Academic literature on the topic 'Hydrologic models'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrologic models.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hydrologic models":

1

Guilpart, Etienne, Vahid Espanmanesh, Amaury Tilmant, and François Anctil. "Combining split-sample testing and hidden Markov modelling to assess the robustness of hydrological models." Hydrology and Earth System Sciences 25, no. 8 (August 30, 2021): 4611–29. http://dx.doi.org/10.5194/hess-25-4611-2021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract. The impacts of climate and land-use changes make the stationary assumption in hydrology obsolete. Moreover, there is still considerable uncertainty regarding the future evolution of the Earth’s climate and the extent of the alteration of flow regimes. Climate change impact assessment in the water sector typically involves a modelling chain in which a hydrological model is needed to generate hydrologic projections from climate forcings. Considering the inherent uncertainty of the future climate, it is crucial to assess the performance of the hydrologic model over a wide range of climates and their corresponding hydrologic conditions. In this paper, numerous, contrasted, climate sequences identified by a hidden Markov model (HMM) are used in a differential split-sample testing framework to assess the robustness of a hydrologic model. The differential split-sample test based on a HMM classification is implemented on the time series of monthly river discharges in the upper Senegal River basin in West Africa, a region characterized by the presence of low-frequency climate signals. A comparison with the results obtained using classical rupture tests shows that the diversity of hydrologic sequences identified using the HMM can help with assessing the robustness of the hydrologic model.
2

Mendoza, Pablo A., Martyn P. Clark, Naoki Mizukami, Andrew J. Newman, Michael Barlage, Ethan D. Gutmann, Roy M. Rasmussen, Balaji Rajagopalan, Levi D. Brekke, and Jeffrey R. Arnold. "Effects of Hydrologic Model Choice and Calibration on the Portrayal of Climate Change Impacts." Journal of Hydrometeorology 16, no. 2 (April 1, 2015): 762–80. http://dx.doi.org/10.1175/jhm-d-14-0104.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract The assessment of climate change impacts on water resources involves several methodological decisions, including choices of global climate models (GCMs), emission scenarios, downscaling techniques, and hydrologic modeling approaches. Among these, hydrologic model structure selection and parameter calibration are particularly relevant and usually have a strong subjective component. The goal of this research is to improve understanding of the role of these decisions on the assessment of the effects of climate change on hydrologic processes. The study is conducted in three basins located in the Colorado headwaters region, using four different hydrologic model structures [PRMS, VIC, Noah LSM, and Noah LSM with multiparameterization options (Noah-MP)]. To better understand the role of parameter estimation, model performance and projected hydrologic changes (i.e., changes in the hydrology obtained from hydrologic models due to climate change) are compared before and after calibration with the University of Arizona shuffled complex evolution (SCE-UA) algorithm. Hydrologic changes are examined via a climate change scenario where the Community Climate System Model (CCSM) change signal is used to perturb the boundary conditions of the Weather Research and Forecasting (WRF) Model configured at 4-km resolution. Substantial intermodel differences (i.e., discrepancies between hydrologic models) in the portrayal of climate change impacts on water resources are demonstrated. Specifically, intermodel differences are larger than the mean signal from the CCSM–WRF climate scenario examined, even after the calibration process. Importantly, traditional single-objective calibration techniques aimed to reduce errors in runoff simulations do not necessarily improve intermodel agreement (i.e., same outputs from different hydrologic models) in projected changes of some hydrological processes such as evapotranspiration or snowpack.
3

Ganoulis, J. "Modeling Hydrologic Phenomena [Free opinion]." Revue des sciences de l'eau 9, no. 4 (April 12, 2005): 421–34. http://dx.doi.org/10.7202/705260ar.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
With the aim of suggesting some practical rules for the use of hydrological models, G. De MARSILY in his "free opinion" (Rev. Sci. Eau 1994, 7(3): 219-234) proposes a classification of hydrologic models into two categories: - models built on data (observable phenomena) and ; - models without any available observations (unobservable phenomena). He claims that for the former group of observable phenomena, models developed through a learning process as well as those based on the underlying physical laws are of the black box type. For the latter group of unobservable phenomena, he suggests that physically-based hydrologic models be developed. Physically-based hydrologic models should introduce to the phenomenological laws the correct empirical coefficients, which correspond to the proper time and space scales (GANOULIS, 1986). Well-known examples are Darcy's permeability coefficient on the macroscopic scale as derived from the Navier-Stokes equations on the local scale and the macroscopic dispersion coefficients in comparison with the local Fickian diffusion coefficients. Misuse of these models by confusing the proper time and space scales and determining the coefficients by calibration is not a sufficient reason to consider them as belonging to the black box type. Black box type hydrologic models, although very useful when data are available, remain formally empirical. They fail to give correct answers when serious constraints of unity in place, time and action are not fulfilled. Concerning the second class of models, we may notice that purely unobservable phenomena without any available data do not really exist in hydrology. In the case of very rare events and complex systems, such as radioactivity impacts and forecasting of changes on a large scale, physically-based models with adequate parameters may be used to integrate scarce information from experiments and expert opinions in a Bayesian probabilistic framework (APOSTOLAKIS, 1990). The most important feature of hydrologic models capable of describing real hydrologic phenomena, is the possibility of handling imprecision and natural variabilities. Uncertainties may be seen in two categories: aleatory or noncognitive, and epistemic or cognitive. Probabilistic hydrologic models are more suitable for dealing with aleatory uncertainties. Fuzzy logic-based models may quantify epistemic uncertainties (GANOULIS et al., 1996). The stochastic and fuzzy modeling approaches are briefly explained in this free opinion as compared to the deterministic physically-based hydrologic modeling.
4

Abbas, Ather, Laurie Boithias, Yakov Pachepsky, Kyunghyun Kim, Jong Ahn Chun, and Kyung Hwa Cho. "AI4Water v1.0: an open-source python package for modeling hydrological time series using data-driven methods." Geoscientific Model Development 15, no. 7 (April 8, 2022): 3021–39. http://dx.doi.org/10.5194/gmd-15-3021-2022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract. Machine learning has shown great promise for simulating hydrological phenomena. However, the development of machine-learning-based hydrological models requires advanced skills from diverse fields, such as programming and hydrological modeling. Additionally, data pre-processing and post-processing when training and testing machine learning models are a time-intensive process. In this study, we developed a python-based framework that simplifies the process of building and training machine-learning-based hydrological models and automates the process of pre-processing hydrological data and post-processing model results. Pre-processing utilities assist in incorporating domain knowledge of hydrology in the machine learning model, such as the distribution of weather data into hydrologic response units (HRUs) based on different HRU discretization definitions. The post-processing utilities help in interpreting the model's results from a hydrological point of view. This framework will help increase the application of machine-learning-based modeling approaches in hydrological sciences.
5

Pawitan, Hidayat, and Muh Taufik. "Non-linear Routing Scheme at Grid Cell Level for Large Scale Hydrologic Models: A Review." Agromet 35, no. 2 (August 12, 2021): 60–72. http://dx.doi.org/10.29244/j.agromet.35.2.60-72.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
New tools and concepts in the form of mathematical models, remote sensing and Geographic Information System (GIS), communication and telemetering have been developed for the complex hydrologic systems that permit a different analysis of processes and allow watershed to be considered as an integrated planning and management unit. Hydrological characteristics can be generated through spatial analysis, and ready for input into a distributed hydrologic models to define adequately the hydrological response of a watershed that can be related back to the specific environmental, climatic, and geomorphic conditions. In the present paper, some recent development in hydrologic modeling will be reviewed with recognition of the role of horizontal routing scheme in large scale hydrologic modeling. Among others, these developments indicated the needs of alternative horizontal routing models at grid scale level that can be coupled to land surface parameterization schemes that presently still employed the linear routing model. Non-linear routing scheme will be presented and discussed in this paper as possible extension.
6

Perra, Enrica, Monica Piras, Roberto Deidda, Claudio Paniconi, Giuseppe Mascaro, Enrique R. Vivoni, Pierluigi Cau, Pier Andrea Marras, Ralf Ludwig, and Swen Meyer. "Multimodel assessment of climate change-induced hydrologic impacts for a Mediterranean catchment." Hydrology and Earth System Sciences 22, no. 7 (July 30, 2018): 4125–43. http://dx.doi.org/10.5194/hess-22-4125-2018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract. This work addresses the impact of climate change on the hydrology of a catchment in the Mediterranean, a region that is highly susceptible to variations in rainfall and other components of the water budget. The assessment is based on a comparison of responses obtained from five hydrologic models implemented for the Rio Mannu catchment in southern Sardinia (Italy). The examined models – CATchment HYdrology (CATHY), Soil and Water Assessment Tool (SWAT), TOPographic Kinematic APproximation and Integration (TOPKAPI), TIN-based Real time Integrated Basin Simulator (tRIBS), and WAter balance SImulation Model (WASIM) – are all distributed hydrologic models but differ greatly in their representation of terrain features and physical processes and in their numerical complexity. After calibration and validation, the models were forced with bias-corrected, downscaled outputs of four combinations of global and regional climate models in a reference (1971–2000) and future (2041–2070) period under a single emission scenario. Climate forcing variations and the structure of the hydrologic models influence the different components of the catchment response. Three water availability response variables – discharge, soil water content, and actual evapotranspiration – are analyzed. Simulation results from all five hydrologic models show for the future period decreasing mean annual streamflow and soil water content at 1 m depth. Actual evapotranspiration in the future will diminish according to four of the five models due to drier soil conditions. Despite their significant differences, the five hydrologic models responded similarly to the reduced precipitation and increased temperatures predicted by the climate models, and lend strong support to a future scenario of increased water shortages for this region of the Mediterranean basin. The multimodel framework adopted for this study allows estimation of the agreement between the five hydrologic models and between the four climate models. Pairwise comparison of the climate and hydrologic models is shown for the reference and future periods using a recently proposed metric that scales the Pearson correlation coefficient with a factor that accounts for systematic differences between datasets. The results from this analysis reflect the key structural differences between the hydrologic models, such as a representation of both vertical and lateral subsurface flow (CATHY, TOPKAPI, and tRIBS) and a detailed treatment of vegetation processes (SWAT and WASIM).
7

Dooge, J. C. I. "Hydrologic models and climate change." Journal of Geophysical Research 97, no. D3 (1992): 2677. http://dx.doi.org/10.1029/91jd02156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ford, David T., and Darryl W. Davis. "HYDROLOGIC ENGINEERING CENTER PLANNING MODELS." Journal of the American Water Resources Association 21, no. 1 (February 1985): 135–44. http://dx.doi.org/10.1111/j.1752-1688.1985.tb05359.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vepraskas, M. J., R. L. Huffman, and G. S. Kreiser. "Hydrologic models for altered landscapes." Geoderma 131, no. 3-4 (April 2006): 287–98. http://dx.doi.org/10.1016/j.geoderma.2005.03.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Carleton, Tyler J., and Steven R. Fassnacht. "Linking Hydrologic and Hydraulic Data with Models to Assess Flow and Channel Alteration at Hog Park, Wyoming USA." Hydrology 7, no. 2 (May 23, 2020): 29. http://dx.doi.org/10.3390/hydrology7020029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Transbasin diversions and dams allow for water uses when and where there is high demand and low supply, but can come with an expense to the environment. This paper presents a linkage of hydrologic and hydraulic modeling and datasets to assess the hydrologic and hydraulic stability within a transbasin watershed as an approach for meeting water use targets and safeguarding environmental sustainability. The approach used a Prediction in Ungauged Basin (PUB) regionalization technique that completed the parameterization of a study watershed hydrologic model by transferring calibrated parameters from a reference watershed hydrologic model. This resulted in a long-term, simulated natural flow record that was compared to the measured modified flow record for the same time period to assess flow alteration. In the sensitive reach, hydraulic modeling results tracked channel response from before hydrologic modification to baseline using repeated survey years during the hydrologic modification. The combined assessment of hydrology and hydraulics highlighted the relation between flow regime and channel form.

Dissertations / Theses on the topic "Hydrologic models":

1

Boyle, Douglas Patrick. "Multicriteria calibration of hydrologic models." Diss., The University of Arizona, 2001. http://hdl.handle.net/10150/290657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The level of spatial and vertical detail of important hydrologic processes within a watershed that needs to be represented by a conceptual rainfall-runoff (CRR) model in order to accurately simulate the streamflow is not well understood. The paucity of high-resolution hydrologic information in the past guided the direction of model development to more accurately represent processes directly related to the vertical movement of moisture within the watershed rather than the spatial variability of these processes. As a result, many of the CRR models currently available are so complex (vertically), that expert knowledge of the model and watershed system is required to successfully estimate values for model parameters using manual methods. Automatic parameter estimation procedures, developed to reduce the time and effort required with manual methods, do not provide parameter estimates and hydrograph simulations that are considered acceptable by the hydrologists responsible for operational forecasting. Newly available, high-resolution hydrologic information may provide insight to the spatial variability of important rainfall-runoff processes. However, effective and efficient methods to incorporate the data into the current modeling strategies need to be developed. This work describes a new hybrid multicriteria calibration approach that combines the strength of automatic and manual calibration methods. The new approach was used to investigate the benefits of different levels of spatial and vertical representation of important watershed hydrologic variables with conceptual rainfall runoff models.
2

Loaiza, Usuga Juan Carlos. "Soil hydrology in the Ribera Salada Catchment (Catalan PrePyrenees): application of hydrologic models for the estimation of hydrologic transitional regimes." Doctoral thesis, Universitat de Lleida, 2007. http://hdl.handle.net/10803/8235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
El principal objectiu d'aquesta investigació és estudiar la dinàmica hidrològica d'una conca Mediterrània
afectada per canvis d'ús del sòl, mitjançant el monitoreig d'aquest i de l'aigua superficial. Aquest
objectiu s'ha treballat a partir mesuraments de components del balanç hídric pels diferents tipus de
cobertura i sòl, amb règims d'humitat i temperatura de transició.
Aquest estudi s'ha realitzat a la conca de la Ribera Salada (Prepirineu meridional Català, al NE
d'Espanya), amb una extensió de 222.5 km2, i un interval altitudinal de 420 a 2385 m i predomini de
pendents entre 12 - 25 % i 25 - 50 %. El substrat consisteix en conglomerats calcaris massius, calcilutites
i llims. La precipitació es de 507 i 763 mm. Amb sòls poc profunds, calcaris i pedregosos, essent
majoritàriament Inceptisòls (Typic Calciusteps, Typic Haploustepts) i Entisòls (Typic Ustifluvents, Typic
Udorthortents). A les zones més elevades de la conca, els sòls són més humits, degut a l'augment de la
precipitació, on es produeixen processos de descarbonatació del sòl. L'ús del sòl és majoritàriament
forestal, amb presència d'ecosistemes de ribera, subalpins i vegetació submediterrània. Algunes àrees es
troben amb cultius de patata, cereal i pastures. Una de les característiques més importants d'aquesta
conca són els canvis d'ús del sòl que ha patit en els últims 50 anys degut a l'abandó dels masos i cultius
tradicionals. Es seleccionaren vuit llocs de mostreig considerant les següents cobertes: Quercus ilex, bosc
de ribera, Pinus sylvestris, pastures, cultius (cereal-patata) i Pinus uncinata. A partir de l'any 1997 fins el
2005, s'han anat monitorejant el contingut d'humitat del sòl, l'escolament i els cabals. Des del 2004 s'han
anat anotant dades de drenatge. Les variables meteorològiques es mesuren a l'estació de Lladurs de la
XAC (Xarxa Agrometeorològica de Catalunya).
Els resultats obtenguts durant tres anys mostren una domini del règim d'humitat ústic (SSS, 2006), o xèric
en aquells anys més secs. En la modelització de règims d'humitat i temperatura del sòl, s'utilitzaren els
models de simulació NSM "Newhall simulation model" (Newhall, 1976) i JSM "Jarauta simulation
model" (Jarauta 1989). NSM (Newhall,1976) tendeix a sobre estimar el règim d'humitat del sòl, però
JSM (Jarauta, 1989) simula correctament el règim d'humitat del sòl (SSS, 2006) de la conca, funcionant
millor en condicions intermitges d'humitat del sòl. Ambdós models simulen correctament el règim de
temperatura dels sòls. Predomina un règim de temperatura mèsic-tèrmic, amb tendència a tèrmic els anys
secs. A petita escala la profunditat del sòl, pendent, pedregositat i una alta porositat del sòl són factores
que varien el règim d'humitat del sòl. La informació de sòl i clima, complementada mitjançant SIG, va
permetre l'obtenció de mapes de règim d'humitat del sòl de la conca, a escala 1:50000, els quals
permeten establir mediante simució els règims d'humitat del sòl en diferents escenaris de canvis
meteorològics.
El model TOPLATS ha sigut utilitzat en l'estimació de l'humitat del sòl en diferents usos del sòl. Aquest
model fou calibrat amb les equacions del filtre Kalman estès (EKF), que deriven de la minimització del
quadrat de la diferència entre els valors reals i els estimats (Goegebeur & Pauwels, 2007). Aquesta
metodologia interrelaciona correctament els valors de pluja, humitat del sòl, escolament i infiltració,
essent els valors d'humitat els que més s'aproximen als reals. Els resultats mostren que aquest filtre és
una eina útil per estimar el volum d'aigua del sòl emmagatzemada en conques a escala puntual,
assegurant una aplicació correcta del model hidrològic.
Per la modelització del comportament de l'humitat del sòl i diferents components del balanç hídric
s'utilitzà el modelo TOPLATS (Famiglietti & Wood, 1994). El model de simulació TOPLATS permite
simulà acceptablement el comportament de l'humitat del sòl. Els resultats de infiltració, escolament,
intercepció, evapotranspiració de referència i temperatura del sòl són correctes. Les diferències existents
entre valors simulats i observats són: l'humitat del sòl no sobrepassa el 5%, la infiltració fluctua entre 4%
i 15%, la diferència entre els valors reals i simulats d'evapotranspiració, depèn de l'estació de l'any,
essent 1mm a l'hivern i 2.7 mm a l'estiu. La temperatura varia entre 0.01ºC i 3.5ºC. El model calibrat
prediu amb precisió el comportament de les diferents components del balanç hídric. Respecte als valors
mesurats d'aigua de drenatge correspon al 11-41 % de la pluja total.
Respecte al balanç d'aigua en el sòl (ΔSW), els valors són negatius durant cert període de l'any, arribant a
valors crítics els mesos secs. La recuperació de humitat del sòl durant la resta de mesos succeeix de
manera parcial. A la part mitja de la conca, alguns mesos els valors d'humitat del sòl s'acosten a
condicions de punt de marchites (ecosistema submediterrani). A la part alta de la conca el sòl conserva
humitat (ecosistema subalpí). Els valors de cabal trobats corresponen a aportacions per escolament el
cuals són molt baixos. La majoria de les sortides es deuen a evapotranspiració, intercepció, infiltració i
drenatge (en ordre de importància).
El principal objetivo de esta investigación es estudiar la dinámica hidrológica de una cuenca Mediterránea
afectada por los cambios de uso del suelo, mediante el monitoreo del suelo y el agua superficial. Dicho objetivo
se ha abordado a partir de la medición de componentes del balance hídrico para diferentes tipos de cobertura y
suelo, considerando regimenes de humedad y temperatura de transición.
Este estudio se ha realizado en la cuenca de la Ribera Salada (Prepirineo meridional Catalán, NE España) de
222.5 km2, con un intervalo altitudinal de 420 a 2385 m y predominio de pendientes entre 12 - 25 % y 25 - 50
%. El sustrato consiste en conglomerados calcáreos masivos, calcilutitas y limos. La precipitación anual es de
507 y 763 mm. Los suelos són poco profundos, calcáreos y pedregosos, siendo en su mayoría Inceptisols
(Typic Calciusteps, Typic Haploustepts) y Entisols (Typic Ustifluvents, Typic Udorthortents). En las partes
altas de la cuenca los suelos son más húmedos, debido al aumento de la precipitación, allí ocurren procesos de
descarbonatación del suelo. Predomina el uso forestal, con ecosistemas de ribera, subalpinos y vegetación
submediterránea. Algunas áreas se dedican al cultivo de patatas, cereal y pastos. Una de las características más
importantes de esta cuenca es los importantes cambios de uso del suelo sufridos en los últimos 50 años, debido
al abandono de las masías y cultivos tradicionales.
Se seleccionaron ocho sitios de muestreo, considerando las siguientes coberturas: Quercus ilex, bosque de
ribera, Pinus sylvestris, pastos, cultivo (cereal-patata) y Pinus uncinata. A partir del año 1997 hasta 2005, se
han venido monitoreando el contenido de humedad del suelo, escorrentía y caudales. Desde 2004 se vienen
tomando datos drenaje. Las variables meteorológicas se miden la estación Lladurs perteneciente a la XAC
(Xarxa Agrometeorológica de Cataluña).
Los resultados obtenidos par un period de tres años muestran una predominancia del regimen de humedad
ústico (SSS, 2006), o xérico en los años más secos. Se utilizaron los modelos de simulación NSM "Newhall
simulation model" (Newhall, 1976) y JSM "Jarauta simulation model" (Jarauta 1989) en la modelización de
regimenes de humedad y temperatura del suelo. NSM (Newhall,1976) tiende a sobre estimar el régimen de
humedad del suelo. Por contra, JSM (Jarauta, 1989) simula de forma correcta el régimen de humedad del suelo
(SSS, 2006) presente en la cuenca, funcionando mejor bajo condiciones medias de humedad del suelo. Ambos
modelos simulan de forma correcta el régimen de temperatura de los suelos. Predomina un régimen de
temperatura mésico-térmico, con tendencia a térmico para los años secos. A pequeña escala la profundidad del
suelo, pendiente, pedregosidad y alta porosidad del suelo son factores que hacen variar el régimen de humedad
del suelo. La información de suelo y clima, complementada mediante SIG, permitió obtener mapas de régimen
de humedad del suelo para la cuenca, a una escala 1:50000, los cuales permiten establecer mediante simulación
los regimenes de humedad en el suelo bajo diferentes escenarios de cambios meteorológicos.
El modelo TOPLATS ha sido utilizado en la estimación de la humedad en el suelo para diferentes usos del
suelo. Este modelo fue calibrado con las ecuaciones del filtro Kalman extendido (EKF), que se derivan de la
minimización del cuadrado de la diferencia entre los valores reales y los estimados (Goegebeur & Pauwels,
2007). Esta metodología interrelaciona correctamente los valores de lluvia, humedad en el suelo, escorrentía y
infiltración, siendo los valores de humedad los mas ajustados a los valores reales. Los resultados muestran que
este filtro es una herramienta para estimar el volumen de agua en el suelo almacenada en las cuencas a escala
puntual, asegurando una aplicación correcta del modelo hidrológico.
Para la modelización del comportamiento de la humedad del suelo y los diferentes componentes del balance
hídrico se utilizó el modelo TOPLATS (Famiglietti & Wood, 1994). El modelo de simulación TOPLATS
permite simular aceptablemente el comportamiento de la humedad del suelo. Los resultados para infiltración,
escorrentía, intercepción, evapotranspiración de referencia y temperatura del suelo son correctos. Las
diferencias existentes entre valores simulados y observados son: la humedad del suelo no sobrepasa el 5%, la
infiltración fluctúa entre 4% y 15%, la diferencia entre los valores reales y simulados de evapotranspiración,
depende de la estación del año, siendo 1mm en invierno y 2.7 mm en verano, la temperatura varia entre 0.01 ºC
y 3.5ºC. El modelo calibrado predice con precisión el comportamiento de las diferentes componentes del
balance hídrico. Respecto a los valores medidos para agua de drenaje corresponde al 11-41 % de la lluvia total.
Respecto al balance de agua en el suelo (ΔSW), los valores son negativos para un corto periodo del año,
alcanzando valores críticos en meses secos. La recuperación de humedad del suelo para el resto de los meses
ocurre de manera parcial. En la parte media de la cuenca, para algunos meses los valores de humedad del suelo
son cercanos a condiciones de punto de marchites permanente (ecosistema submediterráneo). En la parte alta
de la cuenca el suelo conserva condiciones intermedias de humedad (ecosistema subalpino). Los valores de
caudal encontrados corresponden a los aportes por escorrentía, los cuales son muy bajos. La mayor parte de las
salidas ocurren por evapotranspiración, intercepción, infiltración y drenaje (en orden de importancia).
The main aim of this research is to study the hydrological dynamics of a Mediterranean mountain basin
affected by land use changes, by means of the monitoring of soil and surface water. This aim has been
reached by measuring and simulating hydric balance components of different soils and under different
vegetational types, considering water and temperature transition regimes.
This research was done in Ribera Salada basin (Catalan Pre Pyrenees, NE Spain), with an area of 222.5
km2, altitudes between 420 and 2385 m, with predominance slopes between 12 - 25 % and 25 - 50 %. The
substrate consists of massive calcareous conglomerates, calcilutites and limestones. Main annual
precipitation are 507 to 763 mm. Soils are shallow, calcareous and stony, being most of them Inceptisols
(Typic Calciusteps, Typic Haploustepts) and Entisols (Typic Ustifluvents, Typic Udorthortents). In the
upper and moister part of the basin soil decarbonatation takes place. Forest use is predominant, going
from brook forest environments to subalpine and submediterranean vegetation. Agricultural uses include
mainly the growing of cereals, potatoes and pastures. One of the most important characteristics in this
basin are the significant soil use changes in the last 50 years, due to the abandonment of farms and
traditional crops.
Eight sites were studied, corresponding to soils under Quercus ilex, brook forest, Pinus sylvestris, pasture,
crops (cereal-potatoes) and Pinus uncinata. From 1997 until 2005, soil moisture, run-off, water flow and
interception were monitored. From 2004 on, drainage data has been recorded. Meteorological variables
were measured by means of a complete Lladurs meteorological station, belonging to XAC (Catalan
Agrometeorological Network).
The obtained results to three years show the predominance of ustic moisture regime (SSS, 2006), or xeric
during the driest years. The simulation models NSM "Newhall simulation model" (Newhall, 1976) and
JSM "Jarauta simulation model" (Jarauta 1989) were used to represent soil moisture and temperature
regimes. NSM estimates a higher level of soil moisture regimes than observed. On the contrary, JSM
simulates correctly soil moisture regimes, working better under intermediate soil moisture conditions.
Both models simulate correctly the soil temperature regimes, being mesic-thermic to thermic during the
driest years. At detailed scale (plot observation), soil depth, slope, stone amount and high soil porosity are
factors that affect the soil moisture regimes. Soil and climate information, implemented through a GIS,
allowed us to obtain soil moisture regime maps of the basin at a 1:50000 scale, which are very useful to
simulate soil moisture regimes in different scenarios of meteorological changes.
The TOPLATS model, when used to estimate soil moisture under different cover types, was calibrated
with Extend Kalman filter (EKF) equations derived through a minimization of the square difference
between the true and estimated model state (Goegebeur & Pauwels, 2007). This methodology interrelates
correctly rainfall, soil moisture, runoff and infiltration. Among them, the obtained soil moisture values
corresponded the best to observed data. The results show that it is a useful tool to estimate soil water
volume stored in basins at a point scale, ensuring a correct application of this hydrological model.
To model soil moisture behaviour and the different hydric balance components, the TOPLATS model
(Famiglietti & Wood, 1994) was used. TOPLATS model simulates correctly the soil moisture behaviour.
The differences between observed and simulated values are the following: soil moisture does not surpass
5%; the infiltration fluctuates between 4% to 15%; in evapotraspiration depends on the season being
between 1 mm in winter to 2.7 mm in summer, soil temperature values difference fluctuates between
0.01ºC and 3.5ºC.The calibrated model predicts precisely the behaviour of different hydric balance
components. The measured water drainage amount is 11-41 % of total rain.
The observed and simulated soil water storage in the basin (ΔSW), has negative values during the driest
months. Soil moisture recovery during the rest of the months is only partial. In the medium part of the
basin, occupied by submediterranean ecosystems, soil moisture values are closer to drought conditions
during some months of the year. In the highest part of the basin (subalpine ecosystems) there are
intermediate soil moisture conditions in dry periods. Most part of water outputs are due to
evapotranspiration, interception, infiltration and drainage, in decreasing order of importance. Run-off
values are very low.
3

Thoms, R. Brad. "Simulating fully coupled overland and variably saturated subsurface flow using MODFLOW /." Full text open access at:, 2003. http://content.ohsu.edu/u?/etd,16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Shamir, Eylon. "Use of streamflow indices in hydrologic modeling." Diss., The University of Arizona, 2003. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2003_396_sip1_w.pdf&type=application/pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chen, Mi. "Using an integrated linkage method to predict hydrological responses of a mixed land use watershed." Connect to this title online, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (Ph. D.)--Ohio State University, 2003.
Title from first page of PDF file. Document formatted into pages; contains xvi, 378 p.; also includes graphics (some col.). Includes bibliographical references (p. 229-252). Available online via OhioLINK's ETD Center
6

Wang, Ying. "Uncertainty analysis of geomorphologic instantaneous unit hydrograph for hydrosystems reliability evaluation /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202005%20WANG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Miller, Scott N. "Scale effects of geometric complexity, misclassification error and land cover change in distributed hydrologic modeling." Diss., The University of Arizona, 2002. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2002_216_sip1_w.pdf&type=application/pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Furman, Alexander. "Steps towards the implementation of ERT for monitoring of transient hydrological processes." Diss., The University of Arizona, 2003. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu_e9791_2003_271_sip1_w.pdf&type=application/pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Choi, Chi Chi. "Coupled Hydrologic And Hydraulic Models And Applications." Thesis, University of Iowa, 2013. https://ir.uiowa.edu/etd/4955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cherkauer, Keith Aric. "Understanding the hydrologic effects of frozen soil /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/10164.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Hydrologic models":

1

United States. Bureau of Reclamation. and Global Climate Change Response Program (U.S.), eds. Inventory of hydrologic models. Denver, Colo: U.S. Dept. of the Interior, Bureau of Reclamation, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Singh, Vijay P. Hydrologic systems. Englewood Cliffs, N.J: Prentice Hall, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

P, Singh V. Hydrologic systems. Englewood Cliffs, N.J: Prentice Hall, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

P, Singh V. Hydrologic systems. Englewood Cliffs, N.J: Prentice Hall, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

McCuen, Richard H. Modeling Hydrologic Change. London: Taylor and Francis, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

G, Anderson M., and Bates Paul D, eds. Model validation: Perspectives in hydrological science. Chichester: J. Wiley, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hromadka, Theodore V. Hydrologic modeling for the arid southwest United States. Mission Viejo, CA: Lighthouse Publications, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

United States. Soil Conservation Service. Hydrologic analysis report: Hatchie River Basin Special Study, Tennessee and Mississippi. [Washington, D.C.?]: The Service, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hans-B, Kleeberg, and Deutsche Forschungsgemeinschaft, eds. Hydrologie und Regionalisierung: Ergebnisse eines Schwerpunktprogramms (1992 bis 1998) : Forschungsbericht. Weinheim: Wiley-VCH, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

V, Bolgov Mikhail, ed. Hydrological models for environment management. Dordrecht: Kluwer Academic Publishers, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hydrologic models":

1

Makboul, Omar, Abdelazim Negm, Saleh Mesbah, and Mohamed Mohasseb. "Assessment of Different Bathymetry Statistical Models Using Landsat-8 Multispectral Images." In Hydrologic Modeling, 277–90. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5801-1_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boyle, Douglas P., Hoshin V. Gupta, and Soroosh Sorooshian. "Multicriteria calibration of hydrologic models." In Water Science and Application, 185–96. Washington, D. C.: American Geophysical Union, 2003. http://dx.doi.org/10.1029/ws006p0185.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Adamala, Sirisha, N. S. Raghuwanshi, and Ashok Mishra. "Development of Generalized Higher-Order Neural Network-Based Models for Estimating Pan Evaporation." In Hydrologic Modeling, 55–71. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5801-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cunnane, Conleth. "Review of Statistical Models for Flood Frequency Estimation." In Hydrologic Frequency Modeling, 49–95. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3953-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nissan, Edward. "Statistical Models for Flood Frequency Estimation of the Mississippi and Yazoo Rivers." In Hydrologic Frequency Modeling, 107–15. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3953-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Park, Hotaek, Yonas Dibike, Fengge Su, and John Xiaogang Shi. "Cold Region Hydrologic Models and Applications." In Arctic Hydrology, Permafrost and Ecosystems, 763–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50930-9_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Keller, Carl. "FLUTe Calculational Models." In Hydrologic Measurements with Flexible Liners and Other Applications, 281–96. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003268376-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Cherian, M. P., and Prabir Kumar Pal. "Transfer Function Models for Hydrologic Flood Routing." In Water Science and Technology Library, 333–42. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-0389-3_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sorooshian, Soroosh. "Parameter Estimation, Model Identification, and Model Validation: Conceptual-Type Models." In Recent Advances in the Modeling of Hydrologic Systems, 443–67. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3480-4_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Smith, R. E., and V. A. Ferreira. "Comparative Evaluation of Unsaturated Flow Methods in Selected USDA Simulation Models." In Unsaturated Flow in Hydrologic Modeling, 391–412. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2352-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hydrologic models":

1

Meselhe, E. A., E. Habib, O. C. Oche, and S. Gautam. "Performance Evaluation of Physically Based Distributed Hydrologic Models and Lumped Hydrologic Models." In World Water and Environmental Resources Congress 2004. Reston, VA: American Society of Civil Engineers, 2004. http://dx.doi.org/10.1061/40737(2004)211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cleveland, Theodore G., William Botkins, and David B. Thompson. "Small Watershed Response Models: Hydrologic or Hydraulic?" In World Environmental and Water Resources Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40976(316)59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hoblit, Brian C., and David C. Curtis. "Integration of Radar Rainfall into Hydrologic Models." In Ninth International Conference on Urban Drainage (9ICUD). Reston, VA: American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40644(2002)229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tripathi, Shivam, and Rao S. Govindaraju. "Statistical Feature Selection for Hydrologic Prediction Models." In World Environmental and Water Resources Congress 2007. Reston, VA: American Society of Civil Engineers, 2007. http://dx.doi.org/10.1061/40927(243)420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Watkins, Jr., David W., Hebi Li, Kenneth A. Thiemann, and Thomas E. Adams, III. "Radar Rainfall Estimates for Great Lakes Hydrologic Models." In World Water and Environmental Resources Congress 2003. Reston, VA: American Society of Civil Engineers, 2003. http://dx.doi.org/10.1061/40685(2003)217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Clar, M. L., and C. Smith. "Using Field Bankfull Measurements to Calibrate Hydrologic Models." In Protection and Restoration of Urban and Rural Streams Symposium. Reston, VA: American Society of Civil Engineers, 2004. http://dx.doi.org/10.1061/40695(2004)48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ackerman, Cameron T., Matthew J. Fleming, and Gary W. Brunner. "Hydrologic and Hydraulic Models for Performing Dam Break Studies." In World Environmental and Water Resources Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40976(316)285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ebtehaj, Mohammad, and Hamid Moradkhani. "Parameter Uncertainty Estimation of Hydrologic Models Using Bootstrap Resampling." In World Environmental and Water Resources Congress 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41036(342)632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bhatia, Nikhil, and Vijay P. Singh. "Evaluation of hydrologic models for Texas Flash Flood Alley." In 2017 Spokane, Washington July 16 - July 19, 2017. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2017. http://dx.doi.org/10.13031/aim.201700047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gabriel G Vazquez-Amabile, Pablo A Mercuri, Fernanda J Gaspari, and Bernard A Engel. "Construction of a Digital Hydrologic Soil Group Map for Argentina to Simulate Runoff Using GIS - Hydrologic Models." In 21st Century Watershed Technology: Improving Water Quality and Environment Conference Proceedings, 29 March - 3 April 2008, Concepcion, Chile. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2008. http://dx.doi.org/10.13031/2013.24333.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hydrologic models":

1

Pruitt, Bruce. Readily available hydrologic models : pertinence to regulatory application. Engineer Research and Development Center (U.S.), September 2020. http://dx.doi.org/10.21079/11681/38031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Zhonglong, and Billy E. Johnson. Aquatic Contaminant and Mercury Simulation Modules Developed for Hydrologic and Hydraulic Models. Fort Belvoir, VA: Defense Technical Information Center, July 2016. http://dx.doi.org/10.21236/ad1013220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hamill, Daniel D., Jeremy J. Giovando, Chandler S. Engel, Travis A. Dahl, and Michael D. Bartles. Application of a Radiation-Derived Temperature Index Model to the Willow Creek Watershed in Idaho, USA. U.S. Army Engineer Research and Development Center, August 2021. http://dx.doi.org/10.21079/11681/41360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The ability to simulate snow accumulation and melting processes is fundamental to developing real-time hydrological models in watersheds with a snowmelt-dominated flow regime. A primary source of uncertainty with this model development approach is the subjectivity related to which historical periods to use and how to combine parameters from multiple calibration events. The Hydrologic Engineering Center, Hydrological Modeling System, has recently implemented a hybrid temperature index (TI) snow module that has not been extensively tested. This study evaluates a radiatative temperature index (RTI) model’s performance relative to the traditional air TI model. The TI model for Willow Creek performed reasonably well in both the calibration and validation years. The results of the RTI calibration and validation simulations resulted in additional questions related to how best to parameterize this snow model. An RTI parameter sensitivity analysis indicates that the choice of calibration years will have a substantial impact on the parameters and thus the streamflow results. Based on the analysis completed in this study, further refinement and verification of the RTI model calculations are required before an objective comparison with the TI model can be completed.
4

King, Ryan, Ariel Miara, Andrew Glaws, and Jordan Macknick. Improving Short Term Predictability of Hydrologic Models with Deep Learning. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shen, Chaopeng, Forrest Hoffman, and Chonggang Xu. Integrated parameter and process learning for hydrologic and biogeochemical modules in Earth System Models. Office of Scientific and Technical Information (OSTI), April 2021. http://dx.doi.org/10.2172/1769724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lettenmaier, Dennis P. Hydrologic Extremes in a changing climate: how much information can regional climate models provide? Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1111419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

N.D. Francis. HEat Decay Data Repository Footprint for Thermal-Hydrologic and Conduction-Only Models for TSPA-SR. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/893935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Matus, Sean, and Daniel Gambill. Automation of gridded HEC-HMS model development using Python : initial condition testing and calibration applications. Engineer Research and Development Center (U.S.), November 2022. http://dx.doi.org/10.21079/11681/46126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The US Army Corps of Engineers’s (USACE) Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) rainfall-runoff model is widely used within the research community to develop both event-based and continuous rainfall-runoff models. The soil moisture accounting (SMA) algorithm is commonly used for long-term simulations. Depending on the final model setup, 12 to 18 parameters are needed to characterize the modeled watershed’s canopy, surface, soil, and routing processes, all of which are potential calibration parameters. HEC-HMS includes optimization tools to facilitate model calibration, but only initial conditions (ICs) can be calibrated when using the gridded SMA algorithm. Calibrating a continuous SMA HEC-HMS model is an iterative process that can require hundreds of simulations, a time intensive process requiring automation. HEC-HMS is written in Java and is predominantly run through a graphical user interface (GUI). As such, conducting a long-term gridded SMA calibration is infeasible using the GUI. USACE Construction Engineering Research Laboratory (CERL) has written a workflow that utilizes the existing Jython application programming interface (API) to batch run HEC-HMS simulations with Python. The workflow allows for gridded SMA HEC-HMS model sensitivity and calibration analyses to be conducted in a timely manner.
9

Meyer, Philip D., and Glendon W. Gee. Information on Hydrologic Conceptual Models, Parameters, Uncertainty Analysis, and Data Sources for Dose Assessments at Decommissioning Sites. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/781426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Meyer, Philip D., Glendon W. Gee, and Thomas J. Nicholson. Information on Hydrologic Conceptual Models, Parameters, Uncertainty Analysis, and Data Sources for Dose Assessments at Decommissioning Sites. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/15001057.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography