Academic literature on the topic 'Hydrological simulation model'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrological simulation model.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hydrological simulation model"

1

Xin, Zhuohang, Ke Shi, Chenchen Wu, Lu Wang, and Lei Ye. "Applicability of Hydrological Models for Flash Flood Simulation in Small Catchments of Hilly Area in China." Open Geosciences 11, no. 1 (December 31, 2019): 1168–81. http://dx.doi.org/10.1515/geo-2019-0089.

Full text
Abstract:
Abstract Flash flood in small catchments of hilly area is an extremely complicated nonlinear process affected by catchment properties and rainfall spatio-temporal variation characteristics including many physical-geographical factors, and thus accurate simulation of flash flood is very difficult. Given the fact that hundreds of hydrological models are available in the literature, how to choose a suitable hydrological model remains an unsolved task. In this paper, we selected five widely used hydrological models including three lumped hydrologic models, a semi-distributed hydrological model and a distributed hydrological model for flash flood simulation, and studied their applicability in fourteen typical catchments in hilly areas across China. The results show that the HEC-HMS distributed hydrological model outperforms the other models and is suitable to simulate the flash floods caused by highly intense rainfall. The Dahuofang model (lumped) has higher precision in peak runoff time simulation. However, its performance is quite poor on the flood volume simulation in the small catchments characterized by intense vegetation coverage and highly developed stream network. The Antecedent precipitation index and Xinanjiang models (lumped) can obtain good simulation results in small humid catchments as long as long-term historical precipitation and runoff data are provided. The TOPMODEL also shows good performance in small humid catchments, but it is unable to simulate the flash floods characterized by the rapid rise and recession. Our results could be very beneficial in practice, since these provide a solid foundation in the selection of hydrological model for flash flood simulation in small catchments in hilly area.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Zhanjie, Jingshan Yu, Xinyi Xu, Wenchao Sun, Bo Pang, and Jiajia Yue. "Multi-model ensemble hydrological simulation using a BP Neural Network for the upper Yalongjiang River Basin, China." Proceedings of the International Association of Hydrological Sciences 379 (June 5, 2018): 335–41. http://dx.doi.org/10.5194/piahs-379-335-2018.

Full text
Abstract:
Abstract. Hydrological models are important and effective tools for detecting complex hydrological processes. Different models have different strengths when capturing the various aspects of hydrological processes. Relying on a single model usually leads to simulation uncertainties. Ensemble approaches, based on multi-model hydrological simulations, can improve application performance over single models. In this study, the upper Yalongjiang River Basin was selected for a case study. Three commonly used hydrological models (SWAT, VIC, and BTOPMC) were selected and used for independent simulations with the same input and initial values. Then, the BP neural network method was employed to combine the results from the three models. The results show that the accuracy of BP ensemble simulation is better than that of the single models.
APA, Harvard, Vancouver, ISO, and other styles
3

Đukić, Vesna, and Ranka Erić. "SHETRAN and HEC HMS Model Evaluation for Runoff and Soil Moisture Simulation in the Jičinka River Catchment (Czech Republic)." Water 13, no. 6 (March 23, 2021): 872. http://dx.doi.org/10.3390/w13060872.

Full text
Abstract:
Due to the improvement of computation power, in recent decades considerable progress has been made in the development of complex hydrological models. On the other hand, simple conceptual models have also been advanced. Previous studies on rainfall–runoff models have shown that model performance depends very much on the model structure. The purpose of this study is to determine whether the use of a complex hydrological model leads to more accurate results or not and to analyze whether some model structures are more efficient than others. Different configurations of the two models of different complexity, the Système Hydrologique Européen TRANsport (SHETRAN) and Hydrologic Modeling System (HEC-HMS), were compared and evaluated in simulating flash flood runoff for the small (75.9 km2) Jičinka River catchment in the Czech Republic. The two models were compared with respect to runoff simulations at the catchment outlet and soil moisture simulations within the catchment. The results indicate that the more complex SHETRAN model outperforms the simpler HEC HMS model in case of runoff, but not for soil moisture. It can be concluded that the models with higher complexity do not necessarily provide better model performance, and that the reliability of hydrological model simulations can vary depending on the hydrological variable under consideration.
APA, Harvard, Vancouver, ISO, and other styles
4

van Kempen, Gijs, Karin van der Wiel, and Lieke Anna Melsen. "The impact of hydrological model structure on the simulation of extreme runoff events." Natural Hazards and Earth System Sciences 21, no. 3 (March 12, 2021): 961–76. http://dx.doi.org/10.5194/nhess-21-961-2021.

Full text
Abstract:
Abstract. Hydrological extremes affect societies and ecosystems around the world in many ways, stressing the need to make reliable predictions using hydrological models. However, several different hydrological models can be selected to simulate extreme events. A difference in hydrological model structure results in a spread in the simulation of extreme runoff events. We investigated the impact of different model structures on the magnitude and timing of simulated extreme high- and low-flow events by combining two state-of-the-art approaches: a modular modelling framework (FUSE) and large ensemble meteorological simulations. This combination of methods created the opportunity to isolate the impact of specific hydrological process formulations at long return periods without relying on statistical models. We showed that the impact of hydrological model structure was larger for the simulation of low-flow compared to high-flow events and varied between the four evaluated climate zones. In cold and temperate climate zones, the magnitude and timing of extreme runoff events were significantly affected by different parameter sets and hydrological process formulations, such as evaporation. In the arid and tropical climate zones, the impact of hydrological model structures on extreme runoff events was smaller. This novel combination of approaches provided insights into the importance of specific hydrological process formulations in different climate zones, which can support adequate model selection for the simulation of extreme runoff events.
APA, Harvard, Vancouver, ISO, and other styles
5

Galleguillos, G., G. Méndez, and A. Lucchini. "MOSAH, An Agro-hydrological Simulation Model." IFAC Proceedings Volumes 18, no. 14 (October 1985): 21–26. http://dx.doi.org/10.1016/s1474-6670(17)60028-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xiao, Qintai, Li Zhou, Xin Xiang, Lingxue Liu, Xing Liu, Xiaodong Li, and Tianqi Ao. "Integration of Hydrological Model and Time Series Model for Improving the Runoff Simulation: A Case Study on BTOP Model in Zhou River Basin, China." Applied Sciences 12, no. 14 (July 7, 2022): 6883. http://dx.doi.org/10.3390/app12146883.

Full text
Abstract:
Improving the accuracy of runoff simulations is a significant focus of hydrological science for multiple purposes such as water resources management, flood and drought prediction, and water environment protection. However, the simulated runoff has limitations that cannot be eliminated. This paper proposes a method that integrates the hydrological and time series models to improve the reliability and accuracy of simulated runoffs. Specifically, the block-wise use of TOPMODEL (BTOP) is integrated with three time series models to improve the simulated runoff from a hydrological model of the Zhou River Basin, China. Unlike most previous research that has not addressed the influence of runoff patterns while correcting the runoff, this study manually adds the hydrologic cycle to the machine learning-based time series model. This also incorporates scenario-specific knowledge from the researcher’s area of expertise into the prediction model. The results show that the improved Prophet model proposed in this study, that is, by adjusting its holiday function to a flow function, significantly improved the Nash–Sutcliffe efficiency (NSE) of the simulated runoff by 53.47% (highest) and 23.93% (average). The autoregressive integrated moving average (ARIMA) model and long short-term memory (LSTM) improved the runoff but performed less well than the improved Prophet model. This paper presents an effective method to improve the runoff simulation by integrating the hydrological and time series models.
APA, Harvard, Vancouver, ISO, and other styles
7

Jiang, Lulu, Huan Wu, Jing Tao, John S. Kimball, Lorenzo Alfieri, and Xiuwan Chen. "Satellite-Based Evapotranspiration in Hydrological Model Calibration." Remote Sensing 12, no. 3 (January 29, 2020): 428. http://dx.doi.org/10.3390/rs12030428.

Full text
Abstract:
Hydrological models are usually calibrated against observed streamflow (Qobs), which is not applicable for ungauged river basins. A few studies have exploited remotely sensed evapotranspiration (ETRS) for model calibration but their effectiveness on streamflow simulation remains uncertain. This paper investigates the use of ETRS in the hydrological calibration of a widely used land surface model coupled with a source–sink routing scheme and global optimization algorithm for 28 natural river basins. A baseline simulation is a setup based on the latest model developments and inputs. Sensitive parameters are determined for Qobs and ETRS-based model calibrations, respectively, through comprehensive sensitivity tests. The ETRS-based model calibration results in a mean Kling–Gupta Efficiency (KGE) value of 0.54 for streamflow simulation; 61% of the river basins have KGE > 0.5 in the validation period, which is consistent with the calibration period and provides a significant improvement over the baseline. Compared to Qobs, the ETRS calibration produces better or similar streamflow simulations in 29% of the basins, while further significant improvements are achieved when either better ET or precipitation observations are used. Furthermore, the model results show better or similar performance in 68% of the basins and outperform the baseline simulations in 90% of the river basins using model parameters from the best ETRS calibration runs. This study confirms that with reasonable precipitation input, the ETRS-based spatially distributed calibration can efficiently tune parameters for better ET and streamflow simulations. The application of ETRS for global scale hydrological model calibration promises even better streamflow accuracy as the satellite-based ETRS observations continue to improve.
APA, Harvard, Vancouver, ISO, and other styles
8

Maheu, Audrey, Islem Hajji, François Anctil, Daniel F. Nadeau, and René Therrien. "Using the maximum entropy production approach to integrate energy budget modelling in a hydrological model." Hydrology and Earth System Sciences 23, no. 9 (September 20, 2019): 3843–63. http://dx.doi.org/10.5194/hess-23-3843-2019.

Full text
Abstract:
Abstract. Total terrestrial evaporation, also referred to as evapotranspiration, is a key process for understanding the hydrological impacts of climate change given that warmer surface temperatures translate into an increase in the atmospheric evaporative demand. To simulate this flux, many hydrological models rely on the concept of potential evaporation (PET), although large differences have been observed in the response of PET models to climate change. The maximum entropy production (MEP) model of land surface fluxes offers an alternative approach for simulating terrestrial evaporation in a simple way while fulfilling the physical constraint of energy budget closure and providing a distinct estimation of evaporation and transpiration. The objective of this work is to use the MEP model to integrate energy budget modelling within a hydrological model. We coupled the MEP model with HydroGeoSphere (HGS), an integrated surface and subsurface hydrologic model. As a proof of concept, we performed one-dimensional soil column simulations at three sites of the AmeriFlux network. The coupled model (HGS-MEP) produced realistic simulations of soil water content (root-mean-square error – RMSE – between 0.03 and 0.05 m3 m−3; NSE – Nash–Sutcliffe efficiency – between 0.30 and 0.92) and terrestrial evaporation (RMSE between 0.31 and 0.71 mm d−1; NSE between 0.65 and 0.88) under semi-arid, Mediterranean and temperate climates. At the daily timescale, HGS-MEP outperformed the stand-alone HGS model where total terrestrial evaporation is derived from potential evaporation, which we computed using the Penman–Monteith equation, although both models had comparable performance at the half-hourly timescale. This research demonstrated the potential of the MEP model to improve the simulation of total terrestrial evaporation in hydrological models, including for hydrological projections under climate change.
APA, Harvard, Vancouver, ISO, and other styles
9

Tegelhoffová, M. "Analysis of the development of a hydrological balance for future decades in the Senianska depression in the Eastern Slovak lowland." Slovak Journal of Civil Engineering 18, no. 4 (December 1, 2010): 30–40. http://dx.doi.org/10.2478/v10189-010-0020-6.

Full text
Abstract:
Analysis of the development of a hydrological balance for future decades in the Senianska depression in the Eastern Slovak lowlandThe goal of the article was to analyze the hydrological balance for future decades in a pilot area in the Eastern Slovak lowland. The aim was to set up the physically-based Mike SHE hydrological model for the modeling hydrological balance in the selected wetland ecosystem in the Eastern Slovak Lowland. The pilot area - the Senianska depression is located near the village of Senne, between the Laborec and Uh Rivers. Specifically, it is a traditional landscape of meadows, marshes, cultivated soil, small water control structures and forests. To get a complete model set up for simulating elements of the hydrologic balance in the pilot area, it was necessary to devise a model for a larger area, which includes the pilot area - the Senianska depression. Therefore, both the Mike SHE model was set up for the Laborec River basin (a model domain of 500 × 500 m) and the Čierna voda River basin (a model domain of 100 × 100 m), for the simulation period of 1981-2007, is order to get the boundary conditions (overland flow depth, water levels, discharges and groundwater table) for the model of the pilot area. The Mike SHE model constructed for the pilot area - the Senianska depression (a model domain of 1 × 1 m) -was used to simulate the elements of the hydrological balance for the existing conditions during the simulation period of 1983-2007 and for climate scenarios for the simulation period of 1983-2100. The results of the simulated elements of the hydrological balance for the existing conditions were used for a comparison of the evolution of the hydrologic conditions in the past, for identifying wet and flooded areas and for identifying the spatial distribution of the actual evapotranspiration in the pilot area. The built-up model with setting values was used for modeling the hydrological balance in changed conditions - climate change.
APA, Harvard, Vancouver, ISO, and other styles
10

Arnold, S., S. Attinger, K. Frank, and A. Hildebrandt. "Uncertainty in parameterisation and model structure affect simulation results in coupled ecohydrological models." Hydrology and Earth System Sciences 13, no. 10 (October 6, 2009): 1789–807. http://dx.doi.org/10.5194/hess-13-1789-2009.

Full text
Abstract:
Abstract. In this paper we develop and apply a conceptual ecohydrological model to investigate the effects of model structure and parameter uncertainty on the simulation of vegetation structure and hydrological dynamics. The model is applied for a typical water limited riparian ecosystem along an ephemeral river: the middle section of the Kuiseb River in Namibia. We modelled this system by coupling an ecological model with a conceptual hydrological model. The hydrological model is storage based with stochastical forcing from the flood. The ecosystem is modelled with a population model, and represents three dominating riparian plant populations. In appreciation of uncertainty about population dynamics, we applied three model versions with increasing complexity. Population parameters were found by Latin hypercube sampling of the parameter space and with the constraint that three species should coexist as observed. Two of the three models were able to reproduce the observed coexistence. However, both models relied on different coexistence mechanisms, and reacted differently to change of long term memory in the flood forcing. The coexistence requirement strongly constrained the parameter space for both successful models. Only very few parameter sets (0.5% of 150 000 samples) allowed for coexistence in a representative number of repeated simulations (at least 10 out of 100) and the success of the coexistence mechanism was controlled by the combination of population parameters. The ensemble statistics of average values of hydrologic variables like transpiration and depth to ground water were similar for both models, suggesting that they were mainly controlled by the applied hydrological model. The ensemble statistics of the fluctuations of depth to groundwater and transpiration, however, differed significantly, suggesting that they were controlled by the applied ecological model and coexistence mechanisms. Our study emphasizes that uncertainty about ecosystem structure and intra-specific interactions influence the prediction of the hydrosystem.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hydrological simulation model"

1

Ishak, Asnor Muizan. "Hydrological simulation aided by numerical weather prediction model." Thesis, University of Bristol, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559471.

Full text
Abstract:
In many water resources and hydrological projects, it is not always possible to get access to in-situ long-term time series weather measurements, especially for ungauged catchments. Even with gauged catchments, it is common that only rain gauge and river level data are available; other weather variables such as solar radiation, wind speed, surface temperature, surface air pressure and relative humidity are usually missing and if available are generally not in continuous form. These weather variables are basic building blocks of the global hydrological cycle that includes evapotranspiration (ET 0) and runoff estimation. The ET 0 and runoff can be estimated from the Penman-Monteith equation and rainfall runoff modeling respectively. This thesis explored a potential application of downscaled global reanalysis weather data using Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model 5 (MMS). MMS is able to downscale the global weather data down to a much finer resolution in space and time for use in local hydrological investigations. The exploration of downscaling the ERA-40 reanalysis data to the Brue catchment in Southwest England and the assessment of the relevant weather variables in comparison with those measured at the ground was described in the thesis. However, there is a problem in using these selected weather variables in hydrological processes due to uncertainties obtained from the mesoscale modelling. Therefore, this thesis focused on the improvement of the weather variables from the dynamical downscaling and statistical modeling. The improvement of dynamic downscaling with the MMS cumulus parameterization schemes (CPSs) by changing the horizontal and vertical resolutions are presented in this thesis for rainfall estimation. Meanwhile, the error correction with statistical models is an attempt to hybridize MMS with two regression models ( the multiple linear regression (MLR) and the nonlinear regression (NLR)) and two artificial intelligence systems (the artificial neural networks (ANNs) and the support vector machines (SVMs)). This exploration is to tackle the errors between the MMS downscaled and observed data in addition to other MMS derived hydro- meteorological parameters. The hold-out validation with a forward selection method was employed as an input variable selection procedure to examine the model generalization errors in these statistical models. Upon the implementation of the error correction technique of weather variables, a comparative study of runoff simulation via the PDM model was completed between the MMS downscaled, corrected and observed data. This thesis also presents a sensitivity analysis of six weather variables to ET 0 estimation and runoff simulation through various combinations of the Penrnan-Monteith equation and Probability Distributed Model (PDM}inputs. Finally, by this assessment of several case studies in this thesis, it has shown that the enhanced MMS modeling scheme with the correction approaches substantially improves the forecasted weather variables over the study area which is important for the hydrological processes.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Hongbin. "Urban flood simulation by coupling a hydrodynamic model with a hydrological model." Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/2797.

Full text
Abstract:
This work introduces a new integrated flood modelling tool in urban areas by coupling a hydrodynamic model with a hydrological model in order to overcome the drawbacks of each individual modelling approach, i.e. high computational costs usually associated with hydrodynamic models and less detailed physical representations of the underlying flow processes corresponding to hydrological models. Crucial to the simulation process is to first divide the catchment hydraulic and hydrological zones where the corresponding model is then applied. In the hydrological zones that have more homogeneous land cover and relatively simple topography, a conceptual lumped model is applied to obtain the surface runoff, which is then routed by a group of pre-acquired ‘unit hydrographs’ to the zone border, for high-resolution flood routing in the hydraulic zones with complex topographic features, including roads, buildings, etc. In hydraulic zones, a full 2D hydrodynamic model is applied to provide more detailed flooding information e.g. water depth, flow velocity and arrival time. The new integrated flood modelling tool is validated in Morpeth, the North East of England by reproducing the September 2008 flood event during which the town was severely inundated following an intense rainfall event. Moreover, the coupled model is investigated and evaluated according to the effects from temporal and spatial resolutions, friction, rainfall, infiltration, buildings and coupling methods. In addition, the model is also employed to implement flood damage estimations with different scenarios of the upstream storage and flood defences in the town centre. Whilst producing similar accuracy, the new model is shown to be much more efficient compared with the hydrodynamic model depending on the hydrological zone percentage. These encouraging results indicate that the new modelling tool could be robust and efficient for practitioners to perform flood modelling, damage estimation, risk assessment and flood management in urban areas and large-scale catchments.
APA, Harvard, Vancouver, ISO, and other styles
3

Vilariño, Daniel R. "Hydrologic calibration of the Cub Run Watershed using the PC version of the Hydrological Simulation Program - FORTRAN (HSPF)." Thesis, Virginia Tech, 1996. http://hdl.handle.net/10919/44438.

Full text
Abstract:

The Hydrological Simulation Program - FORTRAN (HSPF) in its personal computer version, release 10.10, was used to perform the hydrological simulation of a sub-watershed of the Occoquan River drainage basin. The sub-watershed selected was the Cub Run Watershed located in the northern area of the Occoquan River catchment. A model in the form of a User Control Input (UCI) file was prepared. The Cub Run Watershed was analyzed considering its geological, edaphic and weather characteristics, and segmented accordingly. The model was calibrated to adjust simulated results to observed data. Several calibration runs were executed and a final run was done considering a further segmented watershed. The simulation results were good even when not all the desired data could be found. The annual percent difference between the best calibration run and the observed results was 21.28%. The ten-month percent difference, excluding June and July, was 5.82 %. The first value is a fair result for hydrologic calibration, the second value is an excellent result for the same type of calibration. Additional segmentation did not further improve the results obtained during the best calibration run. Differences in the calibration when considering just a pervious segment or two segments (one pervious and one impervious) could be noted, indicating the importance of considering impervious surfaces for the simulation. HSPF reacted quite logically to variations in the calibration parameters and the results from those variations could be predicted beforehand. In summary, the PC version of HSPF was demonstrated to be a good management tool for the hydrological simulation of this watershed.


Master of Science
APA, Harvard, Vancouver, ISO, and other styles
4

Parsons, J. S. "A simulation model for subsurface and overland flow down a hillside in the Crimple Beck, N. Yorkshire." Thesis, University of Leeds, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Fangli. "A particle-set distributed hydrological model for the dynamic simulation of surface runoff." HKBU Institutional Repository, 2017. https://repository.hkbu.edu.hk/etd_oa/472.

Full text
Abstract:
1.1\xThis study proposed a particle-set distributed hydrological model for the dynamic simulation of rainfall-runoff process. With the supports of remote sensing, GIS, terrain analysis and distributed computing techniques, a representation-simplified and physically-based high-performance watershed framework has been developed. It simplifies the underlying watershed with a flow path network model, and represents the moving surface flow with independent runoff particles.;1.2\xThe original idea was to investigate a real-time modeling system for the space-time dynamics of increasingly frequent extreme rainfall events. Short-term heavy rains may cause further damages by spawning floods and landslides. It is quite essential to understand how the rainfall water moves across the watershed surface as early as possible. A modelling system with high-performance in simulation efficiency and space-time prediction accuracy would be very desirable.;1.3\xWatershed modeling is the primary way to explore the hydrological cycle at a local scale. Existing models are classified as empirical lumped, conceptual semi-distributed and physically-based distributed models. The first two types of models have focused more on predicting outlet discharges rather than estimating spatiotemporal flow dynamics. The application of physically-based models has always been hampered by some common shortcomings like over-parameterization, inflexibility and computational burden. With the increasing support from terrain analysis and parallel computing techniques, a number of previous studies have made some efforts to improve the performance in dynamic and real-time simulation. However, research gaps still exist in realistic representation, physical description and real-time simulation.;1.4\xThis study, therefore, developed the particle-set modeling system on the basis of flow path network model. This one-dimensional topological structure was created beforehand to represent the three-dimensional watershed, and a series of particle beams were dynamically generated to simulate the surface flow. Under the control of flow velocities, these runoff particles would keep on moving along with the flow paths, which can represent the spatial distributions of surface water in time.;1.5\xTo validate the proposed particle-set framework, a prototype of particle-set system was implemented by programming methods with the assistance of third-party platforms. Three experiments were undertaken to respectively evaluate the performance in prediction accuracy, simulation efficiency and parameter sensitivity. More specifically, a total of 10 rainfall events and up to 128 computer processors were tested. In addition, the influences of underlying spatial scale and source sampling density on hydrological responses were explored with comparative tests.;1.6\xThe accuracy validation comes in two parts, the representation loss in terrain analysis, and the discharge error in hydrological modeling. The experimental results indicate that the TIN-based flow path network has maintained the terrain features at a very high level with much less data storage, and the particle-set framework has achieved quite acceptable predictions of outlet discharges. Besides, the efficiency evaluation concerns with two aspects, parallel portion and parallel efficiency. The speed-up results indicate that about 99% of the computational workloads can be computed in parallel, and the particle-based scheme can achieve almost the ideal parallel efficiency. In addition, the sensitivity test focuses also on two parameters, underlying spatial scale and source sampling density. The preliminary results show that the particle-set model has shown a good reliability and stability as scale gets coarser or density becomes sparser.;1.7\xThis study will contribute to the understanding of short-term rainfall-runoff events at a basin scale. The particle-set distributed hydrological model has been proven to provide real-time spatio-temporal dynamics of surface flow. Further studies would still be required to apply it to real world scenarios.;1.8\xKeywords: terrain analysis, watershed hydrology, rainfall-runoff process, flow path network, particle system, parallel computing
APA, Harvard, Vancouver, ISO, and other styles
6

Tondu, Yohann. "Simulation of the Paris 1910 flood with a lumped hydrological model: the influence of frozen soil." Thesis, KTH, Vattendragsteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96310.

Full text
Abstract:
In 1910, Paris experienced its biggest flood in the 20th century. In 2010, for the anniversary of this event – supposed to happen every 100 years ! – the flood prediction model that is now used on the Seine basin was tested on its simulation,… and failed to reproduce the observed flood volume. This paper will try to explain, and correct, such disappointing results. Many hypotheses have been tested and based on their results, it has been decided to develop a frost module in order to assess the influence of this phenomenon – that is not taken into account by the lumped hydrological model that is used – on the flood formation. A soil temperature model using air temperature as input data was also designed because soil temperature data were not available in 1910. The addition of the frost module did not, however, bring many improvements to the 1910 flood simulation because frost is a too rare phenomenon on the Seine basin for the module to be correctly calibrated. However, new perspectives are presented to continue the research on this phenomenon.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Chen. "Simulation and Evaluation of Stream flow and Pesticide Prediction in Orestimba Creek Watershed using AnnAGNPS Model." OpenSIUC, 2014. https://opensiuc.lib.siu.edu/theses/1564.

Full text
Abstract:
Pesticides have been recognized as one major agricultural non-point source (NPS) pollution to the environment and surface water in United States. Numerous mathematical models have been developed over the last decades to simulate the fate and transport of NPS at watershed scale. Geographic Information System (GIS) combined with models extends the spatial and temporal scopes of the research by integrating a variety of climates, soils, land covers, and management practices. The Annualized Agricultural Nonpoint Source model (AnnAGNPS) has received considerable attention in the United States for estimating runoff, sediment yield, pesticide and nutrients transport from ungauged agricultural watershed. However, few studies have been conducted on pesticide loading prediction in surface water using AnnAGNPS. In this study, the AnnAGNPS model was calibrated and validated for prediction of stream flow and chlorpyrifos loading for an agricultural dominated watershed of Orestimba Creek, in Central Valley, California. Large amounts of chlorpyrifos are applied to almonds, walnuts and other stone-fruit orchards in this area every year, which caused significant concern regarding their contamination to the San Joaquin River. Variety of data obtained from multiple sources were utilized as model input, including climate, land use, topology, soil, crop management and schedule, non-crop data, and pesticide. The model's performance was quantitatively analyzed using mean, standard deviation, coefficient of determination (r2), coefficient of efficiency (NSE), and root mean square error (RMSE). Model's prediction was considered to be unsatisfactory if NSE < 0.36, satisfactory if 0.36 < NSE < 0.75 and good if NSE > 0.75. Monthly stream flow discharge prediction was satisfactory and fit the observed data during model calibration mode. The prediction had major improvement in validation mode with modified curve number and rainfall interception values (r2 = 0.78 and NSE = 0.77). The AnnAGNPS predictions of chlorpyrifos concentrations in runoff water were unsatisfactory in both calibration and validation modes. Predicted chlorpyrifos concentrations at rainfall events were 1/1000 of observed data and it was impossible to improve the results through any type of calibration. The overall results suggested the model's poor performance was most likely a result of coarse sampling resolution of observed chlorpyrifos concentrations and lack of irrigation data.
APA, Harvard, Vancouver, ISO, and other styles
8

Garcia, Luis Jimenez, Guzman Osnar Iruri, and Sissi Santos Hurtado. "Hazard map based on the simulation of sludge flow in a two-dimensional model, Case Quebrada Malanche-Punta Hermosa -Lima-Perú." Institute of Electrical and Electronics Engineers Inc, 2020. http://hdl.handle.net/10757/656417.

Full text
Abstract:
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado.
This research presents the numerical simulation to reproduce the transport and deposition processes of the sludge flow on March 15, 2017, strongly impacting the town of Pampapacta in Punta Hermosa-Peru.The debris flow initiation process in the basin was represented by hydrographs obtained from the estimated volumes of stormwater runoff and solid materials. The sludge flow was modeled in Flo2D to calculate hazard maps with the discharge event and others with different return periods.The numerical simulation results show acceptable results in relation to what happened. The model used to assess the hazard due to debris flow can predict and delineate, with acceptable precision, potentially hazardous areas for a landslide. The application of the proposed methodology to assess the hazard of disasters due to debris flows in basins and streams is useful to understand the extent of the impact of the mud flow during extreme weather events, as well as to develop emergency plans and formulate disaster policies.
APA, Harvard, Vancouver, ISO, and other styles
9

Abdelnour, Alex Gabriel. "Assessing ecosystem response to natural and anthropogenic disturbances using an eco-hydrological model." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42899.

Full text
Abstract:
The impact of natural and anthropogenic disturbances on catchment hydrological and biogeochemical dynamics are difficult or impossible to capture through experimentation or observation alone. Process-based simulation models can address this need by providing a framework for synthesizing data describing catchment responses to climate, harvest, fire, and other disturbances. However, existing models are either too simple to capture important process-level hydrological and biogeochemical controls on ecosystem responses to disturbance, or are too computationally expensive to simulate the local dynamics over large watershed areas, or require a high level of expertise to implement. To this end, a spatially distributed, physically based, eco-hydrological model (VELMA: Visualizing Ecosystems for Land Management Assessments) that is both computationally efficient and relatively easy to implement is developed. VELMA is a state-of-the-art model with real-time visualization tools that shows temporal and spatial patterns of state and flux variables, and is used to address the effects of changes in climate, land-use, and other interacting stressors on multiple ecosystem services such as timber production, carbon sequestration, regulation of water quality and quantity and reduction of greenhouse gases at scales relevant to formulating management decisions. In this study, VELMA was applied to the H.J. Andrews Experimental forest, an intensively studied watershed with observed daily temperature, precipitation, streamflow, and nutrient losses data. VELMA was first used to explore the factors that controls catchment response to forest harvest. Specifically, elucidate how forest harvest factors such as harvest location and amount control watershed hydrological and biogeochemical fluxes. Thereafter, VELMA was used to reconstruct and analyze the impact of two significant disturbance events − a stand replacing fire and a 100% clearcut − on vegetation and soil carbon and nitrogen dynamics. Finally, VELMA was used to explore the potential impact of climate change on catchment hydrological regime, site productivity and carbon and nitrogen dynamics at high spatial resolution relevant to formulating management decision. The main insights from this study include: (1) streamflow, nutrient losses to the stream, and gaseous carbon and nitrogen losses to the atmosphere are strongly sensitive to the location of harvest as a result of the spatial variation in soil water content, plant nitrogen uptake, soil organic carbon decomposition, nitrification, and denitrification within the watershed, (2) forested riparian buffers reduce water and nutrient losses to the stream through plant transpiration, plant nitrogen uptake, soil storage, and soil microbial decomposition, (3) following fire and harvest, losses of N from the terrestrial system to the stream are tightly constrained by the hydrological cycle and driven mainly by wet-season rain events large enough to generate hydrologic connectivity and flushing of nutrients along hillslopes, (4) climate change strongly impacts the hydrological regime in the Pacific Northwest as a result of less snowpack, earlier snowmelt, higher winter streamflow, lower summer streamflow, and soil moisture deficit, and (5) climate change increases plant and soil biomass accumulation as a result of longer growing season and higher soil organic decomposition, reduce water quality by increasing the amount of nutrients that reach the stream, and transforms the ecosystem into a net source of carbon to the atmosphere.
APA, Harvard, Vancouver, ISO, and other styles
10

Kruk, N. S., Peter Hoffmann, and Armin Raabe. "Modeling of orographic precipitation events in South America to couple hydrological and atmospheric models; part 1: The simulation of rain with the Mesoscale Model GESIMA." Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-222251.

Full text
Abstract:
Globalmodelle sind aufgrund ihres groben Gitters (60 x 60 km) nur unzureichend in der Lage kleinskalige Prozesse (orographische Niederschlagsverstärkung) in der Atmosphäre aufzulösen. Mit Mesoskalenmodellen z.B. dem GESIMA (5 x 5 km) können deshalb die physikalische Grundlagen der Atmosphäre (Wolken- und Niederschlagsbildung) besser studiert und eine Kopplung mit hydrologischen Abflussmodellen erprobt werden. Zukünftig sieht dieses Projekt genau das vor, wobei der erste Teil, die Arbeit mit dem meteorologische Modell hier vorgestellt werden soll. Starkniederschlagserreignisse sind vielerorts auf der Welt mit charakteristischen Wetterlagen verbunden, die quasi über Tage unverändert ergiebigen Regen produzieren. Initialisiert mit den lokalen Vertikalprofilen aus Radiosondendaten, produzieren das prognostische Mesoskalenmodell GESIMA und das diagnostische Niederschlagsberechungsverfahren (MAXRR) maximale Regenmengen vergleichbarer Größenordnung
Global models are insufficient to solve small scale atmospheric processes (e.g. orographic precipitation) due to their gross resolution (60 x 60 km). With mesoscale models e.g. the GESIMA (5 x 5 km), the physical fundamentals of the atmosphere (formation of precipitation and clouds) can better be studied and a coupling with hydrological models be tested through. This project plans exactly, as a first step, the work with the cited meteorological model. Heavy rainfall events are connected with characteristic weather conditions in many places in the world which produce invariably rain quasi over days. Initialized with the local vertical profiles from radiosonde data, the prediction model GESIMA and the diagnostic model MAXRR produced rain quantities of comparable order of magnitude
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Hydrological simulation model"

1

A, Matthews David. Nested model simulations of regional orographic precipition. Denver, Colo: U.S. Dept. of the Interior, Bureau of Reclamation, Technical Service Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

A, Matthews David. Nested model simulations of regional orographic precipitation. Denver, Colo: U.S. Dept. of the Interior, Bureau of Reclamation, Technical Service Center, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hoekstra, Arjen Y. Perspectives on water: An integrated model-based exploration of the future. Utrecht, Netherlands: International Books, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Carver, Martin. Development and application of a peak-flow hazard model for the Fraser Basin (British Columbia). Victoria, B.C: Pacific Forestry Centre, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schuurmans, J. M. Hydrological now- and forecasting: Integration of operationally available remotely sensed and forecasted hydrometeorological variables into distributed hydrological models. Utrecht: Royal Dutch Geographical Society, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hydrological now- and forecasting: Integration of operationally available remotely sensed and forecasted hydrometeorological variables into distributed hydrological models. Utrecht: Royal Dutch Geographical Society, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wilson, Mary. Remote sensing data applications to hydrological models. [Lindsay, Ont.?: Sir Sandford Fleming College], 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jia, Yanbing. Hydrologic and water quality modeling of the Lake Jesup watershed using hydrological simulation program--Fortran (HSPF). Palatka, Fla: St. Johns River Water Management District, Dept. of Water Resources, Division of Engineering, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jia, Yanbing. Hydrologic and water quality modeling of the Lake Jesup watershed using hydrological simulation program--Fortran (HSPF). Palatka, Fla: St. Johns River Water Management District, Dept. of Water Resources, Division of Engineering, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jia, Yanbing. Hydrologic and water quality modeling of the Lake Jesup watershed using hydrological simulation program--Fortran (HSPF). Palatka, Fla: St. Johns River Water Management District, Dept. of Water Resources, Division of Engineering, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hydrological simulation model"

1

Verma, S., Sachin, and K. C. Patra. "Dam Break Flow Simulation Model for Preparing Emergency Action Plans for Bargi Dam Failure." In Hydrological Modeling, 271–86. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-81358-1_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Abdelmoneim, Hadir, Mohamed R. Soliman, and Hossam M. Moghazy. "Hydrologic Assessment of the Uncertainty of Six Remote Sensing Precipitation Estimates Driven by a Distributed Hydrologic Model in the Blue Nile Basin." In Natural Disaster Science and Mitigation Engineering: DPRI reports, 225–49. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2904-4_8.

Full text
Abstract:
AbstractBecause of the sparseness of the ground monitoring network, precipitation estimations based on satellite products (PESPs) are currently requisite tools for hydrological simulation research and applications. The evaluation of six global high-resolution PESPs (TRMM 3B42V7, GPGP-1DD, TRMM 3B42RT, CMORPH-V1.0, PERSIANN, and PERSIANN-CDR) is the ultimate purpose of this research. Additionally, the distributed Hydrological River Basin Environmental Assessment Model (Hydro-BEAM) is used to investigate their potential effects in streamflow predictions over the Blue Nile basin (BNB) during the period 2001 to 2007. The correctness of the studied PESPs is assessed by applying categorical criteria to appraise their performances in estimating and reproducing precipitation amounts, while statistical indicators are utilized to determine their rain detection capabilities. Our findings reveal that TRMM 3B42V7 outperforms the remaining product in both the estimation of precipitation and the hydrological simulation, as reflected in highest NSE and R2 values ranges from 0.85 to 0.94. Generally, the TRMM 3B42V7 precipitation product exhibits tremendous potential as a substitute for precipitation estimates in the BNB, which will provide powerful forcing input data for distributed hydrological models. Overall, this study will hopefully provide a better comprehension of the usefulness and uncertainties of various PESPs in streamflow simulations, particularly in this region.
APA, Harvard, Vancouver, ISO, and other styles
3

Fang, Yujie, Wenbin Zhou, and Dinggui Luo. "Study on Hydrological Simulation of Gan River Based on SWAT-X Model." In Lecture Notes in Electrical Engineering, 1367–74. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-2169-2_162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Narendra, Hengade, T. I. Eldho, and Ghosh Subimal. "Hydrological Simulation of a Large Catchment Using the Variable Infiltration Capacity Model." In Water Science and Technology Library, 19–30. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55125-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jia, Yangwen, Guangheng Ni, Yoshihisa Kawahara, and Tadashi Suetsugi. "Numerical Simulation of Groundwater Flow in Multi-layered Aquifers with a Distributed Hydrological Model." In Groundwater Updates, 259–64. Tokyo: Springer Japan, 2000. http://dx.doi.org/10.1007/978-4-431-68442-8_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ma, Qiang, Elodie Zavattero, Mingxuan Du, and Philippe Gourbesville. "Assessment of Deterministic Model over Long Time Period Hydrological Simulation at Ungauged Mediterranean Catchment." In Advances in Hydroinformatics, 393–400. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7218-5_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Patel, Anant. "Rainfall-Runoff Modelling and Simulation Using Remote Sensing and Hydrological Model for Banas River, Gujarat, India." In Lecture Notes in Civil Engineering, 153–62. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8181-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tran, Thanh-Nhan-Duc, Quang Binh Nguyen, Ngoc Duong Vo, Rushawn Marshall, and Philippe Gourbesville. "Assessment of Terrain Scenario Impacts on Hydrological Simulation with SWAT Model. Application to Lai Giang Catchment, Vietnam." In Advances in Hydroinformatics, 1205–22. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1600-7_77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Belarbi, Halima, Bénina Touaibia, Nadir Boumechra, Chérifa Abdelbaki, and Sakina Amiar. "Analysis of the Hydrological Behavior of Watersheds in the Context of Climate Change (Northwestern Algeria)." In Natural Disaster Science and Mitigation Engineering: DPRI reports, 143–79. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2904-4_5.

Full text
Abstract:
AbstractThe aim of this work is to study the temporal evolution of the rainfall-runoff relations of four basins in northwestern Algeria: the Tafna Maritime, Isser Sikkak, downstream Mouilah and Upper Tafna basins. The adopted approach consists of analyzing hydroclimatic variables using statistical methods and testing the nonstationarity of the rainfall-runoff relation by the cross-simulation method using the GR2M model. The results of the different statistical methods applied to the series of rainfall and hydrometric variables show a decrease due to a break in stationarity detected since the mid-1970s and the beginning of the 1980s. The annual rainfall deficits reached average values of 34.6% during the period of 1941–2006 and 29.1% during the period of 1970–2010. The average annual wadi flows showed average deficits of 61.1% between 1912 and 2000 and 53.1% between 1973 and 2009. The GR2M conceptual model simulated the observed hydrographs in an acceptable manner by providing calculated runoff values in the calibration and validation periods greater or less than the observed runoff values. The application of the cross-simulation method highlighted the nonstationarity of the rainfall-runoff relations in three of the four studied basins, indicating downward trends of monthly runoff.
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Huaxiao, G. Edward Birchfield, and Jonathan J. Rich. "Hydrological Cycle Scenarios, Deep Ocean Circulation, and Century/Millennium Climate Change: A Simulation Study Using an Ocean-Atmosphere-Ice Sheet Model." In Ice in the Climate System, 237–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-85016-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hydrological simulation model"

1

"Exposing a Hydrological Simulation Model on the web." In 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2011. http://dx.doi.org/10.36334/modsim.2011.c4.leighton.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heydari, Salimeh Malekpour, Teh Noranis Mohd Aris, Razali Yaakob, and Hazlina Hamdan. "Hydrological Modeling of Murray River Basin Using The Hydrological Simulation Program-FORTRAN Model." In 2019 IEEE 7th Conference on Systems, Process and Control (ICSPC). IEEE, 2019. http://dx.doi.org/10.1109/icspc47137.2019.9068009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Scott River Hydrological and Nutrient Model construction and calibration." In 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2011. http://dx.doi.org/10.36334/modsim.2011.i13.hall.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Towards reliable hydrological model calibrations with river level measurements." In 21st International Congress on Modelling and Simulation (MODSIM2015). Modelling and Simulation Society of Australia and New Zealand, 2015. http://dx.doi.org/10.36334/modsim.2015.l11.jian.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gil, Monica, Mario Beron, German Montejano, Daniel Riesco, Haesun Lee, and Narayan Debnath. "An ontology for the interoperability of hydrological simulation model." In 2016 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2016. http://dx.doi.org/10.1109/icit.2016.7475020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Model-data fusion: using observations to understand and reduce uncertainty in hydrological models." In 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2011. http://dx.doi.org/10.36334/modsim.2011.keynote.vandijk.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Yajie, Yonghong Hao, and Xuemeng Wang. "Simulation of karst hydrological processes using GM(1,1) metabolic model." In 2009 IEEE International Conference on Grey Systems and Intelligent Services (GSIS 2009). IEEE, 2009. http://dx.doi.org/10.1109/gsis.2009.5408244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Xianghu Li, Qi Zhang, and Yunliang Li. "Comparison of two distributed hydrological model for soil moisture simulation." In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5964950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Towards operational hydrological model calibration using streamflow and soil moisture measurements." In 21st International Congress on Modelling and Simulation (MODSIM2015). Modelling and Simulation Society of Australia and New Zealand, 2015. http://dx.doi.org/10.36334/modsim.2015.l3.zhang.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Development of a parallel computing enabled optimisation tool for hydrological model calibration." In 21st International Congress on Modelling and Simulation (MODSIM2015). Modelling and Simulation Society of Australia and New Zealand, 2015. http://dx.doi.org/10.36334/modsim.2015.l2.yang.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hydrological simulation model"

1

Skahill, Brian E. Use of the Hydrological Simulation Program - FORTRAN (HSPF) Model for Watershed Studies. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada434883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

de Vries, Sander C. WFLOW_LINTUL: raster-based simulation of rice growth in the WFLOW/OpenStreams hydrological modelling platform : user manual and description of core model code. Wageningen: Wageningen Research (WR) business unit Agrosystems Research, 2018. http://dx.doi.org/10.18174/461276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hamill, Daniel D., Jeremy J. Giovando, Chandler S. Engel, Travis A. Dahl, and Michael D. Bartles. Application of a Radiation-Derived Temperature Index Model to the Willow Creek Watershed in Idaho, USA. U.S. Army Engineer Research and Development Center, August 2021. http://dx.doi.org/10.21079/11681/41360.

Full text
Abstract:
The ability to simulate snow accumulation and melting processes is fundamental to developing real-time hydrological models in watersheds with a snowmelt-dominated flow regime. A primary source of uncertainty with this model development approach is the subjectivity related to which historical periods to use and how to combine parameters from multiple calibration events. The Hydrologic Engineering Center, Hydrological Modeling System, has recently implemented a hybrid temperature index (TI) snow module that has not been extensively tested. This study evaluates a radiatative temperature index (RTI) model’s performance relative to the traditional air TI model. The TI model for Willow Creek performed reasonably well in both the calibration and validation years. The results of the RTI calibration and validation simulations resulted in additional questions related to how best to parameterize this snow model. An RTI parameter sensitivity analysis indicates that the choice of calibration years will have a substantial impact on the parameters and thus the streamflow results. Based on the analysis completed in this study, further refinement and verification of the RTI model calculations are required before an objective comparison with the TI model can be completed.
APA, Harvard, Vancouver, ISO, and other styles
4

Alt, Jonathan, Willie Brown, George Gallarno, John Richards, Jennifer Olszewski, and Titus Rice. Risk-based prioritization of operational condition assessments : methodology and case study results. Engineer Research and Development Center (U.S.), November 2022. http://dx.doi.org/10.21079/11681/46123.

Full text
Abstract:
USACE operates, maintains, and manages more than $232 billion of the Nation’s water resource infrastructure. USACE uses the Operational Condition Assessment (OCA) to allocate limited resources to assess condition of this infrastructure in efforts to minimize risks associated with performance degradation. The analysis of risk associated with flood risk management (FRM) assets includes consideration of how each asset contributes to its associated FRM watershed system, understanding the consequences of the asset’s performance degradation, and a determination of the likelihood that the asset will perform as expected given the current OCA condition ratings of critical components. This research demonstrates a proof-of-concept application of a scalable methodology to model the probability of a dam performing as expected given the state of its gates and their components. The team combines this likelihood of degradation with consequences generated by the application of designed simulation experiments with hydrological models to develop a risk measure. The resulting risk scores serve as an input for a mixed-integer optimization program that outputs the optimal set of components to conduct OCAs on to minimize risk in the watershed. This report documents the results of the application of this methodology to two case studies.
APA, Harvard, Vancouver, ISO, and other styles
5

Alt, Jonathan, Willie Brown, George Gallarno, John Richards, and Titus Rice. Risk-based prioritization of operational condition assessments : Jennings Randolph case study. Engineer Research and Development Center (U.S.), April 2022. http://dx.doi.org/10.21079/11681/43862.

Full text
Abstract:
The US Army Corps of Engineers (USACE) operates, maintains, and manages over $232 billion worth of the Nation’s water resource infrastructure. Using Operational Condition Assessments (OCA), the USACE allocates limited resources to assess asset condition in efforts to minimize risks associated with asset performance degradation, but decision makers require a greater understanding of those risks. The analysis of risk associated with Flood Risk Management assets in the context of its associated watershed system includes understanding the consequences of the asset’s failure and a determination of the likelihood that the asset will perform as expected given the current OCA ratings of critical components. This research demonstrates an application of a scalable methodology to model the probability of a dam performing as expected given the state of its subordinate gates and their components. The research team combines this likelihood with consequences generated by the application of designed simulation experiments with hydrological models to develop a measure of risk. The resulting risk scores serve as an input for an optimization program that outputs the optimal set of components to conduct OCAs on to minimize risk in the watershed. Proof-of-concept results for an initial case study on the Jennings Randolph Dam are provided.
APA, Harvard, Vancouver, ISO, and other styles
6

Matus, Sean, and Daniel Gambill. Automation of gridded HEC-HMS model development using Python : initial condition testing and calibration applications. Engineer Research and Development Center (U.S.), November 2022. http://dx.doi.org/10.21079/11681/46126.

Full text
Abstract:
The US Army Corps of Engineers’s (USACE) Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) rainfall-runoff model is widely used within the research community to develop both event-based and continuous rainfall-runoff models. The soil moisture accounting (SMA) algorithm is commonly used for long-term simulations. Depending on the final model setup, 12 to 18 parameters are needed to characterize the modeled watershed’s canopy, surface, soil, and routing processes, all of which are potential calibration parameters. HEC-HMS includes optimization tools to facilitate model calibration, but only initial conditions (ICs) can be calibrated when using the gridded SMA algorithm. Calibrating a continuous SMA HEC-HMS model is an iterative process that can require hundreds of simulations, a time intensive process requiring automation. HEC-HMS is written in Java and is predominantly run through a graphical user interface (GUI). As such, conducting a long-term gridded SMA calibration is infeasible using the GUI. USACE Construction Engineering Research Laboratory (CERL) has written a workflow that utilizes the existing Jython application programming interface (API) to batch run HEC-HMS simulations with Python. The workflow allows for gridded SMA HEC-HMS model sensitivity and calibration analyses to be conducted in a timely manner.
APA, Harvard, Vancouver, ISO, and other styles
7

Berger, Rutherford C. Foundational Principles in the Development of AdH-SW3, the Three-Dimensional Shallow Water Hydrodynamics and Transport Module within the Adaptive Hydraulics/Hydrology Model. U.S. Army Engineer Research and Development Center, June 2022. http://dx.doi.org/10.21079/11681/44560.

Full text
Abstract:
This report details the design and development of the three-dimensional shallow water hydrodynamics formulation within the Adaptive Hydraulics/Hydrology model (AdH-SW3) for simulation of flow and transport in rivers, estuaries, reservoirs, and other similar hydrologic environments. The report is intended to communicate principles of the model design for the interested and diligent user. The design relies upon several layers of consistency to produce a stable, accurate, and conservative model. The mesh design can handle rapid changes in bathymetry (e.g., steep-sided navigation channels in estuaries) and maintain accuracy in density-driven transport phenomena (e.g., thermal, or saline stratification and intrusion of salinity).
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Zhonglong, and Billy E. Johnson. Aquatic Contaminant and Mercury Simulation Modules Developed for Hydrologic and Hydraulic Models. Fort Belvoir, VA: Defense Technical Information Center, July 2016. http://dx.doi.org/10.21236/ad1013220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Downer, Charles W., William F. James, Aaron Byrd, and Gregory W. Eggers. Gridded Surface Subsurface Hydrologic Analysis (GSSHA) Model Simulation of Hydrologic Conditions and Restoration Scenarios for the Judicial Ditch 31 Watershed, Minnesota. Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada403459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

de Kemp, E. A., H. A. J. Russell, B. Brodaric, D. B. Snyder, M. J. Hillier, M. St-Onge, C. Harrison, et al. Initiating transformative geoscience practice at the Geological Survey of Canada: Canada in 3D. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331097.

Full text
Abstract:
Application of 3D technologies to the wide range of Geosciences knowledge domains is well underway. These have been operationalized in workflows of the hydrocarbon sector for a half-century, and now in mining for over two decades. In Geosciences, algorithms, structured workflows and data integration strategies can support compelling Earth models, however challenges remain to meet the standards of geological plausibility required for most geoscientific studies. There is also missing links in the institutional information infrastructure supporting operational multi-scale 3D data and model development. Canada in 3D (C3D) is a vision and road map for transforming the Geological Survey of Canada's (GSC) work practice by leveraging emerging 3D technologies. Primarily the transformation from 2D geological mapping, to a well-structured 3D modelling practice that is both data-driven and knowledge-driven. It is tempting to imagine that advanced 3D computational methods, coupled with Artificial Intelligence and Big Data tools will automate the bulk of this process. To effectively apply these methods there is a need, however, for data to be in a well-organized, classified, georeferenced (3D) format embedded with key information, such as spatial-temporal relations, and earth process knowledge. Another key challenge for C3D is the relative infancy of 3D geoscience technologies for geological inference and 3D modelling using sparse and heterogeneous regional geoscience information, while preserving the insights and expertise of geoscientists maintaining scientific integrity of digital products. In most geological surveys, there remains considerable educational and operational challenges to achieve this balance of digital automation and expert knowledge. Emerging from the last two decades of research are more efficient workflows, transitioning from cumbersome, explicit (manual) to reproducible implicit semi-automated methods. They are characterized by integrated and iterative, forward and reverse geophysical modelling, coupled with stratigraphic and structural approaches. The full impact of research and development with these 3D tools, geophysical-geological integration and simulation approaches is perhaps unpredictable, but the expectation is that they will produce predictive, instructive models of Canada's geology that will be used to educate, prioritize and influence sustainable policy for stewarding our natural resources. On the horizon are 3D geological modelling methods spanning the gulf between local and frontier or green-fields, as well as deep crustal characterization. These are key components of mineral systems understanding, integrated and coupled hydrological modelling and energy transition applications, e.g. carbon sequestration, in-situ hydrogen mining, and geothermal exploration. Presented are some case study examples at a range of scales from our efforts in C3D.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography