Academic literature on the topic 'Hydrogen Storage Materials - Computational Studies'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrogen Storage Materials - Computational Studies.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hydrogen Storage Materials - Computational Studies"

1

Catlow, C. R. A., Z. X. Guo, M. Miskufova, et al. "Advances in computational studies of energy materials." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1923 (2010): 3379–456. http://dx.doi.org/10.1098/rsta.2010.0111.

Full text
Abstract:
We review recent developments and applications of computational modelling techniques in the field of materials for energy technologies including hydrogen production and storage, energy storage and conversion, and light absorption and emission. In addition, we present new work on an Sn 2 TiO 4 photocatalyst containing an Sn(II) lone pair, new interatomic potential models for SrTiO 3 and GaN, an exploration of defects in the kesterite/stannite-structured solar cell absorber Cu 2 ZnSnS 4 , and report details of the incorporation of hydrogen into Ag 2 O and Cu 2 O. Special attention is paid to the
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Yafei, Zhen Zhou, Panwen Shen, S. B. Zhang, and Zhongfang Chen. "Computational studies on hydrogen storage in aluminum nitride nanowires/tubes." Nanotechnology 20, no. 21 (2009): 215701. http://dx.doi.org/10.1088/0957-4484/20/21/215701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gunawan, Rahmat, Cynthia Linaya Radiman, Muhamad Abdulkadir Martoprawiro, and Hermawan K. Dipojono. "Graphite as A Hydrogen Storage in Fuel Cell System: Computational Material Study for Renewable Energy." Jurnal ILMU DASAR 17, no. 2 (2017): 103. http://dx.doi.org/10.19184/jid.v17i2.3499.

Full text
Abstract:
The Hydrogen storage based-graphite materials have been investigated theoretically via Density Functional Theory (DFT) approach. The native graphite was compared to the modified graphite, namely the intercalation graphite (GICs, graphite intercalated compounds). Here the GICs was intercalated by alkali metals (Li, Na and K). The electronic structures, energetics and atomic orbital contributions of hydrogen-graphite system, GICs, and hydrogen-GICs were studied by calculation approach of gradient corrected PBE (Perdew-Burke-Ernzerhof) for recovery of exchange-correlation energy. The calculation
APA, Harvard, Vancouver, ISO, and other styles
4

Ravindran, P., P. Vajeeston, H. Fjellvåg, and A. Kjekshus. "Chemical-bonding and high-pressure studies on hydrogen-storage materials." Computational Materials Science 30, no. 3-4 (2004): 349–57. http://dx.doi.org/10.1016/j.commatsci.2004.02.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hudiyanti, Dwi, Noor Ichsan Hamidi, Daru Seto Bagus Anugrah, Siti Nur Milatus Salimah, and Parsaoran Siahaan. "Encapsulation of Vitamin C in Sesame Liposomes: Computational and Experimental Studies." Open Chemistry 17, no. 1 (2019): 537–43. http://dx.doi.org/10.1515/chem-2019-0061.

Full text
Abstract:
AbstractAn experimental and computational study was carried out for encapsulation of vitamin C in sesame, Sesamum indicum L., liposomes. Based on computational studies, the packing parameter (P) of sesame phospholipids was found to be 0.64 ± 0.09. This indicates that the molecular shape of sesame phospholipids is in the form of truncated cone and, in aqueous solution, it self-assembles to form liposomes. In the liposomes, no chemical interaction was observed between phospholipid molecules and vitamin C. However, medium-strength hydrogen bonds (Ei) from -87.6 kJ/mol to -82.02 kJ/mol with bond l
APA, Harvard, Vancouver, ISO, and other styles
6

Xie, Xin, Xushan Zhao, and Jiangfeng Song. "A High-Throughput Computational Study on the Stability of Ni- and Ti-Doped Zr2Fe Alloys." Energies 15, no. 7 (2022): 2310. http://dx.doi.org/10.3390/en15072310.

Full text
Abstract:
Zr2Fe alloys have been widely used in fusion energy and hydrogen energy for hydrogen storage. However, disproportionation reactions occur easily in Zr-based alloys at medium and high temperatures, which greatly reduces the storage capacity of the alloys, and is not conducive to repeated cycle applications. The doping of Zr-based alloys with appropriate transition metal elements has been found to significantly improve their H storage properties and prevent hydrogen disproportionation. A convenient approach is required to efficiently predict the desirable doped structures that are physically sta
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Seung Jae, Jung Hyun Cho, Kunsil Lee, Taehoon Kim, and Chong Rae Park. "Concentration-Driven Evolution of Crystal Structure, Pore Characteristics, and Hydrogen Storage Capacity of Metal Organic Framework-5s: Experimental and Computational Studies." Chemistry of Materials 22, no. 22 (2010): 6138–45. http://dx.doi.org/10.1021/cm101943e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mehboob, Muhammad Yasir, Riaz Hussain, Zobia Irshad, Ume Farwa, Muhammad Adnan, and Shabbir Muhammad. "Designing and Encapsulation of Inorganic Al12N12 Nanoclusters with Be, Mg, and Ca Metals for Efficient Hydrogen Adsorption: A Step Forward Towards Hydrogen Storage Materials." Journal of Computational Biophysics and Chemistry 20, no. 07 (2021): 687–705. http://dx.doi.org/10.1142/s2737416521500411.

Full text
Abstract:
Nanoclusters such as [Formula: see text][Formula: see text] have received increased attention due to their diverse applications in the fields of optoelectronics and energy storage. In this paper, we have investigated a series of alkaline earth metal (AEM)-encapsulated [Formula: see text][Formula: see text] nanoclusters for hydrogen adsorption. Thermodynamic adsorption parameters, optical and nonlinear optical properties were investigated using density functional theory (DFT) at the B3LYP/6-31G(d,p) level of theory. Encapsulation of AEMs (Be, Mg and Ca) is an effective strategy to improve the N
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Xingbo, Hanchen Tian, and Wenyuan Li. "(Invited) Proton‐Conducting Solid Oxide Electrolysis Cells for Hydrogen Production - Materials Design and Catalyst Surface Engineering." ECS Meeting Abstracts MA2022-02, no. 49 (2022): 1907. http://dx.doi.org/10.1149/ma2022-02491907mtgabs.

Full text
Abstract:
Solid oxide steam electrolysis cell, a promising electrical-chemical conversion device for the next generation efficient hydrogen production and energy storage, has been actively studied because of their high energy conversion efficiencies and prospective applications as electrochemical reactors. After decades of research on protonic ceramic materials, remarkable advances have been made in the protonic ceramic electrochemical cells (PCECs) air electrode and electrolyte. However, the existing air electrodes are far from satisfying the requirements of practical applications, a series of issues,
APA, Harvard, Vancouver, ISO, and other styles
10

Sunkara, Mahendra Kumar. "Plasma-molten Metal and/or Liquid Interactions for Materials/Chemical Processing." ECS Meeting Abstracts MA2020-01, no. 17 (2020): 1106. http://dx.doi.org/10.1149/ma2020-01171106mtgabs.

Full text
Abstract:
Several grand challenges in energy storage and conversion need the discovery of functional materials that many agree will be composed of complex compositions at nanoscale. In this regard, plasma based materials processing has been shown to be promising for combinatorial techniques and scalable processing. The use of plasma oxidation of liquid precursors allows for creation of metastable complex oxide particles with compositional control.1 A number of examples will be discussed in which the above two techniques are currently being used for accelerating the development of a variety of catalysts
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hydrogen Storage Materials - Computational Studies"

1

Srepusharawoot, Pornjuk. "Computational Studies of Hydrogen Storage Materials : Physisorbed and Chemisorbed Systems." Doctoral thesis, Uppsala universitet, Materialteori, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-132875.

Full text
Abstract:
This thesis deals with first-principles calculations based on density functional theory to investigate hydrogen storage related properties in various high-surface area materials and the ground state crystal structures in alkaline earth dicarbide systems. High-surface area materials have been shown to be very promising for hydrogen storage applications owing to them containing numerous hydrogen adsorption sites and good kinetics for adsorption/desorption. However, one disadvantage of these materials is their very weak interaction with adsorbed hydrogen molecules. Hence, for any feasible applica
APA, Harvard, Vancouver, ISO, and other styles
2

Mueller, Timothy Keith. "Computational studies of hydrogen storage materials and the development of related methods." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42138.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2007.<br>Includes bibliographical references (p. 193-199).<br>Computational methods, including density functional theory and the cluster expansion formalism, are used to study materials for hydrogen storage. The storage of molecular hydrogen in the metal-organic framework with formula unit Zn40(02C-C6H6-COD3 is considered. It is predicted that hydrogen adsorbs at five sites near the metal-oxide cluster, in good agreement with recent experimental data. It is also shown that the metal-oxide cluste
APA, Harvard, Vancouver, ISO, and other styles
3

Larsson, Peter. "Computational Studies of Nanotube Growth, Nanoclusters and Cathode Materials for Batteries." Doctoral thesis, Uppsala universitet, Materialteori, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-108261.

Full text
Abstract:
Density functional theory has been used to investigate cathode materials for rechargeable batteries, carbon nanotube interactions with catalyst particles and transition metal catalyzed hydrogen release in magnesium hydride nanoclusters. An effort has been made to the understand structural and electrochemical properties of lithium iron silicate (Li2FeSiO4) and its manganese-doped analogue. Starting from the X-ray measurements, the crystal structure of Li2FeSiO4 was refined, and several metastable phases of partially delithiated Li2FeSiO4 were identified. There are signs that manganese doping le
APA, Harvard, Vancouver, ISO, and other styles
4

Kelkar, T. "Computational study of hydrogen storage materials for fuel cells." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2009. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, Zhu. "First-principles study of hydrogen storage materials." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22672.

Full text
Abstract:
Thesis (Ph. D.)--Physics, Georgia Institute of Technology, 2008.<br>Committee Chair: Mei-Yin Chou; Committee Member: Erbil, Ahmet; Committee Member: First, Phillip; Committee Member: Landman, Uzi; Committee Member: Wang, Xiao-Qian.
APA, Harvard, Vancouver, ISO, and other styles
6

Sheppard, Drew A. "Hydrogen storage studies of mesoporous and titanium based materials." Thesis, Curtin University, 2008. http://hdl.handle.net/20.500.11937/1164.

Full text
Abstract:
Concerns over green house gas emissions and their climate change effects have lead to a concerted effort into environmental friendly technologies. One such emphasis has been on the implementation of the hydrogen economy. There are four major impediments to the implementation of a hydrogen economy: hydrogen production, distribution, storage and conversion. This thesis is focused on exploring the hydrogen storage problem. Hydrogen can be stored by a wide range of methods. One of these methods involves using a secondary material that stores hydrogen by either physisorbing hydrogen onto its surfac
APA, Harvard, Vancouver, ISO, and other styles
7

Martin, Gregory Stephen Bernard. "Solid-state nuclear magnetic resonance studies of hydrogen storage materials." Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/14108/.

Full text
Abstract:
Currently, solid-state nuclear magnetic resonance (NMR) methodology is still evolving. However, this thesis focuses on the application of NMR methods to improving the understanding of solid-state hydrogen storage materials. In particular, this thesis demonstrates how NMR can provide a unique perspective on materials from a molecular level, complementary to other analytical techniques. All of this work has been done in collaboration with other research groups, so effort has been made to interpret the NMR results recorded here in the context of the synthetic methods used and results obtained fro
APA, Harvard, Vancouver, ISO, and other styles
8

Moss, Jared B. "Computational and Experimental Studies on Energy Storage Materials and Electrocatalysts." DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7537.

Full text
Abstract:
With the growing global population comes the ever-increasing consumption of energy in powering cities, electric vehicles, and portable devices such as cell-phones. While the power grid is used to distribute energy to consumers, the energy sources needed to power the grid itself are unsustainable and inefficient. The primary energy sources powering the grid, being fossil fuels, natural gas, and nuclear, are unsustainable as the economically-accessible reserves are continually depleted in exchange for detrimental emissions and air-pollutants. Cleaner, renewable sources, such as solar, wind, and
APA, Harvard, Vancouver, ISO, and other styles
9

Hussain, Tanveer. "Computational Insights on Functional Materials for Clean Energy Storage : Modeling, Structure and Thermodynamics." Doctoral thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-206938.

Full text
Abstract:
The exponential increase in the demands of world’s energy and the devastating effects of current fossil fuels based sources has forced us to reduce our dependence on the current sources as well as finding cleaner, cheaper and renewable alternates. Being abundant, efficient and renewable, hydrogen can be opted as the best possible replacement of the diminishing and harmful fossil fuels. But the transformation towards the hydrogen-based economy is hindered by the unavailability of suitable storage medium for hydrogen. First principles calculations based on density functional theory has been empl
APA, Harvard, Vancouver, ISO, and other styles
10

Knick, Cory. "Modeling the Exfoliation Rate of Graphene Nanoplatelet Production and Application for Hydrogen Storage." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1347767528.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Hydrogen Storage Materials - Computational Studies"

1

George, Thomas F. Computational studies of new materials II: From ultrafast processes and nanostructures to optoelectronics, energy storage and nanomedicine. World Scientific, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yartys, Volodymyr, Yuriy Solonin, and Ihor Zavaliy. HYDROGEN BASED ENERGY STORAGE: STATUS AND RECENT DEVELOPMENTS. Institute for Problems in Materials Science, 2021. http://dx.doi.org/10.15407/materials2021.

Full text
Abstract:
The book presents the recent achievements in the use of renewable energy sources, chemical processes, biomaterials for the efficient production of hydrogen, its storage and use as a fuel in the FC-based power systems. Novel results were obtained within two research programs, namely, the NATO Science for Peace G5233 project “Portable Energy Supply” (2017-21) and the priority program of the NAS of Ukraine "Development of scientific principles of the production, storage and use of hydrogen in autonomous energy systems" (2019-21). The priority program was implemented by the leading institutes of t
APA, Harvard, Vancouver, ISO, and other styles
3

Narlikar, A. V., and Y. Y. Fu, eds. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.001.0001.

Full text
Abstract:
This volume highlights engineering and related developments in the field of nanoscience and technology, with a focus on frontal application areas like silicon nanotechnologies, spintronics, quantum dots, carbon nanotubes, and protein-based devices as well as various biomolecular, clinical and medical applications. Topics include: the role of computational sciences in Si nanotechnologies and devices; few-electron quantum-dot spintronics; spintronics with metallic nanowires; Si/SiGe heterostructures in nanoelectronics; nanoionics and its device applications; and molecular electronics based on se
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hydrogen Storage Materials - Computational Studies"

1

Le, Viet-Duc, and Yong-Hyun Kim. "Energy Storage: Hydrogen." In Computational Approaches to Energy Materials. John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118551462.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Majzoub, Eric H. "Computational Discovery of Hydrogen Storage Compounds." In Computational Studies of New Materials II. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814287197_0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Miwa, Kazutoshi. "Computational Materials Design for Hydrogen Storage." In Multiscale Simulations for Electrochemical Devices. Jenny Stanford Publishing, 2020. http://dx.doi.org/10.1201/9780429295454-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Klein, R. A., H. A. Evans, B. A. Trump, T. J. Udovic, and C. M. Brown. "Neutron scattering studies of materials for hydrogen storage." In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-823144-9.00028-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dornheim, Martin. "Thermodynamics of Metal Hydrides: Tailoring Reaction Enthalpies of Hydrogen Storage Materials." In Thermodynamics - Interaction Studies - Solids, Liquids and Gases. InTech, 2011. http://dx.doi.org/10.5772/21662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Walker, G., Mohamed Bououdina, Z. X. Guo, and D. Fruchart. "Overview on Hydrogen Absorbing Materials." In Handbook of Research on Nanoscience, Nanotechnology, and Advanced Materials. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-5824-0.ch013.

Full text
Abstract:
Hydrogen is a promising and clean fuel for transportation and domestic applications, but is difficult to store. Many systems have been investigated in order to improve the maximum hydrogen storage capacity (reversibility), high kinetics, moderate equilibrium pressure and/or decomposition temperature, and better cyclability. In this chapter, a review of studies related to stability of Zr-based Laves phase system as well as in-situ neutron diffraction investigation, the kinetics of TiFe, surface treatment of LaNi5 system, mechanically alloyed Mg-based hydrides, and graphite nanofibers are reported.
APA, Harvard, Vancouver, ISO, and other styles
7

Maiyelvaganan, K. R., M. Janani, K. Gopalsamy, M. K. Ravva, M. Prakash, and V. Subramanian. "Studies on hydrogen storage in molecules, cages, clusters, and materials: A DFT study." In Atomic Clusters with Unusual Structure, Bonding and Reactivity. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-12-822943-9.00019-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pradhan, Renuka, and Upakarasamy Lourderaj. "Computational Studies on the Excited-State Intramolecular Proton Transfer in Five-Membered-Ring Hydrogen-Bonded Systems." In Hydrogen-Bonding Research in Photochemistry, Photobiology, and Optoelectronic Materials. WORLD SCIENTIFIC (EUROPE), 2019. http://dx.doi.org/10.1142/9781786346087_0007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yeetsorn, Rungsima, and Yaowaret Maiket. "Hydrogen Fuel Cell Implementation for the Transportation Sector." In Hydrogen Implementation in Transportation Sector [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.95291.

Full text
Abstract:
Global transportation possesses have compelling rationales for reducing the consumption of oil, emissions of carbon dioxide, and noise pollution. Transitions to alternative transportation technologies such as electric vehicles (EVs) have gained increased attention from the automotive industries. A fuel cell electric vehicle (FCEV) occupying a hydrogen engine is one of the most stupendous technologies, since it is suitable for a large-scale transportation. However, its performance limitations are in question due to voltage degradation in long term operations through steady conditions under constant load and dynamic working conditions. Other drawbacks of using fuel cells in EVs are energy balances and management issues necessary for vehicle power and energy requirements. An efficient solution to accommodate driving behavior like dynamic loads comprises of hybridizing PEMFCs with energy storage devices like supercapacitors and batteries. This opening chapter reviews the projected gist of FCEV status; considers the factors that are going to affect how FCEVs could enter commercialization, including the importance of fuel cells for EV technologies; the degradation diagnoses using accelerated stress test (AST) procedures; FCEV hybridization; and the contribution of an energy storage device for charging EVs. The article also addresses case studies relating to material degradation occurring from driving behavior. Information about material degradation can be compiled into a database for the improvement of cell component performance and durability, leading to the creation of new materials and new fuel cell hybridization designs. To support the growth of EV technologies, an energy storage is required for the integrated alternative electricity generations. A redox flow battery is considered as a promising candidate in terms of attractive charging station for EVs or HEVs.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hydrogen Storage Materials - Computational Studies"

1

Hormaza Mejia, Nohora A., and Jack Brouwer. "Gaseous Fuel Leakage From Natural Gas Infrastructure." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88271.

Full text
Abstract:
Hydrogen has often been studied as a possible fuel of the future due to its capabilities to support zero emissions and sustainable energy conversion. Hydrogen can be used in a fuel cell to generate electricity at high efficiencies and with zero emissions. In addition, hydrogen can be renewably produced via electrolysis reactions that are powered from otherwise curtailed renewable energy. One possible means of storing and delivering renewable hydrogen is to inject it into the existing natural gas (NG) system and thus decarbonize gas end-uses. The NG system has potential to serve as a storage, t
APA, Harvard, Vancouver, ISO, and other styles
2

Avila, Raudel O., Md S. Islam, and Pavana Prabhakar. "Thermal Gradient on Hybrid Composite Propellant Tank Materials at Cryogenic Temperatures." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65727.

Full text
Abstract:
Cryogenic tanks are devices that are commonly used to store extremely low temperature fluids, usually in their liquid state. Cryogenic fuel tanks carry cryogenic propellants such as liquid oxygen, liquid methane or liquid hydrogen, at subfreezing temperatures in its condensed form in order to generate highly combustible liquids. This type of tank is exposed to an extremely cold temperature in its interior and to ambient temperature on its external surface resulting in large temperature gradient across the thickness of the wall. In this paper, hybrid textile composites with carbon and Kevlar® f
APA, Harvard, Vancouver, ISO, and other styles
3

He, Siyi. "Computational research method of nanostructured hydrogen storage materials." In International Conference on Sustainable Technology and Management (ICSTM 2022), edited by Xilong Qu. SPIE, 2022. http://dx.doi.org/10.1117/12.2644688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smith, Sheriden, and Young Ho Park. "Hydrogen Storage Using Carbon Nanostructures." In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45019.

Full text
Abstract:
Carbon nanostructures were reported to be very promising materials for hydrogen storage, and a great deal of interest has been focused on adsorption of molecular hydrogen in carbon nanostructures. Although many experimental results for hydrogen storage in carbon nanostructures were reported, corresponding theoretical studies have not been developed and adsorption mechanisms have not been fully identified. Better understanding of molecular level phenomena provides clues to designing hydrogen storage that performs better. Atomic simulations are useful in the evaluation of hydrogen storage capaci
APA, Harvard, Vancouver, ISO, and other styles
5

Ojwang’, J. G. O., Rutger van Santen, Gert Jan Kramer, et al. "Modeling of Hydrogen Storage Materials: A Reactive Force Field for NaH." In SELECTED PAPERS FROM ICNAAM-2007 AND ICCMSE-2007: Special Presentations at the International Conference on Numerical Analysis and Applied Mathematics 2007 (ICNAAM-2007), held in Corfu, Greece, 16–20 September 2007 and of the International Conference on Computational Methods in Sciences and Engineering 2007 (ICCMSE-2007), held in Corfu, Greece, 25–30 September 2007. AIP, 2008. http://dx.doi.org/10.1063/1.2997304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Park, Y. H., and I. Hijazi. "EAM Potential for Hydrogen Storage Application." In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65845.

Full text
Abstract:
Palladium is capable of storing a large atomic percent of hydrogen at room temperature and allows for hydrogen to diffuse with a high mobility. These unique properties make it an efficient storage medium for hydrogen and hydrogen isotopes, such as tritium, a byproduct of nuclear reaction. Palladium thus can be used for applications where fast diffusion and large storage density are important. Better understanding of molecular level phenomena such as hydride phase transformation in the metal and the effect of defects in the materials provides clues to designing metal hydrides that perform bette
APA, Harvard, Vancouver, ISO, and other styles
7

Pourpoint, Timothe´e L., Aaron Sisto, Kyle C. Smith, et al. "Performance of Thermal Enhancement Materials in High Pressure Metal Hydride Storage Systems." In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56450.

Full text
Abstract:
Over the past two years, key issues associated with the development of realistic metal hydride storage systems have been identified and studied at Purdue University’s Hydrogen Systems Laboratory, part of the Energy Center at Discovery Park. Ongoing research projects are aimed at the demonstration of a prototype large-scale metal hydride tank that achieves fill and release rates compatible with current automotive use. The large-scale storage system is a prototype with multiple pressure vessels compatible with 350 bar operation. Tests are conducted at the Hydrogen Systems Lab in a 1000 ft2 labor
APA, Harvard, Vancouver, ISO, and other styles
8

Tamburello, David, Bruce Hardy, Claudio Corgnale, Martin Sulic, and Donald Anton. "Cryo-Adsorbent Hydrogen Storage Systems for Fuel Cell Vehicles." In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69411.

Full text
Abstract:
Numerical models for the evaluation of cryo-adsorbent based hydrogen (H2) storage systems for fuel cell vehicles were developed and validated against experimental data. These models simultaneously solve the equations for the adsorbent thermodynamics together with the conservation equations for heat, mass, and momentum. The models also use real gas thermodynamic properties for hydrogen. Model predictions were compared to data for charging and discharging both activated carbon and MOF-5™ systems. Applications of the model include detailed finite element analysis simulations and full vehicle-leve
APA, Harvard, Vancouver, ISO, and other styles
9

Tamburello, David, Bruce Hardy, Martin Sulic, Matthew Kesterson, Claudio Corgnale, and Donald Anton. "Compact Cryo-Adsorbent Hydrogen Storage Systems for Fuel Cell Vehicles." In ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/power2018-7474.

Full text
Abstract:
Numerical models for the evaluation of cryo-adsorbent based hydrogen storage systems for fuel cell vehicles were developed and validated against experimental data. These models simultaneously solve the conservation equations for heat, mass, and momentum together with the equations for the adsorbent thermodynamics. The models also use real gas thermodynamic properties for hydrogen. Model predictions were compared to data for charging and discharging both MOF-5™ and activated carbon systems. Applications of the model include detailed finite element analysis simulations as well as full vehicle-le
APA, Harvard, Vancouver, ISO, and other styles
10

Riahi, Adil, Sara Algurab, Marcel Otto, et al. "Numerical Performance Study of Adsorption Based Hydrogen Storage System in Silica Aerogel." In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-82711.

Full text
Abstract:
Abstract The purpose of this paper is to investigate the thermodynamics of the adsorption/desorption processes of hydrogen on silica aerogel. Hydrogen is a promising alternative fuel for gas turbines as it is carbon free and an excellent energy storage medium. However, the storage of hydrogen itself presents some challenges when stored in liquid or gaseous states. Thus, storing hydrogen in its adsorbed state provides a potential pathway to large scale economic hydrogen storage. The adsorption process is based on weak Van Der Waals forces that make the adsorbate (hydrogen) stick to the adsorben
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hydrogen Storage Materials - Computational Studies"

1

Yelon, William B. In-Situ Neutron Diffraction Studies of Complex Hydrogen Storage Materials. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1079211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!