Academic literature on the topic 'Hydrogeological data'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrogeological data.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hydrogeological data"

1

Nilsson, B., A. L. Højberg, J. C. Refsgaard, and L. Troldborg. "Uncertainty in geological and hydrogeological data." Hydrology and Earth System Sciences Discussions 3, no. 4 (August 31, 2006): 2675–706. http://dx.doi.org/10.5194/hessd-3-2675-2006.

Full text
Abstract:
Abstract. Uncertainty in conceptual model structure and in environmental data is of essential interest when dealing with uncertainty in water resources management. To make quantification of uncertainty possible it is necessary to identify and characterise the uncertainty in geological and hydrogeological data. This paper discusses a range of available techniques to describe the uncertainty related to geological model structure and scale of support. Literature examples on uncertainty in hydrogeological variables such as saturated hydraulic conductivity, specific yield, specific storage, effective porosity and dispersivity are given. Field data usually have a spatial and temporal scale of support that is different from the one on which numerical models for water resources management operate. Uncertainty in hydrogeological data variables is characterised and assessed within the methodological framework of the HarmoniRiB classification.
APA, Harvard, Vancouver, ISO, and other styles
2

Nilsson, B., A. L. Højberg, J. C. Refsgaard, and L. Troldborg. "Uncertainty in geological and hydrogeological data." Hydrology and Earth System Sciences 11, no. 5 (September 11, 2007): 1551–61. http://dx.doi.org/10.5194/hess-11-1551-2007.

Full text
Abstract:
Abstract. Uncertainty in conceptual model structure and in environmental data is of essential interest when dealing with uncertainty in water resources management. To make quantification of uncertainty possible is it necessary to identify and characterise the uncertainty in geological and hydrogeological data. This paper discusses a range of available techniques to describe the uncertainty related to geological model structure and scale of support. Literature examples on uncertainty in hydrogeological variables such as saturated hydraulic conductivity, specific yield, specific storage, effective porosity and dispersivity are given. Field data usually have a spatial and temporal scale of support that is different from the one on which numerical models for water resources management operate. Uncertainty in hydrogeological data variables is characterised and assessed within the methodological framework of the HarmoniRiB classification.
APA, Harvard, Vancouver, ISO, and other styles
3

Bellotti, Michael J., and William Dershowitz. "Hydrogeological investigations: Data and information management." Computers & Geosciences 17, no. 8 (January 1991): 1119–36. http://dx.doi.org/10.1016/0098-3004(91)90073-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Honglei, Ronghang Yang, Li Zhao, Feng Tian, and Shizhong Yu. "The Application Effect of Remote Sensing Technology in Hydrogeological Investigation under Big Data Environment." Journal of Sensors 2022 (December 7, 2022): 1–12. http://dx.doi.org/10.1155/2022/5162864.

Full text
Abstract:
The hydrogeological investigation is a work carried out by comprehensive utilization of various exploration methods to identify hydrogeological conditions in the target area, and develop and utilize groundwater resources. There are great differences in hydrogeological conditions in different regions. Hence, it is necessary to take exploration technology according to local conditions to master hydrogeological information as much as possible. Among them, the remote sensing (RS) technology can reflect the ground surveying and mapping results with high efficiency and precision through the analysis of satellite or aerial photographs, which is a commonly used method in the current hydrogeological investigation. According to satellite RS data, this work evaluates the distribution of groundwater levels in the study area and explores the geological and hydrogeological conditions of the groundwater system in the affected area. Firstly, the human-computer interactive interpretation method is used to analyze the topography and geomorphology conditions. Secondly, the spectral characteristic curve analysis method is used to extract the spectral characteristics of regional stratum lithology, and analyze and determine the lithology composition and structure of the aquifer. Thirdly, the single-band and multiband models of soil moisture RS estimation of groundwater level are implemented. Finally, the measured data are employed to verify and analyze the estimated value of the model. The results are in line with the actual value, and good results have been achieved.
APA, Harvard, Vancouver, ISO, and other styles
5

Hokkanen, Tero, Heikki Virtanen, and Mika Pirttivaara. "On hydrogeological noise in superconducting gravimeter data." Near Surface Geophysics 5, no. 2 (February 2007): 125–31. http://dx.doi.org/10.3997/1873-0604.2006024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wojda, Piotr, Serge Brouyère, Johan Derouane, and Alain Dassargues. "HydroCube: an entity-relationship hydrogeological data model." Hydrogeology Journal 18, no. 8 (October 15, 2010): 1953–62. http://dx.doi.org/10.1007/s10040-010-0653-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rizzo, Pietro, Edoardo Severini, Antonio Bucci, Federico Bocchia, Giuseppe Palladino, Nicolò Riboni, Anna Maria Sanangelantoni, et al. "How do turbidite systems behave from the hydrogeological point of view? New insights and open questions coming from an interdisciplinary work in southern Italy." PLOS ONE 17, no. 5 (May 6, 2022): e0268252. http://dx.doi.org/10.1371/journal.pone.0268252.

Full text
Abstract:
Turbidite successions can behave either as aquitards or aquifers depending on their lithological and hydraulic features. In particular, post-depositional processes can increase rock permeability due to fracture development in the competent layers. Thus, at a local scale, turbidite systems warrant further detailed investigations, aimed at reconstructing reliable hydrogeological models. The objective of this work was to investigate from the hydrogeological perspective a turbiditic aquifer located in southern Italy, where several perennial and seasonal springs were detected. Considering the complex hydrodynamics of these systems at the catchment scale, to reach an optimal characterization, a multidisciplinary approach was adopted. The conceptual framework employed microbial communities as groundwater tracers, together with the physicochemical features and isotopic signature of springs and streams from water samples. Meanwhile, geophysical investigations coupled with the geological survey provided the contextualization of the hydrogeological data into the detailed geological reconstruction of the study area. This modus operandi allowed us to typify several differences among the samples, allowing identification of sources and paths of surface water and groundwater, along with diffuse groundwater outflow along streams. As a final result, a hydrogeological conceptual model was reconstructed, underlining how at a very local scale the lithologic, hydraulic, and geomorphological heterogeneity of the studied relief can lead to an improved hydrogeological conceptual model compared to that of other turbidite systems. These results open new questions about the hydrogeological behavior of turbiditic aquifers, which could be pivotal in future research. In fact, these systems could support relevant ecosystems and anthropic activities, especially where climate change will force the research of new (and probably less hydrogeologically efficient) water sources.
APA, Harvard, Vancouver, ISO, and other styles
8

Lstok, Jonathan D., Richard M. Cooper, and Alan L. Flint. "THREE-DIMENSIONAL, CROSS-SEMIVARIOGRAM CALCULATIONS FOR HYDROGEOLOGICAL DATA." Ground Water 26, no. 5 (September 1988): 638–46. http://dx.doi.org/10.1111/j.1745-6584.1988.tb00798.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rambourg, Dimitri, Raphaël Di Chiara, and Philippe Ackerer. "Three-dimensional hydrogeological parametrization using sparse piezometric data." Hydrology and Earth System Sciences 26, no. 23 (December 8, 2022): 6147–62. http://dx.doi.org/10.5194/hess-26-6147-2022.

