "Comparison of Two Hydrological Models, the HEC-HMS and Nash Models, for Runoff Estimation in Michałówka River." Sustainability 15, no. 10 (May 12, 2023): 7959. http://dx.doi.org/10.3390/su15107959.

Full text
Abstract:
Floods are among the most devastating natural disasters in small suburban catchments. These phenomena, causing loss of life and massive property damage, pose a serious threat to the economy. Hydrological modeling is extremely important in terms of climate change, and the use of appropriate modeling can be a useful tool for flood risk prevention and mitigation. Rainfall–runoff modeling requires the selection of an appropriate hydrological model in order to obtain satisfactory results. Hydrological models are used in water resource planning and management to estimate catchment runoff. Small uncontrolled catchments play a particularly important role in hydrological phenomena, since changes in them affect flows in the recipient. Hydrologists are particularly interested in developing hydrological models that can be made with a minimum of data and parameters. Nash models and the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) are examples of simple and most practical hydrologic models. These models were used in this paper to study geographic and qualitative changes in precipitation runoff due to land cover changes. The modeling was carried out for two spatial aspects relating to the years 1940 and 2018. The model allowed for the simulation of the river flow that can occur under different rainfall probabilities. The analysis of the results was used to evaluate the hydrological models used. The hundred-year flow modeled with the Nash model for 1940 was 13.4 m3∙s−1, whereas the second model gave slightly lower flow values. In addition, modeling the flow for 2018 (after changing the land cover) highlighted the increase in the flow value for both models, where again the flow volume was slightly higher for the Nash model and amounted to about 19 m3∙s−1. The flow differences for individual models were not too large. This made it possible to conclude that the simulated outflow hydrographs are in good agreement, and this means that the models accurately reproduce the flow of the Michałówka River. The study showed that rapid urbanization adversely affects hydrological processes. In addition, the study showed that a well-distributed model can outperform a global flood forecasting model, especially in terms of magnitude, as in the current study example.
APA, Harvard, Vancouver, ISO, and other styles
28

Ryu, Jae-Hee, Ji-Eun Kim, Jin-Young Lee, Hyun-Han Kwon, and Tae-Woong Kim. "Estimating Optimal Design Frequency and Future Hydrological Risk in Local River Basins According to RCP Scenarios." Water 14, no. 6 (March 17, 2022): 945. http://dx.doi.org/10.3390/w14060945.

Full text
Abstract:
In South Korea, flood damage mainly occurs around rivers; thus, it is necessary to determine the optimal design frequency for river basins to prevent flood damage. However, there are not enough studies showing the effect of climate change on hydrologic design frequency. Therefore, to estimate the optimal design frequency according to future climate change scenarios, this study examined urban flooding area and extreme rainfall frequency that can change in the future. After estimating the optimal design frequency, hydrological risks of 413 local river basins were evaluated according to Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5 after regenerating daily rainfalls from the HadGEM2-ES model into hourly rainfalls using the Poisson cluster. For the RCP 4.5, hydrological risks increased relative to the established design frequency by 3.13% on average. For the RCP 8.5, hydrological risks increased by 2.80% on average. The hydrological risks increased by 4.58% in the P2(2040–2069) period for the RCP 4.5, and by 4.39% in the P1 (2021–2039) period for the RCP 8.5. These results suggest that the hydrologic design frequency in the future will likely decrease, and the safety of river basins will also decrease.
APA, Harvard, Vancouver, ISO, and other styles
29

Chadalawada, Jayashree, and Vladan Babovic. "Review and comparison of performance indices for automatic model induction." Journal of Hydroinformatics 21, no. 1 (December 6, 2017): 13–31. http://dx.doi.org/10.2166/hydro.2017.078.

Full text
Abstract:
Abstract One of the more perplexing challenges for the hydrologic research community is the need for development of coupled systems involving integration of hydrologic, atmospheric and socio-economic relationships. Given the demand for integrated modelling and availability of enormous data with varying degrees of (un)certainty, there exists growing popularity of data-driven, unified theory catchment scale hydrological modelling frameworks. Recent research focuses on representation of distinct hydrological processes using mathematical model components that vary in a controlled manner, thereby deriving relationships between alternative conceptual model constructs and catchments’ behaviour. With increasing computational power, an evolutionary approach to auto-configuration of conceptual hydrological models is gaining importance. Its successful implementation depends on the choice of evolutionary algorithm, inventory of model components, numerical implementation, rules of operation and fitness functions. In this study, genetic programming is used as an example of evolutionary algorithm that employs modelling decisions inspired by the Superflex framework to automatically induce optimal model configurations for the given catchment dataset. The main objective of this paper is to identify the effects of entropy, hydrological and statistical measures as optimization objectives on the performance of the proposed approach based on two synthetic case studies of varying complexity.
APA, Harvard, Vancouver, ISO, and other styles
30

Harsoyo, Budi. "REVIEW MODELING HIDROLOGI DAS DI INDONESIA." Jurnal Sains & Teknologi Modifikasi Cuaca 11, no. 1 (June 16, 2010): 41. http://dx.doi.org/10.29122/jstmc.v11i1.2179.

Full text
Abstract:
Berbagai model simulasi hidrologi telah dikembangkan untuk menjelaskan prosesmengubah input (dalam bentuk hujan) menjadi output (dalam bentuk aliran sungai) dengan mempertimbangkan karakteristik fisik DAS. Model simulasi hidrologi pada dasarnya dirancang untuk menyederhanakan sistem hidrologi, sehingga perilaku dari beberapa komponen dalam sistem dapat diketahui. Makalah ini membahas pemodelan hidrologi banyak diterapkan di Indonesia, dimulai dengan peninjauan definisi dan klasifikasi model hidrologi, dan lanjutkan dengan ulasan beberapa model hidrologi DAS untuk skala bersama dengan beberapa contoh aplikasi yang telah dilakukan dalam penelitian di Indonesia.Various hydrological simulation model has been developed to explain the process of changing inputs (in the form of rain) into outputs (in the form of the river flow) by considering the physical characteristics of the watershed. Hydrologic simulation model is basically designed to simplify the hydrological system, so the behavior of some components in the system can be known. This paper discusses the many hydrologic modeling applied in Indonesia, starting with a review of the definition and classification of hydrological model, and proceed with a review of several watershed hydrological model to scale along with some examples of applications that have been done in research in Indonesia.
APA, Harvard, Vancouver, ISO, and other styles
31

Zheng, Zhen, Jing Zhang, Hui Li Gong, and J. W. Huang. "Application of MIKESHE Model in Water Environmental Management for Guishui River Basin." Applied Mechanics and Materials 580-583 (July 2014): 1823–27. http://dx.doi.org/10.4028/www.scientific.net/amm.580-583.1823.

Full text
Abstract:
In order to comprehensively analyse hydrological environment system of watershed, it is particularly important to couple the surface water and groundwater for better underding the entire hydrologic cycle. Guishui river basin, located in Beijing, was selected as the research area to build a MIKE SHE hydrological integrated model to simulate the surface runoff. The hydrologic response in the Guishui river basin was explored. This study will enrich the experience of the domestic application about MIKESHE model and provided scientific basis for regional water resources planning and management. In the paper, the development process and present research situation of integrated hydrological models were overviewed, concluding the principle of model structure. Considering the water environment issues in the study area (such as water pollution, water resource utilization, watershed underlying surface, climate change, etc.), the integrated hydrological model was setup based on MIKESHE for the simulation year of 2005 to 2010. The preliminary results showed that it is feasibile to apply the MIKESHE model in the study area for water environmental management. Furthermore, some valued suggestions and perspectives about the water environmental problems in the study for the future were provided.
APA, Harvard, Vancouver, ISO, and other styles
32

Tian, Naixu, Yue Zhang, Jianwei Li, Walian Du, Xingpeng Liu, Haibo Jiang, and Hongfeng Bian. "Evaluation and Optimization of Hydrological Connectivity Based on Graph Theory: A Case Study in Dongliao River Basin, China." Water 14, no. 23 (December 5, 2022): 3958. http://dx.doi.org/10.3390/w14233958.

Full text
Abstract:
Hydrological connectivity affects the material cycling and energy transfer of ecosystems and is an important indicator for assessing the function of aquatic ecosystems. Therefore, clarification of hydrologic connectivity and its optimization methods is essential for basin water resources management and other problems; however, most of the current research is focused on intermittently flooded areas, especially in terms of optimization, and on hydrological regulation within mature water structures, while research on hydrological connectivity in dry, low rainfall plain areas remains scarce. Based on the graph and binary water cycle theories, this study assessed and hierarchically optimized the structural hydrological connectivity of the Dongliao River Basin (DRB), integrating artificial and natural connectivity, and explored the hydrological connectivity optimization method in the arid plain region at the basin scale to increase connectivity pathways. The spatial analysis and evaluation of hydrological connectivity was also carried out based on the results of the hierarchical optimization, and provided three scenarios for the construction of hydrological connectivity projects in the basin. The hierarchical optimization yielded a total of 230 new water connectivity paths, and the overall hydrological connectivity increased from 5.07 to 7.64. Our results suggest a large spatial correlation in hydrological flow obstruction in the DRB. The center of gravity of circulation obstruction shifted to the south after optimization for different levels of connectivity. With the increase in the optimization level of hydrological connectivity, the national Moran index rose and then fell. The magnitude of the increase in hydrological connectivity effects varied at different optimization levels, and there were sudden points’ increase points. From an application point of view, Scenario 1 is necessary and the most cost effective is Scenario 2, which provides a scientific basis for guiding the construction of future ecological projects in the DRB.
APA, Harvard, Vancouver, ISO, and other styles
33

Wanders, Niko, Stephan Thober, Rohini Kumar, Ming Pan, Justin Sheffield, Luis Samaniego, and Eric F. Wood. "Development and Evaluation of a Pan-European Multimodel Seasonal Hydrological Forecasting System." Journal of Hydrometeorology 20, no. 1 (January 1, 2019): 99–115. http://dx.doi.org/10.1175/jhm-d-18-0040.1.

Full text
Abstract:
Abstract Hydrological forecasts with a high temporal and spatial resolution are required to provide the level of information needed by end users. So far high-resolution multimodel seasonal hydrological forecasts have been unavailable due to 1) lack of availability of high-resolution meteorological seasonal forecasts, requiring temporal and spatial downscaling; 2) a mismatch between the provided seasonal forecast information and the user needs; and 3) lack of consistency between the hydrological model outputs to generate multimodel seasonal hydrological forecasts. As part of the End-to-End Demonstrator for Improved Decision Making in the Water Sector in Europe (EDgE) project commissioned by the Copernicus Climate Change Service (ECMWF), this study provides a unique dataset of seasonal hydrological forecasts derived from four general circulation models [CanCM4, GFDL Forecast-Oriented Low Ocean Resolution version of CM2.5 (GFDL-FLOR), ECMWF Season Forecast System 4 (ECMWF-S4), and Météo-France LFPW] in combination with four hydrological models [mesoscale hydrologic model (mHM), Noah-MP, PCRaster Global Water Balance (PCR-GLOBWB), and VIC]. The forecasts are provided at daily resolution, 6-month lead time, and 5-km spatial resolution over the historical period from 1993 to 2012. Consistency in hydrological model parameterization ensures an increased consistency in the hydrological forecasts. Results show that skillful discharge forecasts can be made throughout Europe up to 3 months in advance, with predictability up to 6 months for northern Europe resulting from the improved predictability of the spring snowmelt. The new system provides an unprecedented ensemble of seasonal hydrological forecasts with significant skill over Europe to support water management. This study highlights the potential advantages of multimodel based forecasting system in providing skillful hydrological forecasts.
APA, Harvard, Vancouver, ISO, and other styles
34

赖, 厚桂. "Hydrologic Data Processing System in Restoring Printing Hydrological Yearbook." Journal of Water Resources Research 04, no. 05 (2015): 477–80. http://dx.doi.org/10.12677/jwrr.2015.45059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Junqueira, Rubens, Marcelo R. Viola, Jhones da S. Amorim, Sly C. Wongchuig, Carlos R. de Mello, Marcelo Vieira-Filho, and Gilberto Coelho. "Hydrological Retrospective and Historical Drought Analysis in a Brazilian Savanna Basin." Water 14, no. 14 (July 10, 2022): 2178. http://dx.doi.org/10.3390/w14142178.

Full text
Abstract:
Analyzing historical droughts is essential to improve the assessment of future hydrological risks and to understand the effects of climate variability on streamflow. However, prolonged and consistent hydrological time series are scarce in the Brazilian savanna region. This study aimed to analyze the performance of climate reanalysis products in precipitation estimation, hydrological modeling, and historical drought analysis in a Brazilian savanna basin. For this purpose, precipitation data from the twentieth-century atmospheric model ensemble (ERA-20CM) and the land component of the fifth generation of European ReAnalysis (ERA5-Land) with bias correction were used. The weather variables were obtained from the Climatic Research Unit (CRU) and the hydrological modeling was performed using the Soil and Water Assessment Tool (SWAT). The Standardized Streamflow Index (SSI) was used to calculate hydrological drought in the basin. Overall, ERA5-Land performed satisfactorily in precipitation estimation, mainly on the monthly time scale, hydrological modeling, and drought prediction. Since ERA-20CM showed unsatisfactory values for the performance statistics in all analyses, the hydrologic drought (1950 to 2018) was performed with ERA5-Land. The results showed both an increase in the number of dry months and a decrease in wet months in recent decades.
APA, Harvard, Vancouver, ISO, and other styles
36

Oldham, C. E., D. E. Farrow, and S. Peiffer. "The potential for material processing in hydrological systems – a novel classification approach." Hydrology and Earth System Sciences Discussions 9, no. 9 (September 18, 2012): 10487–524. http://dx.doi.org/10.5194/hessd-9-10487-2012.

Full text
Abstract:
Abstract. Assessing the potential for transfer or export of biogeochemicals or pollutants from catchments is of primary importance under changing land use and climatic conditions. Over the past decade the connectivity/disconnectivity dynamic of a catchment has been related to its potential to export material, however we continue to use multiple definitions of connectivity, and most have focused strongly on physical (hydrologicaly or hydraulic) connectivity. In this paper we use a dual-lens approach, where the dynamic balance between transport and reaction is constantly in focus, and define ecohydrological connectivity as the ability of matter and organisms to transfer within and between elements of the hydrologic cycle while undergoing biogeochemical transformation. The connectivity/disconnectivity dynamic must take into account the opportunity for a given reaction to occur during transport and/or isolation. Using this definition, we define three distinct regimes: (1) one which is ecohydrologically connected and diffusion dominated; (2) one which is ecohydrologically connected and advection dominated and (3) one which is both hydrologically and ecohydrologically disconnected. Within each regime we use a new non-dimensional number, NE, to compare exposure timescales with reactions timescales. NE is reaction-specific and allows the estimation of relevant spatial scales over which the reactions of interest are taking place. Case studies provide examples of how NE can be used to classify systems according to their sensitivity to shifts in hydrological regime, and gain insight into the biogeochemical processes that are signficant under the specified conditions. Finally, we explore the implications of this dual-lens framework for improved water management, for our understanding of biodiversity, resilience and biogeochemical competitiveness under specified conditions
APA, Harvard, Vancouver, ISO, and other styles
37

Zhu, Bowen, Xianhong Xie, Yibing Wang, and Xuehua Zhao. "The Benefits of Continental-Scale High-Resolution Hydrological Modeling in the Detection of Extreme Hydrological Events in China." Remote Sensing 15, no. 9 (May 4, 2023): 2402. http://dx.doi.org/10.3390/rs15092402.

Full text
Abstract:
High-resolution hydrological modeling is crucial for detecting extreme hydrological events and understanding fundamental terrestrial processes. However, spatial resolutions in current hydrological modeling studies have been mostly constrained to relatively coarse resolution (~10–100 km), and they therefore have a difficult time addressing flooding or drought issues with fine resolutions. In this study, a continental-scale high-resolution hydrological modeling framework (0.0625°, ~6 km) driven by remote sensing products was used to detect extreme hydrological event occurrences in China and evaluated based on the Variable Infiltration Capacity (VIC) model. The results showed that the developed model provided more detailed information than the coarser resolution models (a 0.25° and 1°), thereby capturing the timing, duration, and spatial extent of extreme hydrologic events regarding the 2012 Beijing flood and 2009/10 drought in Hai River Basin. Here, the total water storage changes were calculated based on the VIC model (−0.017 mm/year) and Gravity Recovery and Climate Experiment (GRACE) satellite (−0.203 mm/year) to reflect the water availability caused by climate change and anthropogenic factors. This study found that the 0.0625° dataset could capture detailed changes, thereby providing reliable information during occurrences of extreme hydrological events. The high-resolution model integrated with remote sensing products could be used for accurate evaluations of continental-scale extreme hydrological events and can be valuable in understanding its long-term occurrence and water resource security.
APA, Harvard, Vancouver, ISO, and other styles
38

Valdés-Pineda, Rodrigo, Juan B. Valdés, Sungwook Wi, Aleix Serrat-Capdevila, and Tirthankar Roy. "Improving Operational Short- to Medium-Range (SR2MR) Streamflow Forecasts in the Upper Zambezi Basin and Its Sub-Basins Using Variational Ensemble Forecasting." Hydrology 8, no. 4 (December 20, 2021): 188. http://dx.doi.org/10.3390/hydrology8040188.

Full text
Abstract:
The combination of Hydrological Models and high-resolution Satellite Precipitation Products (SPPs) or regional Climatological Models (RCMs), has provided the means to establish baselines for the quantification, propagation, and reduction in hydrological uncertainty when generating streamflow forecasts. This study aimed to improve operational real-time streamflow forecasts for the Upper Zambezi River Basin (UZRB), in Africa, utilizing the novel Variational Ensemble Forecasting (VEF) approach. In this regard, we describe and discuss the main steps required to implement, calibrate, and validate an operational hydrologic forecasting system (HFS) using VEF and Hydrologic Processing Strategies (HPS). The operational HFS was constructed to monitor daily streamflow and forecast them up to eight days in the future. The forecasting process called short- to medium-range (SR2MR) streamflow forecasting was implemented using real-time rainfall data from three Satellite Precipitation Products or SPPs (The real-time TRMM Multisatellite Precipitation Analysis TMPA-RT, the NOAA CPC Morphing Technique CMORPH, and the Precipitation Estimation from Remotely Sensed data using Artificial Neural Networks, PERSIANN) and rainfall forecasts from the Global Forecasting System (GFS). The hydrologic preprocessing (HPR) strategy considered using all raw and bias corrected rainfall estimates to calibrate three distributed hydrological models (HYMOD_DS, HBV_DS, and VIC 4.2.b). The hydrologic processing (HP) strategy considered using all optimal parameter sets estimated during the calibration process to increase the number of ensembles available for operational forecasting. Finally, inference-based approaches were evaluated during the application of a hydrological postprocessing (HPP) strategy. The final evaluation and reduction in uncertainty from multiple sources, i.e., multiple precipitation products, hydrologic models, and optimal parameter sets, was significantly achieved through a fully operational implementation of VEF combined with several HPS. Finally, the main challenges and opportunities associated with operational SR2MR streamflow forecasting using VEF are evaluated and discussed.
APA, Harvard, Vancouver, ISO, and other styles
39

Lee, Hanyong, Min Suh Chae, Jong-Yoon Park, Kyoung Jae Lim, and Youn Shik Park. "Development and Application of a QGIS-Based Model to Estimate Monthly Streamflow." ISPRS International Journal of Geo-Information 11, no. 1 (January 8, 2022): 40. http://dx.doi.org/10.3390/ijgi11010040.

Full text
Abstract:
Changes in rainfall pattern and land use have caused considerable impacts on the hydrological behavior of watersheds; a Long-Term Hydrologic Impact Analysis (L-THIA) model has been used to simulate such variations. The L-THIA model defines curve number according to the land use and hydrological soil group before calculating the direct runoff based on the amount of rainfall, making it a convenient method of analysis. Recently, a method was proposed to estimate baseflow using this model, which may be used to estimate the overall streamflow. Given that this model considers the spatial distribution of land use and hydrological soil groups and must use rainfall data at multiple positions, it requires the usage of a geographical information system (GIS). Therefore, a model that estimates streamflow using land use maps, hydrologic soil group maps, and rain gauge station maps in QGIS, a popular GIS software, was developed. This model was tested in 15 watersheds.
APA, Harvard, Vancouver, ISO, and other styles
40

Pardo-Loaiza, Jesús, Abel Solera, Rafael J. Bergillos, Javier Paredes-Arquiola, and Joaquín Andreu. "Improving Indicators of Hydrological Alteration in Regulated and Complex Water Resources Systems: A Case Study in the Duero River Basin." Water 13, no. 19 (September 27, 2021): 2676. http://dx.doi.org/10.3390/w13192676.

Full text
Abstract:
Assessing the health of hydrological systems is vital for the conservation of river ecosystems. The indicators of hydrologic alteration are among the most widely used parameters. They have been traditionally assessed at the scale of river reaches. However, the use of such indicators at the basin scale is relevant for water resource management since there is an urgent need to meet environmental objectives to mitigate the effects of present and future climatic conditions. This work proposes a methodology to estimate the indicators of hydrological alteration at the basin scale in regulated systems based on simulations with a water allocation model. The methodology is illustrated through a case study in the Iberian Peninsula (the Duero River basin), where different minimum flow scenarios were defined, assessing their effects on both the hydrological alteration and the demand guarantees. The results indicate that it is possible to improve the hydrological status of some subsystems of the basin without affecting the water demand supplies. Thus, the methodology presented in this work will help decision makers to optimize water management while improving the hydrological status of the river basins.
APA, Harvard, Vancouver, ISO, and other styles
41

Caetano, Jordana Moura, and Derblai Casaroli. "Tendências dos modelos hidrológicos integrados aos sistemas de informações geográficas a partir da cienciometria." Comunicata Scientiae 7, no. 3 (December 27, 2016): 406. http://dx.doi.org/10.14295/cs.v7i3.1197.

Full text
Abstract:
The remote sensing and Geographic Information Systems (GIS) development have encouraged and improved the use and spansion of hydrological models worldwide. This development allows the use of hydrological models, simulating watersheds systems operation in a more simple, economical and realistic way. In order to maximize this integration, new computational tools, hydrological models and GIS are being developed. This study aimed to apply the scientometric study to quantify and verify the tendencies of the scientific publications of hydrological models and their integration with geographic information systems (GIS). Scientific papers search was accomplished in Scopus database, using the following terms: modeling OR model* AND hydrologic* OR hidrological AND “Geographic* Information* System*” OR “GIS”, and the data were obtained on September 21, 2015. It can be observed, in general, an increase in the number of papers published according to time, in years (r = 0.96) and the same trend was observed for Brazilian studies, starting from 2006. Moreover, the main direction of these studies is to develop methodologies that could integrate hydrological models with GIS.
APA, Harvard, Vancouver, ISO, and other styles
42

Tegelhoffová, M. "Analysis of the development of a hydrological balance for future decades in the Senianska depression in the Eastern Slovak lowland." Slovak Journal of Civil Engineering 18, no. 4 (December 1, 2010): 30–40. http://dx.doi.org/10.2478/v10189-010-0020-6.

Full text
Abstract:
Analysis of the development of a hydrological balance for future decades in the Senianska depression in the Eastern Slovak lowlandThe goal of the article was to analyze the hydrological balance for future decades in a pilot area in the Eastern Slovak lowland. The aim was to set up the physically-based Mike SHE hydrological model for the modeling hydrological balance in the selected wetland ecosystem in the Eastern Slovak Lowland. The pilot area - the Senianska depression is located near the village of Senne, between the Laborec and Uh Rivers. Specifically, it is a traditional landscape of meadows, marshes, cultivated soil, small water control structures and forests. To get a complete model set up for simulating elements of the hydrologic balance in the pilot area, it was necessary to devise a model for a larger area, which includes the pilot area - the Senianska depression. Therefore, both the Mike SHE model was set up for the Laborec River basin (a model domain of 500 × 500 m) and the Čierna voda River basin (a model domain of 100 × 100 m), for the simulation period of 1981-2007, is order to get the boundary conditions (overland flow depth, water levels, discharges and groundwater table) for the model of the pilot area. The Mike SHE model constructed for the pilot area - the Senianska depression (a model domain of 1 × 1 m) -was used to simulate the elements of the hydrological balance for the existing conditions during the simulation period of 1983-2007 and for climate scenarios for the simulation period of 1983-2100. The results of the simulated elements of the hydrological balance for the existing conditions were used for a comparison of the evolution of the hydrologic conditions in the past, for identifying wet and flooded areas and for identifying the spatial distribution of the actual evapotranspiration in the pilot area. The built-up model with setting values was used for modeling the hydrological balance in changed conditions - climate change.
APA, Harvard, Vancouver, ISO, and other styles
43

He, Shaokun, Shenglian Guo, Zhangjun Liu, Jiabo Yin, Kebing Chen, and Xushu Wu. "Uncertainty analysis of hydrological multi-model ensembles based on CBP-BMA method." Hydrology Research 49, no. 5 (March 1, 2018): 1636–51. http://dx.doi.org/10.2166/nh.2018.160.

Full text
Abstract:
Abstract Quantification of the inherent uncertainty in hydrologic forecasting is essential for flood control and water resources management. The existing approaches, such as Bayesian model averaging (BMA), hydrologic uncertainty processor (HUP), copula-BMA (CBMA), aim at developing reliable probabilistic forecasts to characterize the uncertainty induced by model structures. In the probability forecast framework, these approaches either assume the probability density function (PDF) to follow a certain distribution, or are unable to reduce bias effectively for complex hydrological forecasts. To overcome these limitations, a copula Bayesian processor associated with BMA (CBP-BMA) method is proposed with ensemble lumped hydrological models. Comparing with the BMA and CBMA methods, the CBP-BMA method relaxes any assumption on the distribution of conditional PDFs. Several evaluation criteria, such as containing ratio, average bandwidth and average deviation amplitude of probabilistic application, are utilized to evaluate the model performance. The case study results demonstrate that the CBP-BMA method can improve hydrological forecasting precision with higher cover ratios more than 90%, which are increased by 4.4% and 3.2%, 2.2% and 1.7% over those of BMA and CBMA during the calibration and validation periods, respectively. The proposed CBP-BMA method provides an alternative approach for uncertainty estimation of hydrological multi-model forecasts.
APA, Harvard, Vancouver, ISO, and other styles
44

Silva, Lucas Alves da, Antônio Marciano da Silva, Gilberto Coelho, and Leandro Campos Pinto. "Soil map units of Minas Gerais State from the perspective of Hydrologic Groups." Ambiente e Agua - An Interdisciplinary Journal of Applied Science 13, no. 1 (January 12, 2018): 1. http://dx.doi.org/10.4136/ambi-agua.2118.

Full text
Abstract:
The knowledge of water availability is the basis for water resource planning and management. The Soil Map Units of the State of Minas Gerais were interpreted from the perspective of Hydrologic Groups based on the Curve Number - Soil Conservation Service method, with the addition of pedological elements of the mapped units. The generated products were used in three different physiographic environments of the Minas Gerais State. According to results, most of Minas Gerais falls within Hydrologic Groups A and B, indicating that the soils in these areas present low surface runoff and high water infiltration rates. The characterization and spatialization of the hydrological regime, with emphasis on information about the soils of Minas Gerais, as applied this study, has a level of detail not yet employed in studies of this scope, apart from the initiative to interpret them from the perspective of soil hydrological groups. The mapping of the three water resources planning and management units, composed of distinct environments, from the perspective of hydrological groups, allowed verification of the proposed methodology’s potential, which can be used to support the management and planning of the water resources of Minas Gerais. Interpretive studies of soil maps from a hydrological perspective are essential to improve our understanding of water surpluses in a given region.
APA, Harvard, Vancouver, ISO, and other styles
45

Yang, Yiyang, Siyu Cai, Hao Wang, Ping Wang, and Wei Li. "Evolution of Hydrological Conditions and Driving Factors Analysis of the Yongding River in a Changing Environment: A Case Study of the Xiangshuipu Section." Agronomy 13, no. 9 (August 30, 2023): 2289. http://dx.doi.org/10.3390/agronomy13092289.

Full text
Abstract:
Hydrological conditions are key factors in the evaluation of water resources and ecosystems. The Yongding River Basin has many irrigated areas, and excessive agricultural water consumption has led to serious water shortages and ecosystem damage. To investigate the evolution of ecohydrological conditions and their driving factors in the Yongding River basin in a changing environment, this study combines indicators of hydrologic alteration with the range of variability approach (IHA-RVA) to identify the most ecologically relevant hydrological indicators (ERHIs) and to determine the periods of hydrological variability in the basin, using the Xiangshuipu section on the Yang River as the study area. By calculating the degree of hydrological alteration, the evolutionary pattern of ecohydrological conditions in the basin was analyzed, and the WetSpa model was used to quantitatively identify the contributions of climate change, reservoir storage, and irrigation water withdrawal to the alteration of hydrological conditions. The results showed that the rise and fall rate; maximum and minimum 1 day flows; dates of maximum flow; and July flows were the most ecologically relevant hydrological indicators for the Xiangshuipu section. Variability of this section occurred between 1982 and 1988; except for the annual maximum 1 day flows and fall rate, which underwent moderate changes; all other indicators exhibited small changes and the overall hydrological alteration of the Xiangshuipu section was low. The most influential change in the hydrological conditions was irrigation water withdrawal (from specific irrigation); followed by climate change and reservoir storage. The results of this study provide an important basis for water resources utilization and ecological management in the Yongding River basin.
APA, Harvard, Vancouver, ISO, and other styles
46

Du, Jiakai, Xushu Wu, Zhaoli Wang, Jun Li, and Xiaohong Chen. "Reservoir-Induced Hydrological Alterations Using Ecologically Related Hydrologic Metrics: Case Study in the Beijiang River, China." Water 12, no. 7 (July 15, 2020): 2008. http://dx.doi.org/10.3390/w12072008.

Full text
Abstract:
Anthropogenic activities have a tremendous impact on water ecosystems worldwide, especially in China. To quantitatively evaluate the hydrological alteration connected with aquatic lives and river ecological risks, we took the Beijiang River located in South China as the case study and used ecosurplus (defined as ecological carrying capacity exceeding ecological consumption)/ecodeficit (defined as ecological consumption exceeding carrying capacity) and Indicators of Hydrological Alterations to evaluate hydrological changes. The Ecologically Relevant Hydrologic Indicators were employed to select the key indices of Indicators of Hydrological Alterations, and the eco-environmental water demand calculation provide an effective way for the reservoir operation. Results showed that: (1) High flows contributed more to the ecodeficit, while low flows contributed more to the ecosurplus; (2) the ecodeficit in some parts of the river basin might exceed the ecosurplus after reservoir construction, especially along the main stream; and (3) the determination of eco-environmental water demand is a feasible way for improving the environment by controlling reservoirs. The current study can help guide the optimization of hydrological operation in the basin toward making the ecosystem healthier and has potential to further provide a reference for other basins in terms of hydrological alterations driven by anthropogenic activities.
APA, Harvard, Vancouver, ISO, and other styles
47

Liu, Qiang, Xiaojing Ma, Sirui Yan, Liqiao Liang, Jihua Pan, and Junlong Zhang. "Lag in Hydrologic Recovery Following Extreme Meteorological Drought Events: Implications for Ecological Water Requirements." Water 12, no. 3 (March 16, 2020): 837. http://dx.doi.org/10.3390/w12030837.

Full text
Abstract:
Hydrological regimes, being strongly impacted by climate change, play a vital role in maintaining the integrity of aquatic river habitats. We investigated lag in hydrologic recovery following extreme meteorological drought events, and we also discussed its implications in the assessment of ecological environment flow. We used monthly anomalies of three specific hydrometeorological variables (precipitation, streamflow, and baseflow) to identify drought, while we used the Chapman–Maxwell method (the CM filter) with recession constant calculated from Automatic Baseflow Identification Technique (ABIT) to separate baseflow. Results showed that: (i) Compared to the default recession parameter (α = 0.925), the CM filter with the ABIT estimate (α = 0.984) separated baseflow more accurately. (ii) Hydrological drought, resulting from meteorological drought, reflected the duration and intensity of meteorological drought; namely, longer meteorological drought periods resulted in longer hydrological drought periods. Interestingly, the time lag in streamflow and baseflow indicated that aquatic ecosystem habitat recovery also lagged behind meteorological drought. (iii) Assessing environmental flow by quantifying drought provided greater detail on hydrological regimes compared to abrupt changes, such as the increased hydrological periods and the different environment flows obtained. Taken together, our results indicated that the hydrological response in streamflow and baseflow (e.g., the time lag and the precipitation recovery rate (Pr)) played a vital role in the assessment of environmental flow.
APA, Harvard, Vancouver, ISO, and other styles
48

Zalachori, I., M. H. Ramos, R. Garçon, T. Mathevet, and J. Gailhard. "Statistical processing of forecasts for hydrological ensemble prediction: a comparative study of different bias correction strategies." Advances in Science and Research 8, no. 1 (July 25, 2012): 135–41. http://dx.doi.org/10.5194/asr-8-135-2012.

Full text
Abstract:
Abstract. The aim of this paper is to investigate the use of statistical correction techniques in hydrological ensemble prediction. Ensemble weather forecasts (precipitation and temperature) are used as forcing variables to a hydrologic forecasting model for the production of ensemble streamflow forecasts. The impact of different bias correction strategies on the quality of the forecasts is examined. The performance of the system is evaluated when statistical processing is applied: to precipitation and temperature forecasts only (pre-processing from the hydrological model point of view), to flow forecasts (post-processing) and to both. The pre-processing technique combines precipitation ensemble predictions with an analog forecasting approach, while the post-processing is based on past errors of the hydrological model when simulating streamflows. Forecasts from 11 catchments in France are evaluated. Results illustrate the importance of taking into account hydrological uncertainties to improve the quality of operational streamflow forecasts.
APA, Harvard, Vancouver, ISO, and other styles
49

Flint, Lorraine E., and Alicia Torregrosa. "Evaluating Hydrological Responses to Climate Change." Water 12, no. 6 (June 12, 2020): 1691. http://dx.doi.org/10.3390/w12061691.

Full text
Abstract:
This Special Issue of the journal Water, “The Evaluation of Hydrologic Response to Climate Change”, is intended to explore the various impacts of climate change on hydrology. Using a selection of approaches, including field observations and hydrological modeling; investigations, including changing habitats and influences on organisms; modeling of water supply and impacts on landscapes; and the response of varying components of the hydrological cycle, the Issue has published nine articles from multi-institution, often multicountry collaborations that assess these changes in locations around the world, including China, Korea, Russia, Pakistan, Cambodia, United Kingdom, and Brazil.
APA, Harvard, Vancouver, ISO, and other styles
50

Olayinka, D. N., and H. E. Irivbogbe. "Estimation of Hydrological Outputs using HEC-HMS and GIS." July 2017 1, no. 2 (July 2017): 390–402. http://dx.doi.org/10.36263/nijest.2017.02.0054.

Full text
Abstract:
Estimating runoff and understanding of the relationship between rainfall and runoff are of great importance in the management of flood. Several computer based hydrological models have been developed and used in simulating runoff in various watersheds in different parts of the world and in water resource studies. This study focuses on the combination of Geographic Information System (GIS) with Hydrologic Engineering Center –Hydrologic Modelling System (HEC-HMS) hydrological model to simulate runoff process of the adjoining areas of the Lagos Island and Eti-Osa Local Government Areas (LGAs). The study makes use of LIDAR Digital Elevation Model (DEM), drainage data and land use map for catchment delineation and hydrological modelling, using HECGeoHMS and ArcGIS 10.2. In HEC-HMS 4.2.1, the delineated catchment with all hydrological parameters and average daily rainfall data, are used to simulate and compute rainfall runoff volume, peak discharges for 10 months (between Jan to October) and a total of three years (2012, 2015 and 2017) were considered. Direct runoff volume and depth estimation for the years under review were determined. Results show that the peak discharge occurred on the 2nd of July 2012 at a rate of 14m3/s with an estimated runoff volume at the basin outlet of 39,669.70 x 103m3 (this date tallies with the severe flood events that occurred in that year). The study shows that estimating hydrological outputs is possible with the use of HEC-HMS and GIS. It recommends the application of such technologies in the prediction and development of basic flood warning systems for the area.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography