Academic literature on the topic 'Hydrologic models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrologic models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hydrologic models"
Guilpart, Etienne, Vahid Espanmanesh, Amaury Tilmant, and François Anctil. "Combining split-sample testing and hidden Markov modelling to assess the robustness of hydrological models." Hydrology and Earth System Sciences 25, no. 8 (August 30, 2021): 4611–29. http://dx.doi.org/10.5194/hess-25-4611-2021.
Full textMendoza, Pablo A., Martyn P. Clark, Naoki Mizukami, Andrew J. Newman, Michael Barlage, Ethan D. Gutmann, Roy M. Rasmussen, Balaji Rajagopalan, Levi D. Brekke, and Jeffrey R. Arnold. "Effects of Hydrologic Model Choice and Calibration on the Portrayal of Climate Change Impacts." Journal of Hydrometeorology 16, no. 2 (April 1, 2015): 762–80. http://dx.doi.org/10.1175/jhm-d-14-0104.1.
Full textGanoulis, J. "Modeling Hydrologic Phenomena [Free opinion]." Revue des sciences de l'eau 9, no. 4 (April 12, 2005): 421–34. http://dx.doi.org/10.7202/705260ar.
Full textAbbas, Ather, Laurie Boithias, Yakov Pachepsky, Kyunghyun Kim, Jong Ahn Chun, and Kyung Hwa Cho. "AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods." Geoscientific Model Development 15, no. 7 (April 8, 2022): 3021–39. http://dx.doi.org/10.5194/gmd-15-3021-2022.
Full textNaik, M. Ravi, and Dr MVSS Giridhar. "Spatial Variability of Rainfall and Classification of Peninsular Indian Catchments." International Journal of Advanced Engineering and Nano Technology 10, no. 12 (December 30, 2023): 8–15. http://dx.doi.org/10.35940/ijaent.f4214.12101223.
Full textPawitan, Hidayat, and Muh Taufik. "Non-linear Routing Scheme at Grid Cell Level for Large Scale Hydrologic Models: A Review." Agromet 35, no. 2 (August 12, 2021): 60–72. http://dx.doi.org/10.29244/j.agromet.35.2.60-72.
Full textPerra, Enrica, Monica Piras, Roberto Deidda, Claudio Paniconi, Giuseppe Mascaro, Enrique R. Vivoni, Pierluigi Cau, Pier Andrea Marras, Ralf Ludwig, and Swen Meyer. "Multimodel assessment of climate change-induced hydrologic impacts for a Mediterranean catchment." Hydrology and Earth System Sciences 22, no. 7 (July 30, 2018): 4125–43. http://dx.doi.org/10.5194/hess-22-4125-2018.
Full textJanicka, Ewelina, Jolanta Kanclerz, Tropikë Agaj, and Katarzyna Gizińska. "Comparison of Two Hydrological Models, the HEC-HMS and Nash Models, for Runoff Estimation in Michałówka River." Sustainability 15, no. 10 (May 12, 2023): 7959. http://dx.doi.org/10.3390/su15107959.
Full textCarleton, Tyler J., and Steven R. Fassnacht. "Linking Hydrologic and Hydraulic Data with Models to Assess Flow and Channel Alteration at Hog Park, Wyoming USA." Hydrology 7, no. 2 (May 23, 2020): 29. http://dx.doi.org/10.3390/hydrology7020029.
Full textValdés-Pineda, Rodrigo, Juan B. Valdés, Sungwook Wi, Aleix Serrat-Capdevila, and Tirthankar Roy. "Improving Operational Short- to Medium-Range (SR2MR) Streamflow Forecasts in the Upper Zambezi Basin and Its Sub-Basins Using Variational Ensemble Forecasting." Hydrology 8, no. 4 (December 20, 2021): 188. http://dx.doi.org/10.3390/hydrology8040188.
Full textDissertations / Theses on the topic "Hydrologic models"
Boyle, Douglas Patrick. "Multicriteria calibration of hydrologic models." Diss., The University of Arizona, 2001. http://hdl.handle.net/10150/290657.
Full textThoms, R. Brad. "Simulating fully coupled overland and variably saturated subsurface flow using MODFLOW /." Full text open access at:, 2003. http://content.ohsu.edu/u?/etd,16.
Full textLoaiza, Usuga Juan Carlos. "Soil hydrology in the Ribera Salada Catchment (Catalan PrePyrenees): application of hydrologic models for the estimation of hydrologic transitional regimes." Doctoral thesis, Universitat de Lleida, 2007. http://hdl.handle.net/10803/8235.
Full textafectada per canvis d'ús del sòl, mitjançant el monitoreig d'aquest i de l'aigua superficial. Aquest
objectiu s'ha treballat a partir mesuraments de components del balanç hídric pels diferents tipus de
cobertura i sòl, amb règims d'humitat i temperatura de transició.
Aquest estudi s'ha realitzat a la conca de la Ribera Salada (Prepirineu meridional Català, al NE
d'Espanya), amb una extensió de 222.5 km2, i un interval altitudinal de 420 a 2385 m i predomini de
pendents entre 12 - 25 % i 25 - 50 %. El substrat consisteix en conglomerats calcaris massius, calcilutites
i llims. La precipitació es de 507 i 763 mm. Amb sòls poc profunds, calcaris i pedregosos, essent
majoritàriament Inceptisòls (Typic Calciusteps, Typic Haploustepts) i Entisòls (Typic Ustifluvents, Typic
Udorthortents). A les zones més elevades de la conca, els sòls són més humits, degut a l'augment de la
precipitació, on es produeixen processos de descarbonatació del sòl. L'ús del sòl és majoritàriament
forestal, amb presència d'ecosistemes de ribera, subalpins i vegetació submediterrània. Algunes àrees es
troben amb cultius de patata, cereal i pastures. Una de les característiques més importants d'aquesta
conca són els canvis d'ús del sòl que ha patit en els últims 50 anys degut a l'abandó dels masos i cultius
tradicionals. Es seleccionaren vuit llocs de mostreig considerant les següents cobertes: Quercus ilex, bosc
de ribera, Pinus sylvestris, pastures, cultius (cereal-patata) i Pinus uncinata. A partir de l'any 1997 fins el
2005, s'han anat monitorejant el contingut d'humitat del sòl, l'escolament i els cabals. Des del 2004 s'han
anat anotant dades de drenatge. Les variables meteorològiques es mesuren a l'estació de Lladurs de la
XAC (Xarxa Agrometeorològica de Catalunya).
Els resultats obtenguts durant tres anys mostren una domini del règim d'humitat ústic (SSS, 2006), o xèric
en aquells anys més secs. En la modelització de règims d'humitat i temperatura del sòl, s'utilitzaren els
models de simulació NSM "Newhall simulation model" (Newhall, 1976) i JSM "Jarauta simulation
model" (Jarauta 1989). NSM (Newhall,1976) tendeix a sobre estimar el règim d'humitat del sòl, però
JSM (Jarauta, 1989) simula correctament el règim d'humitat del sòl (SSS, 2006) de la conca, funcionant
millor en condicions intermitges d'humitat del sòl. Ambdós models simulen correctament el règim de
temperatura dels sòls. Predomina un règim de temperatura mèsic-tèrmic, amb tendència a tèrmic els anys
secs. A petita escala la profunditat del sòl, pendent, pedregositat i una alta porositat del sòl són factores
que varien el règim d'humitat del sòl. La informació de sòl i clima, complementada mitjançant SIG, va
permetre l'obtenció de mapes de règim d'humitat del sòl de la conca, a escala 1:50000, els quals
permeten establir mediante simució els règims d'humitat del sòl en diferents escenaris de canvis
meteorològics.
El model TOPLATS ha sigut utilitzat en l'estimació de l'humitat del sòl en diferents usos del sòl. Aquest
model fou calibrat amb les equacions del filtre Kalman estès (EKF), que deriven de la minimització del
quadrat de la diferència entre els valors reals i els estimats (Goegebeur & Pauwels, 2007). Aquesta
metodologia interrelaciona correctament els valors de pluja, humitat del sòl, escolament i infiltració,
essent els valors d'humitat els que més s'aproximen als reals. Els resultats mostren que aquest filtre és
una eina útil per estimar el volum d'aigua del sòl emmagatzemada en conques a escala puntual,
assegurant una aplicació correcta del model hidrològic.
Per la modelització del comportament de l'humitat del sòl i diferents components del balanç hídric
s'utilitzà el modelo TOPLATS (Famiglietti & Wood, 1994). El model de simulació TOPLATS permite
simulà acceptablement el comportament de l'humitat del sòl. Els resultats de infiltració, escolament,
intercepció, evapotranspiració de referència i temperatura del sòl són correctes. Les diferències existents
entre valors simulats i observats són: l'humitat del sòl no sobrepassa el 5%, la infiltració fluctua entre 4%
i 15%, la diferència entre els valors reals i simulats d'evapotranspiració, depèn de l'estació de l'any,
essent 1mm a l'hivern i 2.7 mm a l'estiu. La temperatura varia entre 0.01ºC i 3.5ºC. El model calibrat
prediu amb precisió el comportament de les diferents components del balanç hídric. Respecte als valors
mesurats d'aigua de drenatge correspon al 11-41 % de la pluja total.
Respecte al balanç d'aigua en el sòl (ΔSW), els valors són negatius durant cert període de l'any, arribant a
valors crítics els mesos secs. La recuperació de humitat del sòl durant la resta de mesos succeeix de
manera parcial. A la part mitja de la conca, alguns mesos els valors d'humitat del sòl s'acosten a
condicions de punt de marchites (ecosistema submediterrani). A la part alta de la conca el sòl conserva
humitat (ecosistema subalpí). Els valors de cabal trobats corresponen a aportacions per escolament el
cuals són molt baixos. La majoria de les sortides es deuen a evapotranspiració, intercepció, infiltració i
drenatge (en ordre de importància).
El principal objetivo de esta investigación es estudiar la dinámica hidrológica de una cuenca Mediterránea
afectada por los cambios de uso del suelo, mediante el monitoreo del suelo y el agua superficial. Dicho objetivo
se ha abordado a partir de la medición de componentes del balance hídrico para diferentes tipos de cobertura y
suelo, considerando regimenes de humedad y temperatura de transición.
Este estudio se ha realizado en la cuenca de la Ribera Salada (Prepirineo meridional Catalán, NE España) de
222.5 km2, con un intervalo altitudinal de 420 a 2385 m y predominio de pendientes entre 12 - 25 % y 25 - 50
%. El sustrato consiste en conglomerados calcáreos masivos, calcilutitas y limos. La precipitación anual es de
507 y 763 mm. Los suelos són poco profundos, calcáreos y pedregosos, siendo en su mayoría Inceptisols
(Typic Calciusteps, Typic Haploustepts) y Entisols (Typic Ustifluvents, Typic Udorthortents). En las partes
altas de la cuenca los suelos son más húmedos, debido al aumento de la precipitación, allí ocurren procesos de
descarbonatación del suelo. Predomina el uso forestal, con ecosistemas de ribera, subalpinos y vegetación
submediterránea. Algunas áreas se dedican al cultivo de patatas, cereal y pastos. Una de las características más
importantes de esta cuenca es los importantes cambios de uso del suelo sufridos en los últimos 50 años, debido
al abandono de las masías y cultivos tradicionales.
Se seleccionaron ocho sitios de muestreo, considerando las siguientes coberturas: Quercus ilex, bosque de
ribera, Pinus sylvestris, pastos, cultivo (cereal-patata) y Pinus uncinata. A partir del año 1997 hasta 2005, se
han venido monitoreando el contenido de humedad del suelo, escorrentía y caudales. Desde 2004 se vienen
tomando datos drenaje. Las variables meteorológicas se miden la estación Lladurs perteneciente a la XAC
(Xarxa Agrometeorológica de Cataluña).
Los resultados obtenidos par un period de tres años muestran una predominancia del regimen de humedad
ústico (SSS, 2006), o xérico en los años más secos. Se utilizaron los modelos de simulación NSM "Newhall
simulation model" (Newhall, 1976) y JSM "Jarauta simulation model" (Jarauta 1989) en la modelización de
regimenes de humedad y temperatura del suelo. NSM (Newhall,1976) tiende a sobre estimar el régimen de
humedad del suelo. Por contra, JSM (Jarauta, 1989) simula de forma correcta el régimen de humedad del suelo
(SSS, 2006) presente en la cuenca, funcionando mejor bajo condiciones medias de humedad del suelo. Ambos
modelos simulan de forma correcta el régimen de temperatura de los suelos. Predomina un régimen de
temperatura mésico-térmico, con tendencia a térmico para los años secos. A pequeña escala la profundidad del
suelo, pendiente, pedregosidad y alta porosidad del suelo son factores que hacen variar el régimen de humedad
del suelo. La información de suelo y clima, complementada mediante SIG, permitió obtener mapas de régimen
de humedad del suelo para la cuenca, a una escala 1:50000, los cuales permiten establecer mediante simulación
los regimenes de humedad en el suelo bajo diferentes escenarios de cambios meteorológicos.
El modelo TOPLATS ha sido utilizado en la estimación de la humedad en el suelo para diferentes usos del
suelo. Este modelo fue calibrado con las ecuaciones del filtro Kalman extendido (EKF), que se derivan de la
minimización del cuadrado de la diferencia entre los valores reales y los estimados (Goegebeur & Pauwels,
2007). Esta metodología interrelaciona correctamente los valores de lluvia, humedad en el suelo, escorrentía y
infiltración, siendo los valores de humedad los mas ajustados a los valores reales. Los resultados muestran que
este filtro es una herramienta para estimar el volumen de agua en el suelo almacenada en las cuencas a escala
puntual, asegurando una aplicación correcta del modelo hidrológico.
Para la modelización del comportamiento de la humedad del suelo y los diferentes componentes del balance
hídrico se utilizó el modelo TOPLATS (Famiglietti & Wood, 1994). El modelo de simulación TOPLATS
permite simular aceptablemente el comportamiento de la humedad del suelo. Los resultados para infiltración,
escorrentía, intercepción, evapotranspiración de referencia y temperatura del suelo son correctos. Las
diferencias existentes entre valores simulados y observados son: la humedad del suelo no sobrepasa el 5%, la
infiltración fluctúa entre 4% y 15%, la diferencia entre los valores reales y simulados de evapotranspiración,
depende de la estación del año, siendo 1mm en invierno y 2.7 mm en verano, la temperatura varia entre 0.01 ºC
y 3.5ºC. El modelo calibrado predice con precisión el comportamiento de las diferentes componentes del
balance hídrico. Respecto a los valores medidos para agua de drenaje corresponde al 11-41 % de la lluvia total.
Respecto al balance de agua en el suelo (ΔSW), los valores son negativos para un corto periodo del año,
alcanzando valores críticos en meses secos. La recuperación de humedad del suelo para el resto de los meses
ocurre de manera parcial. En la parte media de la cuenca, para algunos meses los valores de humedad del suelo
son cercanos a condiciones de punto de marchites permanente (ecosistema submediterráneo). En la parte alta
de la cuenca el suelo conserva condiciones intermedias de humedad (ecosistema subalpino). Los valores de
caudal encontrados corresponden a los aportes por escorrentía, los cuales son muy bajos. La mayor parte de las
salidas ocurren por evapotranspiración, intercepción, infiltración y drenaje (en orden de importancia).
The main aim of this research is to study the hydrological dynamics of a Mediterranean mountain basin
affected by land use changes, by means of the monitoring of soil and surface water. This aim has been
reached by measuring and simulating hydric balance components of different soils and under different
vegetational types, considering water and temperature transition regimes.
This research was done in Ribera Salada basin (Catalan Pre Pyrenees, NE Spain), with an area of 222.5
km2, altitudes between 420 and 2385 m, with predominance slopes between 12 - 25 % and 25 - 50 %. The
substrate consists of massive calcareous conglomerates, calcilutites and limestones. Main annual
precipitation are 507 to 763 mm. Soils are shallow, calcareous and stony, being most of them Inceptisols
(Typic Calciusteps, Typic Haploustepts) and Entisols (Typic Ustifluvents, Typic Udorthortents). In the
upper and moister part of the basin soil decarbonatation takes place. Forest use is predominant, going
from brook forest environments to subalpine and submediterranean vegetation. Agricultural uses include
mainly the growing of cereals, potatoes and pastures. One of the most important characteristics in this
basin are the significant soil use changes in the last 50 years, due to the abandonment of farms and
traditional crops.
Eight sites were studied, corresponding to soils under Quercus ilex, brook forest, Pinus sylvestris, pasture,
crops (cereal-potatoes) and Pinus uncinata. From 1997 until 2005, soil moisture, run-off, water flow and
interception were monitored. From 2004 on, drainage data has been recorded. Meteorological variables
were measured by means of a complete Lladurs meteorological station, belonging to XAC (Catalan
Agrometeorological Network).
The obtained results to three years show the predominance of ustic moisture regime (SSS, 2006), or xeric
during the driest years. The simulation models NSM "Newhall simulation model" (Newhall, 1976) and
JSM "Jarauta simulation model" (Jarauta 1989) were used to represent soil moisture and temperature
regimes. NSM estimates a higher level of soil moisture regimes than observed. On the contrary, JSM
simulates correctly soil moisture regimes, working better under intermediate soil moisture conditions.
Both models simulate correctly the soil temperature regimes, being mesic-thermic to thermic during the
driest years. At detailed scale (plot observation), soil depth, slope, stone amount and high soil porosity are
factors that affect the soil moisture regimes. Soil and climate information, implemented through a GIS,
allowed us to obtain soil moisture regime maps of the basin at a 1:50000 scale, which are very useful to
simulate soil moisture regimes in different scenarios of meteorological changes.
The TOPLATS model, when used to estimate soil moisture under different cover types, was calibrated
with Extend Kalman filter (EKF) equations derived through a minimization of the square difference
between the true and estimated model state (Goegebeur & Pauwels, 2007). This methodology interrelates
correctly rainfall, soil moisture, runoff and infiltration. Among them, the obtained soil moisture values
corresponded the best to observed data. The results show that it is a useful tool to estimate soil water
volume stored in basins at a point scale, ensuring a correct application of this hydrological model.
To model soil moisture behaviour and the different hydric balance components, the TOPLATS model
(Famiglietti & Wood, 1994) was used. TOPLATS model simulates correctly the soil moisture behaviour.
The differences between observed and simulated values are the following: soil moisture does not surpass
5%; the infiltration fluctuates between 4% to 15%; in evapotraspiration depends on the season being
between 1 mm in winter to 2.7 mm in summer, soil temperature values difference fluctuates between
0.01ºC and 3.5ºC.The calibrated model predicts precisely the behaviour of different hydric balance
components. The measured water drainage amount is 11-41 % of total rain.
The observed and simulated soil water storage in the basin (ΔSW), has negative values during the driest
months. Soil moisture recovery during the rest of the months is only partial. In the medium part of the
basin, occupied by submediterranean ecosystems, soil moisture values are closer to drought conditions
during some months of the year. In the highest part of the basin (subalpine ecosystems) there are
intermediate soil moisture conditions in dry periods. Most part of water outputs are due to
evapotranspiration, interception, infiltration and drainage, in decreasing order of importance. Run-off
values are very low.
Shamir, Eylon. "Use of streamflow indices in hydrologic modeling." Diss., The University of Arizona, 2003. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2003_396_sip1_w.pdf&type=application/pdf.
Full textChen, Mi. "Using an integrated linkage method to predict hydrological responses of a mixed land use watershed." Connect to this title online, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu.
Full textTitle from first page of PDF file. Document formatted into pages; contains xvi, 378 p.; also includes graphics (some col.). Includes bibliographical references (p. 229-252). Available online via OhioLINK's ETD Center
Wang, Ying. "Uncertainty analysis of geomorphologic instantaneous unit hydrograph for hydrosystems reliability evaluation /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202005%20WANG.
Full textMiller, Scott N. "Scale effects of geometric complexity, misclassification error and land cover change in distributed hydrologic modeling." Diss., The University of Arizona, 2002. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2002_216_sip1_w.pdf&type=application/pdf.
Full textFurman, Alexander. "Steps towards the implementation of ERT for monitoring of transient hydrological processes." Diss., The University of Arizona, 2003. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2003_271_sip1_w.pdf&type=application/pdf.
Full textChoi, Chi Chi. "Coupled Hydrologic And Hydraulic Models And Applications." Thesis, University of Iowa, 2013. https://ir.uiowa.edu/etd/4955.
Full textCherkauer, Keith Aric. "Understanding the hydrologic effects of frozen soil /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/10164.
Full textBooks on the topic "Hydrologic models"
United States. Bureau of Reclamation. and Global Climate Change Response Program (U.S.), eds. Inventory of hydrologic models. Denver, Colo: U.S. Dept. of the Interior, Bureau of Reclamation, 1991.
Find full textP, Singh V. Hydrologic systems. Englewood Cliffs, N.J: Prentice Hall, 1988.
Find full textP, Singh V. Hydrologic systems. Englewood Cliffs, N.J: Prentice Hall, 1989.
Find full textSingh, Vijay P. Hydrologic systems. Englewood Cliffs, N.J: Prentice Hall, 1989.
Find full textHromadka, Theodore V. Hydrologic modeling for the arid southwest United States. Mission Viejo, CA: Lighthouse Publications, 1996.
Find full textUnited States. Soil Conservation Service. Hydrologic analysis report: Hatchie River Basin Special Study, Tennessee and Mississippi. [Washington, D.C.?]: The Service, 1986.
Find full textHans-B, Kleeberg, and Deutsche Forschungsgemeinschaft, eds. Hydrologie und Regionalisierung: Ergebnisse eines Schwerpunktprogramms (1992 bis 1998) : Forschungsbericht. Weinheim: Wiley-VCH, 1999.
Find full textWard, R. C. The catchwater drain experimental catchment: FORTRAN listing of a hydrological model. [Hull]: Dept. of Geography, University of Hull, 1986.
Find full textLadislav, Kašpárek, ed. Water resources of the Intra-Sudeten Basin: Results of the Czech-Polish co-operation in monitoring and modelling (1975-2004). Prague: Ministry of the Environment of the Czech Republic, 2006.
Find full textOmar, Mhirit, and Mhamdi Allal, eds. L'essentiel des méthodes et instrumentation en écophysiologie. Rabat: Zaouia, 2007.
Find full textBook chapters on the topic "Hydrologic models"
Makboul, Omar, Abdelazim Negm, Saleh Mesbah, and Mohamed Mohasseb. "Assessment of Different Bathymetry Statistical Models Using Landsat-8 Multispectral Images." In Hydrologic Modeling, 277–90. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5801-1_20.
Full textAdamala, Sirisha, N. S. Raghuwanshi, and Ashok Mishra. "Development of Generalized Higher-Order Neural Network-Based Models for Estimating Pan Evaporation." In Hydrologic Modeling, 55–71. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5801-1_5.
Full textBoyle, Douglas P., Hoshin V. Gupta, and Soroosh Sorooshian. "Multicriteria calibration of hydrologic models." In Water Science and Application, 185–96. Washington, D. C.: American Geophysical Union, 2003. http://dx.doi.org/10.1029/ws006p0185.
Full textCunnane, Conleth. "Review of Statistical Models for Flood Frequency Estimation." In Hydrologic Frequency Modeling, 49–95. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3953-0_4.
Full textNissan, Edward. "Statistical Models for Flood Frequency Estimation of the Mississippi and Yazoo Rivers." In Hydrologic Frequency Modeling, 107–15. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3953-0_6.
Full textPark, Hotaek, Yonas Dibike, Fengge Su, and John Xiaogang Shi. "Cold Region Hydrologic Models and Applications." In Arctic Hydrology, Permafrost and Ecosystems, 763–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50930-9_26.
Full textKeller, Carl. "FLUTe Calculational Models." In Hydrologic Measurements with Flexible Liners and Other Applications, 281–96. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003268376-16.
Full textCherian, M. P., and Prabir Kumar Pal. "Transfer Function Models for Hydrologic Flood Routing." In Water Science and Technology Library, 333–42. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-0389-3_21.
Full textSorooshian, Soroosh. "Parameter Estimation, Model Identification, and Model Validation: Conceptual-Type Models." In Recent Advances in the Modeling of Hydrologic Systems, 443–67. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3480-4_20.
Full textSmith, R. E., and V. A. Ferreira. "Comparative Evaluation of Unsaturated Flow Methods in Selected USDA Simulation Models." In Unsaturated Flow in Hydrologic Modeling, 391–412. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2352-2_14.
Full textConference papers on the topic "Hydrologic models"
Meselhe, E. A., E. Habib, O. C. Oche, and S. Gautam. "Performance Evaluation of Physically Based Distributed Hydrologic Models and Lumped Hydrologic Models." In World Water and Environmental Resources Congress 2004. Reston, VA: American Society of Civil Engineers, 2004. http://dx.doi.org/10.1061/40737(2004)211.
Full textCleveland, Theodore G., William Botkins, and David B. Thompson. "Small Watershed Response Models: Hydrologic or Hydraulic?" In World Environmental and Water Resources Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40976(316)59.
Full textHoblit, Brian C., and David C. Curtis. "Integration of Radar Rainfall into Hydrologic Models." In Ninth International Conference on Urban Drainage (9ICUD). Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40644(2002)229.
Full textTripathi, Shivam, and Rao S. Govindaraju. "Statistical Feature Selection for Hydrologic Prediction Models." In World Environmental and Water Resources Congress 2007. Reston, VA: American Society of Civil Engineers, 2007. http://dx.doi.org/10.1061/40927(243)420.
Full textWatkins, Jr., David W., Hebi Li, Kenneth A. Thiemann, and Thomas E. Adams, III. "Radar Rainfall Estimates for Great Lakes Hydrologic Models." In World Water and Environmental Resources Congress 2003. Reston, VA: American Society of Civil Engineers, 2003. http://dx.doi.org/10.1061/40685(2003)217.
Full textClar, M. L., and C. Smith. "Using Field Bankfull Measurements to Calibrate Hydrologic Models." In Protection and Restoration of Urban and Rural Streams Symposium. Reston, VA: American Society of Civil Engineers, 2004. http://dx.doi.org/10.1061/40695(2004)48.
Full textBao, Tianshu, Taylor Thomas Johnson, and Xiaowei Jia. "Transfer Learning Using Inaccurate Physics Rule for Streamflow Prediction." In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/793.
Full textAckerman, Cameron T., Matthew J. Fleming, and Gary W. Brunner. "Hydrologic and Hydraulic Models for Performing Dam Break Studies." In World Environmental and Water Resources Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40976(316)285.
Full textEbtehaj, Mohammad, and Hamid Moradkhani. "Parameter Uncertainty Estimation of Hydrologic Models Using Bootstrap Resampling." In World Environmental and Water Resources Congress 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41036(342)632.
Full textBhatia, Nikhil, and Vijay P. Singh. "Evaluation of hydrologic models for Texas Flash Flood Alley." In 2017 Spokane, Washington July 16 - July 19, 2017. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2017. http://dx.doi.org/10.13031/aim.201700047.
Full textReports on the topic "Hydrologic models"
Pruitt, Bruce. Readily available hydrologic models : pertinence to regulatory application. Engineer Research and Development Center (U.S.), September 2020. http://dx.doi.org/10.21079/11681/38031.
Full textHamill, Daniel D., Jeremy J. Giovando, Chandler S. Engel, Travis A. Dahl, and Michael D. Bartles. Application of a Radiation-Derived Temperature Index Model to the Willow Creek Watershed in Idaho, USA. U.S. Army Engineer Research and Development Center, August 2021. http://dx.doi.org/10.21079/11681/41360.
Full textZhang, Zhonglong, and Billy E. Johnson. Aquatic Contaminant and Mercury Simulation Modules Developed for Hydrologic and Hydraulic Models. Fort Belvoir, VA: Defense Technical Information Center, July 2016. http://dx.doi.org/10.21236/ad1013220.
Full textKing, Ryan, Ariel Miara, Andrew Glaws, and Jordan Macknick. Improving Short Term Predictability of Hydrologic Models with Deep Learning. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769722.
Full textHasan, Abdulghani. Flood Modelling Tool : an integrated GIS and hydrological modelling tool for planning nature-based solutions in the urban environment. Faculty of Landscape Architecture, Horticulture and Crop Production Science, Swedish University of Agricultural Sciences, 2024. http://dx.doi.org/10.54612/a.5s9t2ca774.
Full textShen, Chaopeng, Forrest Hoffman, and Chonggang Xu. Integrated parameter and process learning for hydrologic and biogeochemical modules in Earth System Models. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769724.
Full textLettenmaier, Dennis P. Hydrologic Extremes in a changing climate: how much information can regional climate models provide? Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1111419.
Full textN.D. Francis. HEat Decay Data Repository Footprint for Thermal-Hydrologic and Conduction-Only Models for TSPA-SR. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/893935.
Full textMatus, Sean, and Daniel Gambill. Automation of gridded HEC-HMS model development using Python : initial condition testing and calibration applications. Engineer Research and Development Center (U.S.), November 2022. http://dx.doi.org/10.21079/11681/46126.
Full textHarris, Aubrey, Jonathan AuBuchon, and Michael Porter. Comparing ecological models for assessing Rio Grande silvery minnow response to environmental flows. Engineer Research and Development Center (U.S.), May 2024. http://dx.doi.org/10.21079/11681/48593.
Full text