Full text
Abstract:
Abstract. When modelling contamination transport in the subsurface and aquifers, it is crucial to assess the heterogeneities of the porous medium, including the vertical distribution of the aquifer parameter. This issue is generally addressed thanks to geophysical investigations. As an alternative, a method is proposed using estimated hydraulic parameters from a 2D calibrated flow model (solely reliant on piezometric series) as parametrization constraints for a 3D hydrogeological model. The methodology is tested via a synthetic model, ensuring full knowledge and control of its structure. The synthetic aquifer is composed of five lithofacies, distributed according to a sedimentary pattern, and functions in an unconfined regime. The level of heterogeneity for hydraulic conductivity spans 3 orders of magnitude. It provides the piezometric chronicles used to inverse 2D flow parameter fields and the lithological logs used to interpolate the 3D lithological model. Finally, the parameters of each facies (hydraulic conductivity and porosity) are obtained through an optimization loop, which minimizes the difference between the 2D calibrated transmissivity and the transmissivity computed with the estimated 3D facies parameters. The method estimates values close to the known parameters, even with sparse piezometric and lithological data sampling. The maximal discrepancy is 45 % of the known value for the hydraulic conductivity and 6 % for the porosity (mean error 26 % and 3 %, respectively). Although the methodology does not prevent interpolation errors, it succeeds in reconstructing flow and transport dynamics close to the control data. Due to the inherent limitations of the 2D inversion approach, the method only applies to the saturated zone at this point.
APA, Harvard, Vancouver, ISO, and other styles
10

Kopylova, G. N., and S. V. Boldina. "Hydrogeological precursors of earthquakes and volcanic activations according to observation data in Kamchatka Peninsula wells." Earth sciences and subsoil use 44, no. 2 (June 17, 2021): 141–50. http://dx.doi.org/10.21285/2686-9993-2021-44-2-141-150.

Full text
Abstract:
The purpose of the study is generalization of data on the manifestations of hydrogeological earthquake precursors and volcanic activations based on long-term observations in the wells of the eastern part of the Kamchatka Peninsula. The main problem under consideration is the connection between the manifestations of hydrogeological precursors in several wells with the values of the magnitude Mw and epicentral distance of earthquakes to the wells de as well as with the parameters of seismic action in the observation area including specific density of seismic wave energy e and macroseismic intensity of shaking IMSK-64. The study results revealed that hydrogeological precursors in two-four wells had been manifesting for the period from 1 to 9 months before the strongest earthquakes with Mw = 6.6–7.8 at the epicentral distances de = 90–300 km. Such earthquakes were accompanied by the shakings of the intensity of IMSK-64 = 4–6 points. The specific density of seismic energy under such earthquakes was minimum 0.1 J/m3. The hydrogeological precursors were confined to the area for which the ratios of the earthquake epicentral distance de to the maximum linear size of the earthquake source L, km ranged from 1 to 3.7. Using the established relationships between the manifestations of hydrogeological precursors and earthquake parameters, weekly prognostic conclusions were made for expert earthquake prediction councils based on the data of current observations in wells. The well located at the distance of 15 and 20 km from the Koryaksky and Avacha active volcanoes featured the anomalous rise of groundwater pressure before the eruptions in 1991 and 2008– 2009. Therefore, a conclusion can be drawn that observation equipment operating in wells, the study results of hydrogeological precursors of earthquakes and volcanic eruptions as well as their application experience in the work of expert councils can form the scientific and technical basis for the development of geoinformation prediction technology for natural disasters in the Kamchatka Krai.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hydrogeological data"

1

Criollo, Manjarrez Rotman A. "An approach for hydrogeological data management, integration and analysis." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/666507.

Full text
Abstract:
The conceptualisation of a groundwater system involves continuous monitoring and evaluation of a large number of parameters (e.g., hydraulic parameters). Regarding hydraulic properties of the aquifers, their quantification is one of the most common problems in groundwater resources and it is recognised that all methods to obtain them have their limitations and are scale dependants. Therefore, it is necessary to have methods and tools to estimate them within a spatial context and to validate their uncertainty when they are applied in an upper scale. All these datasets collected and generated to perform a groundwater conceptual model are often stored in different scales and formats (e.g., maps, spreadsheets or databases). This continuous growing volume of data entails further improving on how it is compiled, stored and integrated for their analysis. This thesis contributes to: (i) provide dynamic and scalable methodologies for migrating and integrating multiple data infrastructures (data warehouses, spatial data infrastructures, ICT tools); (ii) to gain higher performance of their analysis within their spatial context; (iii) to provide specific tools to analyse hydrogeological processes and to obtain hydraulic parameters that have a key role in groundwater studies; and (iv) to share open-source and user-friendly software that allows standardisation, management, analysis, interpretation and sharing of hydrogeological data with a numerical model within a unique geographical platform (GIS platform). A dynamic and scalable methodology has been designed to harmonise and standardise multiple datasets and third-party databases from different origins, or to connect them with ICT tools. This methodology can be widely applied in any kind of data migration and integration (DMI) process, to develop Data warehouses, Spatial Data Infrastructures or to implement ICT tools on existing data infrastructures for further analyses, improving data governance. A higher performance to obtain hydraulic parameters of the aquifer has been addressed from the development of a GIS-based tool. The interpretation of pumping tests within its spatial context can reduce the uncertainty of its analysis with an accurate knowledge of the aquifer geometry and boundaries. This software designed to collect, manage, visualise and analyse pumping tests in a GIS environment supports the hydraulic parameterization of groundwater flow and transport models. To enhance the hydraulic parameters quantification, a compilation, revision and analysis of the hydraulic conductivity based on grain size methodologies have been performed. Afterwards, the uncertainty of applying these methods on a larger scale has been addressed and discussed by comparison of the upscaling results with pumping tests. Finally, a sharing, open-source and user-friendly GIS-based tool is presented. This new generation of GIS-based tool aims at simplifying the characterisation of groundwater bodies for the purpose of building rigorous and data-based environmental conceptual models. It allows to standardise, manage, analyse and interpret hydrogeological and hydrochemical data. Due to its free and open-source architecture, it can be updated and extended depending on the tailored applications.
La conceptualització d’un sistema hidrogeològic implica una continua monitorització i avaluació d’una gran quantitat de paràmetres (e.g., paràmetres hidràulics). Pel que fa als paràmetres hidràulics de l’aqüífer, la seva quantificació és un dels problemes més comuns als estudis hidrogeològics. És àmpliament reconegut que els mètodes per obtenir aquest tipus de paràmetres tenen les seves limitacions i són dependents de l’escala d’anàlisi. Per aquest motiu, cal disposar de mètodes i eines per estimar-los dins del seu context espacial i validar la seva incertesa quan s’apliquen en una escala superior d’anàlisi. Les dades recopilades i generades per realitzar un model conceptual hidrogeològic sovint s'emmagatzemen en diferents escales i formats (e.g., mapes, fulls de càlcul o bases de dades). Aquest volum de dades en continu creixement requereix d'eines i metodologies que millorin la seva compilació i gestió per al seu posterior anàlisi. Les contribucions realitzades en aquesta tesi son: (i) proporcionar metodologies dinàmiques i escalables per migrar i integrar múltiples infraestructures de dades (infraestructures de dades espacials i no espacials, o la implementació d'eines TIC); (ii) obtenir un major rendiment de l'anàlisi hidrogeològic tenint en compte el seu context espacial; (iii) proporcionar eines específiques per analitzar processos hidrogeològics i obtenir paràmetres hidràulics que tenen un paper clau en els estudis d'aigües subterrànies; i (iv) difondre software de codi lliure i de fàcil accés que permeti l'estandardització, gestió, anàlisi, interpretació i intercanvi de dades hidrogeològiques amb un model numèric dins d'una única plataforma de informació geogràfica (SIG). S'ha dissenyat una metodologia dinàmica i escalable per harmonitzar i estandarditzar múltiples conjunts de dades de diferents orígens, o bé per connectar aquestes infraestructures de dades amb eines TIC. Aquesta metodologia pot ser implementada en qualsevol tipus de procés de migració i integració de dades (DMI), per a desenvolupar infraestructures de dades espacials i no espacials, o bé per implementar eines TIC a les infraestructures de dades existents per a anàlisi addicionals; millorant així la governança de les dades. Un major rendiment per obtenir els paràmetres hidràulics de l'aqüífer s'adreça des del desenvolupament d'una eina SIG. La interpretació dels assaigs de bombament dins del seu context espacial, pot reduir la incertesa del seu anàlisi amb un coneixement precís de la geometria i els límits de l'aqüífer. Aquest software dissenyat per recopilar, administrar, visualitzar i analitzar els assaigs de bombament en un entorn GIS, dóna suport a la parametrització hidràulica dels models de flux i transport d'aigües subterrànies. Per millorar la quantificació dels paràmetres hidràulics, es va realitzar una compilació, revisió i anàlisi de la conductivitat hidràulica basada en metodologies de mida de gra. Posteriorment, s'ha considerat i discutit la incertesa d'aplicar aquests mètodes en una escala major comparant els resultats de la millora d'escala amb les proves de bombament. Finalment, es presenta una eina SIG lliure, de codi obert i de fàcil aplicació. Aquesta nova generació d'eines SIG pretenen simplificar la caracterització de les masses d'aigua subterrània amb el propòsit de construir models conceptuals ambientals rigorosos. A més, aquesta eina permet estandarditzar, gestionar, analitzar i interpretar dades hidrogeològiques i hidroquímiques. Donat que la seva arquitectura és de codi lliure i obert, es pot actualitzar i ampliar segons les aplicacions personalitzades que cada usuari requereixi.
La conceptualización de un sistema hidrogeológico implica el continuo monitoreo y evaluación de una gran cantidad de parámetros (e.g., parámetros hidráulicos). Con respecto a los parámetros hidráulicos, su cuantificación es uno de los problemas más comunes en los estudios hidrogeológicos. Es ampliamente reconocido que los métodos para obtener este tipo de parámetros tienen sus limitaciones y son dependientes de la escala de análisis. En este sentido, es necesario disponer de métodos y herramientas para estimarlos dentro de su contexto espacial y validar su incertidumbre cuando se aplican en una escala superior de análisis. Los datos recopilados y generados para realizar un modelo conceptual hidrogeológico a menudo se almacenan en diferentes escalas y formatos (e.g., mapas, hojas de cálculo o bases de datos). Este volumen de datos en continuo crecimiento requiere de herramientas y metodologías que mejoren su compilación y gestión para su posterior análisis. Las contribuciones realizadas son: (i) proporcionar metodologías dinámicas y escalables para migrar e integrar múltiples infraestructuras de datos (ya sean infraestructuras de datos espaciales y no espaciales, o la implementación de herramientas TIC); (ii) obtener un mayor rendimiento del análisis hidrogeológico teniendo en cuenta su contexto espacial; (iii) proporcionar herramientas específicas para analizar procesos hidrogeológicos y obtener parámetros hidráulicos que desempeñan un papel clave en los estudios de aguas subterráneas; y (iv) difundir software de código abierto y de fácil acceso que permita la estandarización, gestión, análisis, interpretación e intercambio de datos hidrogeológicos con un modelo numérico dentro de una única plataforma de información geográfica (SIG). Se ha diseñado una metodología dinámica y escalable para armonizar y estandarizar múltiples conjuntos de datos de diferentes orígenes, o bien para conectar éstas infraestructuras de datos con herramientas TIC. Esta metodología puede ser implementada en cualquier tipo de proceso de migración e integración de datos (DMI), para desarrollar infraestructuras de datos espaciales y no espaciales, o para implementar herramientas TIC en las infraestructuras de datos existentes para análisis adicionales; mejorando así la gobernanza de los datos. Un mayor rendimiento para obtener los parámetros hidráulicos del acuífero se ha abordado desde el desarrollo de una herramienta SIG. La interpretación de ensayos de bombeo dentro de su contexto espacial, puede reducir la incertidumbre de su análisis con un conocimiento preciso de la geometría y los límites del acuífero. Este software diseñado para recopilar, administrar, visualizar y analizar las pruebas de bombeo en un entorno SIG, apoya la parametrización hidráulica de los modelos de flujo y transporte de aguas subterráneas. Para mejorar la cuantificación de los parámetros hidráulicos, se ha realizado una compilación, revisión y análisis de la conductividad hidráulica basada en metodologías de tamaño de grano. Posteriormente, se ha considerado y discutido la incertidumbre de aplicar estos métodos en una escala mayor comparando los resultados de la mejora de escala con los obtenidos en ensayos de bombeo. Finalmente, se presenta una herramienta SIG libre, de código abierto y de fácil aplicación. Esta nueva generación de herramienta SIG pretende simplificar la caracterización de los cuerpos de agua subterránea con el propósito de construir modelos conceptuales ambientales rigurosos. Además, esta herramienta permite estandarizar, gestionar, analizar e interpretar datos hidrogeológicos e hidroquímicos. Gracias a su arquitectura de código libre y abierto, se puede actualizar y ampliar según las aplicaciones personalizadas que cada usuario requiera
APA, Harvard, Vancouver, ISO, and other styles
2

ZANOTTI, CHIARA. "DATA DRIVEN APPROACH TO DEAL WITH DIFFERENT HYDROGEOLOGICAL ISSUES." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/262342.

Full text
Abstract:
A causa del crescente interesse per la protezione dell’ambiente, sta aumentando la quantità di dati disponibili relativi al monitoraggio ambientale. Man mano che le dimensioni e la complessità dei data set ambientali continuano a crescere, si apre un sempre più ampio ventaglio di possibilità per l'implementazione di data science nel campo delle scienze ambientali. Il focus del presente progetto di dottorato è la risoluzione di diverse problematiche idrogeologiche tramite tecniche data-driven. Più specificatamente, il presente progetto di dottorato mira a identificare e applicare tecniche data-driven adatte a dataset idrogeologici, in base alla struttura del problema e dei dati disponibili e alle condizioni sito specifiche. Nell'ambito del presente progetto di dottorato due problemi idrologici principali sono stati affrontati parallelamente, riguardanti i due aspetti principali della gestione delle risorse sotterranee: a) la qualità delle acque sotterranee e b) la quantità delle acque sotterranee. Ognuno di questi due task è stato affrontato in due fasi successive. La prima fase consiste in un'analisi esplorativa dei dati disponibili, volta a raggiungere una migliore comprensione del sistema, del problema e delle informazioni disponibili. La seconda fase consiste nell’uso di tecniche data - driven per indagare sulla loro efficacia in campo idrogeologico. L'analisi dei dati sulla qualità delle acque sotterranee comporta l'applicazione di tecniche di analisi statistica multivariata, normalmente utilizzate per l’identificazione delle sorgenti, a un dataset relativo ai dati chimici di acque superficiali e sotterranee. Lo scopo di questo task è determinare l’efficacia di queste tecniche nell'identificare i fenomeni che contribuiscono alla concentrazione di diversi composti in un campione. Nell’ambito di questo task sono state implementate Factor Analysis, Cluster Analysis e Positive Matrix Factorization. Per quanto riguarda la quantità delle risorse idriche sotterranee, l'analisi delle serie temporali di livelli piezometrici si basa su modelli in grado di ricostruire dati storici ed elaborare scenari futuri; in questo task sono state utilizzate autocorrelazione, autocorrelazione parziale e impulse response e sono stati sviluppati modelli lineari e non lineari (reti neurali). Questo lavoro ha evidenziato che le tecniche data-driven possono essere considerate uno strumento utile a supporto della gestione delle risorse idriche sotterranee.
Due to the constantly growing interest toward environment protection, the amount of available data concerning environmental monitoring is increasing. As the size and complexity of environmental datasets continue to grow, there is a wide variety of possibility for implementation of data science in the environmental sciences field. The focus of the present PhD work is the resolution different hydrogeological issues by means of data science. More specifically, the present PhD project aims at identifying and applying data-driven techniques suitable for hydrogeological datasets, based on the structure of the problem and the available data and on site-specific conditions. In the scope of this PhD work two main hydrological problems were addressed parallelly, concerning the two main aspects of groundwater resource management: a) groundwater quality and b) groundwater quantity. Each task was tackled in two successive phases. The first phase consisted in an exploratory analysis of the available data, aimed at reaching a better understanding of the system, the problem and the available information. The second phase involved the application of specific data driven techniques to investigate their effectiveness in the hydrogeological field. The groundwater quality data analysis involves the application of multivariate techniques, normally used for the source apportionment, to a dataset concerning chemical data of surface water and groundwater aiming at determining their effectiveness in identifying the phenomena that contribute to the concentration of several compounds in a sample. In this task Factor Analysis, Cluster Analysis and Positive Matrix Factorization were implemented. As regards the groundwater quantity, the analysis of groundwater level time series uses models able to reconstruct historical data and applicable to forecast scenarios; in this task autocorrelation, partial autocorrelation and impulse response were used and linear and nonlinear neural networks models
APA, Harvard, Vancouver, ISO, and other styles
3

Sapia, Vincenzo <1982&gt. "Advanced modelling of time domain electromagnetic data with updated hydrogeological interpretations." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6340/1/Sapia_Vincenzo_Tesi.pdf.

Full text
Abstract:
Several countries have acquired, over the past decades, large amounts of area covering Airborne Electromagnetic data. Contribution of airborne geophysics has dramatically increased for both groundwater resource mapping and management proving how those systems are appropriate for large-scale and efficient groundwater surveying. We start with processing and inversion of two AEM dataset from two different systems collected over the Spiritwood Valley Aquifer area, Manitoba, Canada respectively, the AeroTEM III (commissioned by the Geological Survey of Canada in 2010) and the “Full waveform VTEM” dataset, collected and tested over the same survey area, during the fall 2011. We demonstrate that in the presence of multiple datasets, either AEM and ground data, due processing, inversion, post-processing, data integration and data calibration is the proper approach capable of providing reliable and consistent resistivity models. Our approach can be of interest to many end users, ranging from Geological Surveys, Universities to Private Companies, which are often proprietary of large geophysical databases to be interpreted for geological and\or hydrogeological purposes. In this study we deeply investigate the role of integration of several complimentary types of geophysical data collected over the same survey area. We show that data integration can improve inversions, reduce ambiguity and deliver high resolution results. We further attempt to use the final, most reliable output resistivity models as a solid basis for building a knowledge-driven 3D geological voxel-based model. A voxel approach allows a quantitative understanding of the hydrogeological setting of the area, and it can be further used to estimate the aquifers volumes (i.e. potential amount of groundwater resources) as well as hydrogeological flow model prediction. In addition, we investigated the impact of an AEM dataset towards hydrogeological mapping and 3D hydrogeological modeling, comparing it to having only a ground based TEM dataset and\or to having only boreholes data.
APA, Harvard, Vancouver, ISO, and other styles
4

Sapia, Vincenzo <1982&gt. "Advanced modelling of time domain electromagnetic data with updated hydrogeological interpretations." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6340/.

Full text
Abstract:
Several countries have acquired, over the past decades, large amounts of area covering Airborne Electromagnetic data. Contribution of airborne geophysics has dramatically increased for both groundwater resource mapping and management proving how those systems are appropriate for large-scale and efficient groundwater surveying. We start with processing and inversion of two AEM dataset from two different systems collected over the Spiritwood Valley Aquifer area, Manitoba, Canada respectively, the AeroTEM III (commissioned by the Geological Survey of Canada in 2010) and the “Full waveform VTEM” dataset, collected and tested over the same survey area, during the fall 2011. We demonstrate that in the presence of multiple datasets, either AEM and ground data, due processing, inversion, post-processing, data integration and data calibration is the proper approach capable of providing reliable and consistent resistivity models. Our approach can be of interest to many end users, ranging from Geological Surveys, Universities to Private Companies, which are often proprietary of large geophysical databases to be interpreted for geological and\or hydrogeological purposes. In this study we deeply investigate the role of integration of several complimentary types of geophysical data collected over the same survey area. We show that data integration can improve inversions, reduce ambiguity and deliver high resolution results. We further attempt to use the final, most reliable output resistivity models as a solid basis for building a knowledge-driven 3D geological voxel-based model. A voxel approach allows a quantitative understanding of the hydrogeological setting of the area, and it can be further used to estimate the aquifers volumes (i.e. potential amount of groundwater resources) as well as hydrogeological flow model prediction. In addition, we investigated the impact of an AEM dataset towards hydrogeological mapping and 3D hydrogeological modeling, comparing it to having only a ground based TEM dataset and\or to having only boreholes data.
APA, Harvard, Vancouver, ISO, and other styles
5

Mackay, R. "Synthetic hydrogeological modelling to explore data worth in radioactive waste disposal assessments." Thesis, University of Newcastle Upon Tyne, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boberg, Molly, and Märta Selander. "Systematic and Automatized Hydrogeological Data Capturing for Provision of Safe Drinking Water in Daudkandi, Bangladesh." Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297811.

Full text
Abstract:
Arsenic-contaminated drinking water exposes ~230 million people worldwide to increased risks of several diseases and is considered one of the greatest threats to public health. In Bangladesh, arsenic-contaminated water has been declared the largest poisoning of a population in history, where 39 million people are exposed to arsenic levels above the WHO guidelines (>10 μg/L). Drinking water is mainly provided by tube-wells installed by local drillers and the majority are located in aquifers with high arsenic levels. The major challenges of identifying arsenic-safe aquifers consist of a lack of a common tool for quality assurance of hydrogeological data, post-processing of the data, and a possibility to forward analyzed data to national and local stakeholders. Therefore, the purpose of this study was to investigate the potential of applying a digital solution for collecting and managing hydrogeological data in a quality assured platform. This study was a pilot-project in the sub-district Daudkandi, Bangladesh in collaboration with the KTH-International Groundwater Research Group. To fulfill the purpose, a method was developed for systematic and automated data capturing of hydrogeological information in GeoGIS, an advanced software that proved to be an efficient tool for visualizing hydrogeological data. The results show that collecting a few field data in a systematic and automated way is helpful for interpreting aquifer sequences and will enable better prerequisites for targeting safe aquifers and installing safe tube-wells. Conclusions are that the integration of a digital platform as a decision tool may significantly improve arsenic mitigation strategies. Furthermore, providing information to public and private sectors in Bangladesh would increase the transparency of hydrogeological conditions and may help improve safe water access to high arsenic areas of Bangladesh.
Över 230 miljoner människor världen över exponeras dagligen för arsenik-förorenat dricksvatten vilket kan ge upphov till hjärt- och kärlsjukdomar, diabetes samt olika cancersjukdomar. Arsenik (As) är en extremt giftig halvmetall som är naturligt förekommande i grundvatten och klassas som ett utav de största hoten mot allmän folkhälsa, vilket gör reducerande åtgärder till en samhällsutmaning av global karaktär. Ett land som är hårt drabbat av höga arsenikhalter är Bangladesh, där miljontals människor utsätts för arsenik-nivåer som överstiger WHO:s rekommenderade riktlinjer (>10 μg/L). Dricksvattenförsörjningen tillhandahålls framförallt genom vattenbrunnar installerade av lokala borrare och där majoriteten är placerade i akviferer med skadligt höga arsenikhalter.  Utmaningarna med att identifiera arseniksäkra akviferer är flera, bland annat saknas ett gemensamt verktyg för att hantera, kvalitetssäkra och analysera hydrogeologisk data, samt för att delge denna till olika parter på lokal, regional och nationell nivå. Syftet med den här studien var således att undersöka potentialen i att tillämpa ett digitalt verktyg för insamling och hantering av fältdata från olika databaser till en kvalitetssäkrad plattform. Studien genomfördes som ett pilotprojekt i distriktet Daudkandi, Bangladesh i samarbete med forskningsgruppen KTH-International Groundwater Research Group. För att uppfylla syftet utvecklades en metod för systematisk och automatiserad datainsamling av hydrogeologisk information i GeoGIS, en avancerad mjukvara som visade sig vara ett effektivt verktyg för visualiseringar av hydrogeologiska data. Resultaten visar att insamling av en liten mängd fältdata är till stor hjälp för att tolka akvifersekvenser samt för att urskilja arseniksäkra akviferer, vilket skapar bättre förutsättningar för installation av säkra vattenbrunnar. En slutsats som dras är att integreringen av en digital plattform för datainsamling avsevärt kan förbättra beslutsfattandet för arsenikreducerande strategier samt underlättar ett transparent informationsflöde. Genom att tillhandahålla transparent hydrogeologisk information till privat och offentlig sektor i Bangladesh kan även tillgången på säkert dricksvatten förbättras.
APA, Harvard, Vancouver, ISO, and other styles
7

Guducu, Hatice. "Geological, Hydrogeological And Geochemical Analyses Of The Geothermal Systems In The Buyuk Menderes Graben." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615115/index.pdf.

Full text
Abstract:
Geothermal reservoirs have become very popular in the last decades due to their renewable energy contents. Turkey has a high geothermal energy potential
especially Western Anatolia is a promising region in terms of its highest energy. Bü

k Menderes Graben system is a tectonically active extensional region and is undergoing a N&ndash
S extension leading to form geothermal fields in the graben. In the last decade, geothermal exploration, investigations and investments have been increased rapidly through the law related to geothermal energy assigned. The aim of this study is to analyze the geothermal fields located in the graben system in order to investigate their geological, hydrogeological and geochemical features and reservoir characteristics. A data set is compiled from the accessible archives, published papers and documents and several variables have been searched at every field in the graben. The variables include the fluid temperature, the distance to sea, the depth to the reservoir, the reservoir lithology, the chemical constituents, etc. In view of these variables the fields are compared and constrasted and their common characterisrics have been noted. Interpretation of the data set reveals that the fields have some common features and characters however some fields have got notable differences.
APA, Harvard, Vancouver, ISO, and other styles
8

Woodbury, Allan David. "Simultaneous inversion of thermal and hydrogeologic data." Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/27652.

Full text
Abstract:
The question that is addressed in this thesis is: can a simultaneous inverse scheme involving thermal and hydrologic data resolve hydrologic model parameters to a better degree than hydrologic data alone? The first chapter sets the framework for this question by first reviewing linear and non-linear inverse problems and then illustrating the advantages of a simultaneous inverse of two different data sets through the use of a simple example. It is the goal of Chapter 2 to examine current methodologies for stating and solving the inverse problem. A review of the maximum likelihood approach is presented, and a construction formalism is adopted by introducing a series of objective functionals (norms) which are minimized to yield a variety of possible models. The inverse is carried out using a modification of a constrained simplex procedure. The algorithm requires no derivative computations and can be used to minimize an arbitrarily complicated non-linear functional, subject to non-linear inequality constraints. The algorithm produces a wide variety of acceptable models clustered about a global minimum, each of which generates data that match observed values. The inverse technique is demonstrated on a series of one and two-dimensional synthetic data sets, and on a hydraulic head data set from Downie Slide, British Columbia, Canada. At this site, four parameters are determined; the free-surface position of the water table and three boundary conditions for the domain. Further simulations using a theoretical data set with assumed properties similar to that of Downie Slide show that with noise free data, and an adequate spacing between points it is possible to interpolate an unbiased estimate of hydraulic head data at all nodes in the equivalent discretized domain. When the inverse technique is applied, the domain's conductivity structure is correctly identified when enough prior log-conductivity information is available. The implications for Downie Slide are that in order to construct anything but a simple hydrogeologic model, accurate field measurements of hydraulic head are required, as well as well-defined estimates of hydraulic conductivity, a better spacing between measurements, and adequate knowledge of the boundary conditions. Chapter 3 is devoted to developing the idea of a joint inversion scheme involving both thermal and hydrologic data. One way of overcoming data limitations (sparse hydraulic head or few hydraulic conductivity estimates) in an inverse problem is to introduce an independently collected data set and apply simultaneous or joint inversion. The joint inversion method uses data from a number of different measurements to improve the resolution of parameters which are in common to one or more functional relationships. One such data set is subsurface temperature, which is sensitive to variations in hydraulic conductivity. In Chapter 3, the basic concepts of heat and fluid transfer in porous media with emphasis on forced convective effects are reviewed, followed by inversion of theoretical data and a re-investigation of the hydrogeology of Downie Slide, augmented with thermal data and a simultaneous inverse. Additional runs on a heterogenous medium presented in Chapter 2 are carried out. With a good temperature data base, thermal properties can be properly resolved. However, in this stochastic problem the addition of thermal data did not condition .the inverse to a greater degree than accomplished with the addition of prior information on log-conductivity. The benefits of including thermal data and applying a joint inversion can be substantial when considering the more realistic problem of uncertain boundary conditions. The simultaneous inverse is also applied to the Downie Slide data set examined in Chapter 2. Unfortunately, with a homogeneous hydraulic conductivity, all that can be determined from a hydraulic head inverse are ratios of flux to hydraulic conductivity. By including thermal data, the value of hydraulic conductivity can be determined at this site. Some of the model parameters (basal heat flux, thermal conductivity, specified head boundaries) are not resolved well by the joint scheme. None theless the constructed models do offer valuable insight into the hydrogeology of the field site. The constructed models persistently show a hydraulic conductivity value of about 1 x 10⁻⁷ m/sec, which is consistent with previous estimates of hydraulic conductivity at the site. A further comparison with the inverse results in Chapter 2 show good agreement between the two inverses for the hydraulic properties.
Science, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
9

Loftis, David R. "Hydrogeologic Analysis and Data Collection for the Oneida Tie Yard Site." Master's thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/46531.

Full text
Abstract:
During the 1950's and 1960's a railroad yard located in Oneida, Tennessee, was used as a creosote treatment facility for railroad ties. After the cross-ties were treated with creosote, the excess creosote was stored in an holding pond located about 100 feet north of Pine Creek (Fetterolf 1998). In 1990, during a creek modification project, creosote was discovered seeping through the banks of Pine Creek. The creosote had leached through the bottom of the pond and migrated towards the creek. In 1997, the Tennessee Department of Environment and Conservation authorized a remedial strategy prepared by Geraghty & Miller, Inc (Fetterolf 1998). The strategy involved the use of phytoremediation and a previously installed interception trench system. The primary goals of the phytoremediation plan are to stimulate biodegradation and to decrease groundwater flow, thus minimizing the migration of the contaminant into Pine Creek. Poplar trees were selected for the phytoremediation plan and were planted in two sections. The objectives of this report involved analyzing the hydrogeology of the Oneida, Tennessee site and organizing the collected data for the purpose of evaluating the impact of the phytoremediation and interception trench systems on the aquifer. The water level data was used to evaluate water level and hydraulic gradient changes due to evapotranspiration, rainfall, and groundwater extraction. It was obvious from the water level and rainfall comparison plots that the rainfall has a measurable effect on the water table elevation (i.e. groundwater flow). Some areas may be less affected because the coal layer has a tendency to decrease recharge. Meanwhile, the interception trench lowers the water level around the trench. The decrease in head occurs before and after the trench, thus the water level forms a "v-shape" at the trench. This "v-shape" lends to the notion that the hydraulic gradient also slopes towards the trench in both directions. As for the phytoremediation, there was not sufficient evidence to suggest that the water levels were being lowered by evapotranspiration. This was expected since the poplar trees were had only completed their second growing season. GMS MODFLOW was used to predict the effects on the water table due to the phytoremediation and the interception trench systems. The calibrated model did an adequate job in simulating the site when the interception trench was not in operation and the trees were not in their growing season. By using variable recharge in some areas, the results are expected to improve. For example, it is important to know the location of the coal layer so this area can be given a lower recharge value than the other areas in the model. As for the trench model, the simulated heads were much lower than the observed heads, which emphasizes that using wells is not the best method to simulate the interception trench. In the future, a transient model should be used to simulate the site with the trench operation, and the drain package could be used to model the trench itself. Meanwhile, the ET model was a valuable simulation, because it illustrates how effective the poplar trees can be even under conservative conditions. With an assumed root zone of just 3 feet and a maximum potential evapotranspiration rate of 4.6 gallons per day per tree, the majority of the site will experience the dry conditions expected.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
10

Davis, Jacob. "Arsenic in Arizona: assessing the economic costs and hydrogeologic feasibility of nontreatment options." Tucson, Arizona : University of Arizona, 2005. http://etd.library.arizona.edu/etd/GetFileServlet?file=file:///data1/pdf/etd/azu%5Fetd%5F1239%5F1%5Fm.pdf&type=application/pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Hydrogeological data"

1

Alex, Mikszewski, ed. Hydrogeological conceptual site models: Data analysis and visualization. Boca Raton, FL: CRC Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Conde-Costas, Carlos. Hydrogeological data collected from a test well in Barceloneta, Puerto Rico. San Juan, P.R: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Puerto Rico Industrial Development Company., Puerto Rico. Dept. of Natural and Environmental Resources., and Geological Survey (U.S.), eds. Hydrogeological data collected from a test well in Barceloneta, Puerto Rico. San Juan, P.R: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tillery, Anne. Survey of hydrologic models and hydrologic data needs for tracking flow in the Rio Grande, North-Central New Mexico, 2010. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

R, Eggleston Jack, Geological Survey (U.S.), and Coalition of Six Middle Rio Grande Basin Pueblos (N.M.), eds. Survey of hydrologic models and hydrologic data needs for tracking flow in the Rio Grande, North-Central New Mexico, 2010. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vidstrand, Patrik. Hydrogeological scale effects in crystalline rocks: Comparison of field data from Äspö HRL with data from predictive upscaling methods. Göteborg, Sweden: Dept. of Geology, Chalmers University of Technology, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Davis, Kyle W. Conceptual and numerical models of groundwater flow in the Ogallala aquifer in Gregory and Tripp Counties, South Dakota, water years 1985-2009. Reston, Vigrinia: U.S. Department of the Interior, U.S. Geological Survey, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rabi, Ayman. Availability and reliability of secondary source hydrogeological data for the West Bank with additional reference material for Gaza Strip. Jerusalem: Palestinian Hydrology Group, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rabi, Ayman. Availability and reliability of secondary source hydrogeological data for the West Bank with additional reference material for Gaza Strip. [Jerusalem: Palestinian Hydrology Group, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

V, Brahana J., Geological Survey (U.S.), and Arkansas Soil and Water Conservation Commission, eds. Hydrogeologic data for Carroll County, Arkansas. Little Rock, Ark: U.S. Dept. of the Interior, U.S. Geological Survey, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hydrogeological data"

1

Liñán, C., and Y. del Rosal. "Natural Ventilation of Karstic Caves: New Data on the Nerja Cave (Malaga, S of Spain)." In Hydrogeological and Environmental Investigations in Karst Systems, 505–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-17435-3_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Čermák, Vladimír. "Heat Flow in a Sedimentary Basin in Czechoslovakia: Evaluation of Data With Special Attention to Hydrogeology." In Hydrogeological Regimes and Their Subsurface Thermal Effects, 75–80. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm047p0075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Archontelis, A., and J. Ganoulis. "Comparison Between Hydrodynamic Simulation and Available Data in a Karst Coastal Aquifer: The Case of Almyros Spring, Crete Island, Greece." In Hydrogeological and Environmental Investigations in Karst Systems, 303–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-17435-3_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Volk, Peter, Rupert Haydn, and Stefan Saradeth. "Landsat and SPOT data—important tools for environmental assessment and hydrogeological applications." In Remote sensing: an operational technology for the mining and petroleum industries, 283–85. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-010-9744-4_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Islam, Ashraful, and D. Mitra. "Vulnerability to Saltwater Intrusion Along Coastal Bangladesh Using GIS and Hydrogeological Data." In Sundarbans Mangrove Systems, 281–304. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003083573-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Angelopoulos, C., and E. Moutsiakis. "Hydrogeological conditions of the Kotyli springs (N. Greece) based on geological and hydrogeochemical data." In Advances in the Research of Aquatic Environment, 265–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-24076-8_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bozzano, Francesca, Carlo Esposito, Stefania Franchi, Paolo Mazzanti, Daniele Perissin, Alfredo Rocca, and Emanuele Romano. "Analysis of a Subsidence Process by Integrating Geological and Hydrogeological Modelling with Satellite InSAR Data." In Engineering Geology for Society and Territory - Volume 5, 155–59. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09048-1_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Preetha, Pooja P., and Kayla Maclin. "Evaluation of Hydrogeological Models and Big Data for Quantifying Groundwater Use in Regional River Systems." In Environmental Processes and Management, 189–206. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-20208-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Di Benedetto, Alessandro, and Margherita Fiani. "Integration of LiDAR Data into a Regional Topographic Database for the Generation of a 3D City Model." In Geomatics for Green and Digital Transition, 193–208. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-17439-1_14.

Full text
Abstract:
AbstractTo analyze the resilience of road infrastructures to natural and anthropic hazards, the spatial and descriptive data provided by the Italian National Topographic Data Base (NTDB) and the 3D data coming from the LiDAR data of the “Ministero dell'Ambiente e della Tutela del Territorio e del Mare” (MATTM) can be used. The two datasets, having different nature, need to be properly joined. The aim of the work is the integration of the two datasets in a GIS environment for the 3D modelling of the anthropized territory and the optimization of the cartographic bases. On a test area, crossed by a network of linear infrastructures of great strategic importance and subjected to hydrogeological risk, an automated process has been implemented and tested in ArcGIS Desktop environment, to homogenize the data into the National Reference System. The planimetric component comes from the NTDB whereas the LiDAR data have been used to attribute the elevation to the extracted elements, to create the breaklines for a proper interpolation of the heights to build the Digital Terrain Model (DTM), to extract the height of the pitches of the buildings identified in the NTDB polygons, and finally to generate, filter and optimize the contour lines. The proposed workflow and the methodologies implemented also allowed the reconstruction of the volumes of each element involved (infrastructures and buildings) and to correct the altimetric aberrations present in the NTDB polygons.
APA, Harvard, Vancouver, ISO, and other styles
10

Azouzi, Blel, and Jürgen Schröter. "Regionalization of Hydrogeological Data for Use in Groundwater Modelling: Application to “Insel Hengsen” and at Northern Algeria." In Water in the Middle East and in North Africa, 227–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10866-6_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hydrogeological data"

1

Hokkanen, T., and H. Virtanen. "Hydrogeological Effects on Superconducting Gravimeter Data." In 67th EAGE Conference & Exhibition. European Association of Geoscientists & Engineers, 2005. http://dx.doi.org/10.3997/2214-4609-pdb.1.h002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pazienza, M. T., M. Pennacchiotti, and A. Stellato. "Ontological support to knowledge management in a hydrogeological information system." In DATA MINING AND MIS 2006. Southampton, UK: WIT Press, 2006. http://dx.doi.org/10.2495/data060431.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Spalvins, Aivars. "CREATION OF HYDROGEOLOGICAL DATA PROFILES FOR GROUNDWATER SYSTEMS." In 18th International Multidisciplinary Scientific GeoConference SGEM2018. Stef92 Technology, 2018. http://dx.doi.org/10.5593/sgem2018/3.1/s12.023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

B. Christensen, N., and R. J. Tølbøll. "Analysis of helicopterborne electromagnetic data for hydrogeological investigations." In 8th EEGS-ES Meeting. European Association of Geoscientists & Engineers, 2002. http://dx.doi.org/10.3997/2214-4609.201406160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

"Visualization of 3D Hydrogeological Data in the Web." In GI_Forum 2014 - Geospatial Innovation for Society. Vienna: Austrian Academy of Sciences Press, 2015. http://dx.doi.org/10.1553/giscience2014s16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Oldenborger, G. A., C. E. Logan, M. J. Hinton, V. Sapia, A. J. M. Pugin, D. R. Sharpe, A. I. Calderhead, and H. A. J. Russell. "3D Hydrogeological Model Building Using Airborne Electromagnetic Data." In Near Surface Geoscience 2014 - 20th European Meeting of Environmental and Engineering Geophysics. Netherlands: EAGE Publications BV, 2014. http://dx.doi.org/10.3997/2214-4609.20142011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

I. Alkalali, Arif. "Understanding subsurface pressure data signature in a hydrogeological context." In GEO 2008. European Association of Geoscientists & Engineers, 2008. http://dx.doi.org/10.3997/2214-4609-pdb.246.16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mela, Ken. "Viability of Using Seismic Data to Predict Hydrogeological Parameters." In Symposium on the Application of Geophysics to Engineering and Environmental Problems 1997. Environment and Engineering Geophysical Society, 1997. http://dx.doi.org/10.4133/1.2922455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Godio, A., and C. Strobbia. "Integration of VSP and TDEM data for hydrogeological characterisation." In 8th EEGS-ES Meeting. European Association of Geoscientists & Engineers, 2002. http://dx.doi.org/10.3997/2214-4609.201406154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shang-Ying, Chen. "UNCERTAINTY REDUCTION OF SUBSURFACE FLOW BY CONDITIONING HYDROGEOLOGICAL DATA." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-299885.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hydrogeological data"

1

Sharpe, D. R., H. A. J. Russell, S. E. Grasby, and P. R. J. Wozniak. Hydrogeological regions of Canada: Data release. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2008. http://dx.doi.org/10.4095/226194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Halas, L., P. Kilgour, L. Gow, and A. Haiblen. Application of high resolution LiDAR data for hydrogeological investigations. Geoscience Australia, 2020. http://dx.doi.org/10.11636/134627.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parker, B., and E. Arnaud. Integration of 'golden spike' geologic and hydrogeological data sets. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2016. http://dx.doi.org/10.4095/297735.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vizy, John, and Nadege Rollet. Great Artesian Basin geological and hydrogeological surfaces update: report and data package. Geoscience Australia, 2022. http://dx.doi.org/10.11636/record.2022.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rivard, C., Y. Michaud, V. Boisvert, T. Calvert, R H Morin, C. Deblonde, R. Lefebvre, and D. A. Pupek. Hydrogeological data from the South-Central area of the Maritimes Carboniferous Basin (MGWI project). Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2005. http://dx.doi.org/10.4095/220624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Crow, H. L., R. D. Knight, B. E. Medioli, M. J. Hinton, A. Plourde, A. J. M. Pugin, K D Brewer, H. A. J. Russell, and D R Sharpe. Geological, hydrogeological, geophysical, and geochemistry data from a cored borehole in the Spiritwood buried valley, southwest Manitoba. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2012. http://dx.doi.org/10.4095/291486.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brewer, K. D. Water level data from the Bells Corners Borehole Calibration Facility (2019-2021), Ottawa, Ontario. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330087.

Full text
Abstract:
The Geological Survey of Canada's deep borehole test site at the Bells Corners Borehole Calibration Facility in Ottawa, Ontario, has been in use since the 1980's for the development and calibration of geophysical logging instrumentation. In more recent times, the need for monitored deep borehole sites in Canada is increasingly important for long-term research into groundwater flow through fractured bedrock, and surface to groundwater interaction. In 2019, the facility underwent repairs to reopen deep boreholes, replace surface casings, and install atmospheric monitoring equipment. This report documents new groundwater level datasets in three of the six boreholes in the well cluster from March 2019 to October 2021. The compilation also integrates rainfall and air temperature data from a rain gauge installed on the site which provides insight into the rapid response times of this fractured bedrock system. This new water level information augments the growing number of datasets supporting the ongoing study of hydrogeological conditions at the calibration facility.
APA, Harvard, Vancouver, ISO, and other styles
8

Flach, G. P., L. L. Hamm, M. K. Harris, P. A. Thayer, J. S. Haselow, and A. D. Smits. Characterizing hydrogeologic heterogeneity using lithologic data. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/555397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Flach, G., LL L. Hamm, M. K. Harris, P. A. Thayer, J. S. Haselow, and A. D. Smits. Characterizing hydrogeologic heterogeneity using lithologic data. Office of Scientific and Technical Information (OSTI), June 1997. http://dx.doi.org/10.2172/565245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Author, Not Given. Hydrogeologic Data Fusion. Industry Programs/Characterization, Monitoring, and Sensor Technology Crosscut Program. OST Reference #2944. Office of Scientific and Technical Information (OSTI), September 1999. http://dx.doi.org/10.2172/1247690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography