Academic literature on the topic 'Hydrogen Storage Materials - Computational Studies'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrogen Storage Materials - Computational Studies.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hydrogen Storage Materials - Computational Studies"
Catlow, C. R. A., Z. X. Guo, M. Miskufova, S. A. Shevlin, A. G. H. Smith, A. A. Sokol, A. Walsh, D. J. Wilson, and S. M. Woodley. "Advances in computational studies of energy materials." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1923 (July 28, 2010): 3379–456. http://dx.doi.org/10.1098/rsta.2010.0111.
Full textLi, Yafei, Zhen Zhou, Panwen Shen, S. B. Zhang, and Zhongfang Chen. "Computational studies on hydrogen storage in aluminum nitride nanowires/tubes." Nanotechnology 20, no. 21 (May 6, 2009): 215701. http://dx.doi.org/10.1088/0957-4484/20/21/215701.
Full textGunawan, Rahmat, Cynthia Linaya Radiman, Muhamad Abdulkadir Martoprawiro, and Hermawan K. Dipojono. "Graphite as A Hydrogen Storage in Fuel Cell System: Computational Material Study for Renewable Energy." Jurnal ILMU DASAR 17, no. 2 (February 1, 2017): 103. http://dx.doi.org/10.19184/jid.v17i2.3499.
Full textRavindran, P., P. Vajeeston, H. Fjellvåg, and A. Kjekshus. "Chemical-bonding and high-pressure studies on hydrogen-storage materials." Computational Materials Science 30, no. 3-4 (August 2004): 349–57. http://dx.doi.org/10.1016/j.commatsci.2004.02.025.
Full textHudiyanti, Dwi, Noor Ichsan Hamidi, Daru Seto Bagus Anugrah, Siti Nur Milatus Salimah, and Parsaoran Siahaan. "Encapsulation of Vitamin C in Sesame Liposomes: Computational and Experimental Studies." Open Chemistry 17, no. 1 (August 24, 2019): 537–43. http://dx.doi.org/10.1515/chem-2019-0061.
Full textXie, Xin, Xushan Zhao, and Jiangfeng Song. "A High-Throughput Computational Study on the Stability of Ni- and Ti-Doped Zr2Fe Alloys." Energies 15, no. 7 (March 22, 2022): 2310. http://dx.doi.org/10.3390/en15072310.
Full textYang, Seung Jae, Jung Hyun Cho, Kunsil Lee, Taehoon Kim, and Chong Rae Park. "Concentration-Driven Evolution of Crystal Structure, Pore Characteristics, and Hydrogen Storage Capacity of Metal Organic Framework-5s: Experimental and Computational Studies." Chemistry of Materials 22, no. 22 (November 23, 2010): 6138–45. http://dx.doi.org/10.1021/cm101943e.
Full textMehboob, Muhammad Yasir, Riaz Hussain, Zobia Irshad, Ume Farwa, Muhammad Adnan, and Shabbir Muhammad. "Designing and Encapsulation of Inorganic Al12N12 Nanoclusters with Be, Mg, and Ca Metals for Efficient Hydrogen Adsorption: A Step Forward Towards Hydrogen Storage Materials." Journal of Computational Biophysics and Chemistry 20, no. 07 (October 7, 2021): 687–705. http://dx.doi.org/10.1142/s2737416521500411.
Full textLiu, Xingbo, Hanchen Tian, and Wenyuan Li. "(Invited) Proton‐Conducting Solid Oxide Electrolysis Cells for Hydrogen Production - Materials Design and Catalyst Surface Engineering." ECS Meeting Abstracts MA2022-02, no. 49 (October 9, 2022): 1907. http://dx.doi.org/10.1149/ma2022-02491907mtgabs.
Full textSunkara, Mahendra Kumar. "Plasma-molten Metal and/or Liquid Interactions for Materials/Chemical Processing." ECS Meeting Abstracts MA2020-01, no. 17 (May 1, 2020): 1106. http://dx.doi.org/10.1149/ma2020-01171106mtgabs.
Full textDissertations / Theses on the topic "Hydrogen Storage Materials - Computational Studies"
Srepusharawoot, Pornjuk. "Computational Studies of Hydrogen Storage Materials : Physisorbed and Chemisorbed Systems." Doctoral thesis, Uppsala universitet, Materialteori, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-132875.
Full textFelaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 712
Mueller, Timothy Keith. "Computational studies of hydrogen storage materials and the development of related methods." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42138.
Full textIncludes bibliographical references (p. 193-199).
Computational methods, including density functional theory and the cluster expansion formalism, are used to study materials for hydrogen storage. The storage of molecular hydrogen in the metal-organic framework with formula unit Zn40(02C-C6H6-COD3 is considered. It is predicted that hydrogen adsorbs at five sites near the metal-oxide cluster, in good agreement with recent experimental data. It is also shown that the metal-oxide cluster affects the electronic structure of the organic linker, qualitatively affecting the way in which hydrogen binds to the linker. Lithium imide (Li2NH), a material present in several systems being considered for atomic hydrogen storage, is extensively investigated. A variation of the cluster expansion formalism that accounts for continuous bond orientations is developed to search for the ground state structure of this material, and a structure with a calculated energy lower than any known is found. Two additional discrete cluster expansions are used to predict that the experimentally observed phase of lithium imide is metastable at temperatures below approximately 200 K and stabilized primarily by vibrational entropy at higher temperatures. A new structure for this low-temperature phase that agrees well with experimental data is proposed. A method to improve the predictive power of cluster expansions through the application of statistical learning theory is developed, as are related algorithms. The Bayesian approach to regularization is used to show that by taking advantage of the prior expectation that cluster expansions are local, the convergence and prediction properties of cluster expansions can be significantly improved.
(cont.) A variety of methods to generate cluster expansions are evaluated on three different binary systems. It is suggested that a good method to generate cluster expansions is to use a prior distribution that penalizes the ECI for larger clusters more and has few parameters. It is shown that the generalized cross-validation score can be an efficient and effective substitute for the leave-one-out cross-validation score when searching for a good set of parameters for the prior distribution. Finally it is shown that the Bayesian approach can also be used to improve the convergence and prediction properties of cluster expansions for surfaces, nanowires, nanoparticles, and certain defects.
by Timothy K. Mueller.
Ph.D.
Larsson, Peter. "Computational Studies of Nanotube Growth, Nanoclusters and Cathode Materials for Batteries." Doctoral thesis, Uppsala universitet, Materialteori, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-108261.
Full textKelkar, T. "Computational study of hydrogen storage materials for fuel cells." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2009. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2757.
Full textMa, Zhu. "First-principles study of hydrogen storage materials." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22672.
Full textCommittee Chair: Mei-Yin Chou; Committee Member: Erbil, Ahmet; Committee Member: First, Phillip; Committee Member: Landman, Uzi; Committee Member: Wang, Xiao-Qian.
Sheppard, Drew A. "Hydrogen storage studies of mesoporous and titanium based materials." Thesis, Curtin University, 2008. http://hdl.handle.net/20.500.11937/1164.
Full textMartin, Gregory Stephen Bernard. "Solid-state nuclear magnetic resonance studies of hydrogen storage materials." Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/14108/.
Full textMoss, Jared B. "Computational and Experimental Studies on Energy Storage Materials and Electrocatalysts." DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7537.
Full textHussain, Tanveer. "Computational Insights on Functional Materials for Clean Energy Storage : Modeling, Structure and Thermodynamics." Doctoral thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-206938.
Full textKnick, Cory. "Modeling the Exfoliation Rate of Graphene Nanoplatelet Production and Application for Hydrogen Storage." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1347767528.
Full textBooks on the topic "Hydrogen Storage Materials - Computational Studies"
George, Thomas F. Computational studies of new materials II: From ultrafast processes and nanostructures to optoelectronics, energy storage and nanomedicine. Singapore: World Scientific, 2011.
Find full textYartys, Volodymyr, Yuriy Solonin, and Ihor Zavaliy. HYDROGEN BASED ENERGY STORAGE: STATUS AND RECENT DEVELOPMENTS. Institute for Problems in Materials Science, 2021. http://dx.doi.org/10.15407/materials2021.
Full textNarlikar, A. V., and Y. Y. Fu, eds. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.001.0001.
Full textBook chapters on the topic "Hydrogen Storage Materials - Computational Studies"
Le, Viet-Duc, and Yong-Hyun Kim. "Energy Storage: Hydrogen." In Computational Approaches to Energy Materials, 131–48. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118551462.ch5.
Full textMajzoub, Eric H. "Computational Discovery of Hydrogen Storage Compounds." In Computational Studies of New Materials II, 481–502. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814287197_0018.
Full textMiwa, Kazutoshi. "Computational Materials Design for Hydrogen Storage." In Multiscale Simulations for Electrochemical Devices, 1–23. Jenny Stanford Publishing, 2020. http://dx.doi.org/10.1201/9780429295454-1.
Full textKlein, R. A., H. A. Evans, B. A. Trump, T. J. Udovic, and C. M. Brown. "Neutron scattering studies of materials for hydrogen storage." In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-823144-9.00028-5.
Full textDornheim, Martin. "Thermodynamics of Metal Hydrides: Tailoring Reaction Enthalpies of Hydrogen Storage Materials." In Thermodynamics - Interaction Studies - Solids, Liquids and Gases. InTech, 2011. http://dx.doi.org/10.5772/21662.
Full textWalker, G., Mohamed Bououdina, Z. X. Guo, and D. Fruchart. "Overview on Hydrogen Absorbing Materials." In Handbook of Research on Nanoscience, Nanotechnology, and Advanced Materials, 312–42. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-5824-0.ch013.
Full textMaiyelvaganan, K. R., M. Janani, K. Gopalsamy, M. K. Ravva, M. Prakash, and V. Subramanian. "Studies on hydrogen storage in molecules, cages, clusters, and materials: A DFT study." In Atomic Clusters with Unusual Structure, Bonding and Reactivity, 213–35. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-12-822943-9.00019-x.
Full textPradhan, Renuka, and Upakarasamy Lourderaj. "Computational Studies on the Excited-State Intramolecular Proton Transfer in Five-Membered-Ring Hydrogen-Bonded Systems." In Hydrogen-Bonding Research in Photochemistry, Photobiology, and Optoelectronic Materials, 155–78. WORLD SCIENTIFIC (EUROPE), 2019. http://dx.doi.org/10.1142/9781786346087_0007.
Full textYeetsorn, Rungsima, and Yaowaret Maiket. "Hydrogen Fuel Cell Implementation for the Transportation Sector." In Hydrogen Implementation in Transportation Sector [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.95291.
Full textConference papers on the topic "Hydrogen Storage Materials - Computational Studies"
Hormaza Mejia, Nohora A., and Jack Brouwer. "Gaseous Fuel Leakage From Natural Gas Infrastructure." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88271.
Full textAvila, Raudel O., Md S. Islam, and Pavana Prabhakar. "Thermal Gradient on Hybrid Composite Propellant Tank Materials at Cryogenic Temperatures." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65727.
Full textHe, Siyi. "Computational research method of nanostructured hydrogen storage materials." In International Conference on Sustainable Technology and Management (ICSTM 2022), edited by Xilong Qu. SPIE, 2022. http://dx.doi.org/10.1117/12.2644688.
Full textSmith, Sheriden, and Young Ho Park. "Hydrogen Storage Using Carbon Nanostructures." In ASME 2015 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/pvp2015-45019.
Full textOjwang’, J. G. O., Rutger van Santen, Gert Jan Kramer, Adri C. T. van Duin, William A. Goddard, Theodore E. Simos, George Maroulis, George Psihoyios, and Ch Tsitouras. "Modeling of Hydrogen Storage Materials: A Reactive Force Field for NaH." In SELECTED PAPERS FROM ICNAAM-2007 AND ICCMSE-2007: Special Presentations at the International Conference on Numerical Analysis and Applied Mathematics 2007 (ICNAAM-2007), held in Corfu, Greece, 16–20 September 2007 and of the International Conference on Computational Methods in Sciences and Engineering 2007 (ICCMSE-2007), held in Corfu, Greece, 25–30 September 2007. AIP, 2008. http://dx.doi.org/10.1063/1.2997304.
Full textPark, Y. H., and I. Hijazi. "EAM Potential for Hydrogen Storage Application." In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65845.
Full textPourpoint, Timothe´e L., Aaron Sisto, Kyle C. Smith, Tyler G. Voskuilen, Milan K. Visaria, Yuan Zheng, and Timothy S. Fisher. "Performance of Thermal Enhancement Materials in High Pressure Metal Hydride Storage Systems." In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56450.
Full textTamburello, David, Bruce Hardy, Claudio Corgnale, Martin Sulic, and Donald Anton. "Cryo-Adsorbent Hydrogen Storage Systems for Fuel Cell Vehicles." In ASME 2017 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/fedsm2017-69411.
Full textTamburello, David, Bruce Hardy, Martin Sulic, Matthew Kesterson, Claudio Corgnale, and Donald Anton. "Compact Cryo-Adsorbent Hydrogen Storage Systems for Fuel Cell Vehicles." In ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/power2018-7474.
Full textRiahi, Adil, Sara Algurab, Marcel Otto, Erik Fernandez, Jayanta Kapat, Joshua Schmitt, and Swati Saxena. "Numerical Performance Study of Adsorption Based Hydrogen Storage System in Silica Aerogel." In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-82711.
Full textReports on the topic "Hydrogen Storage Materials - Computational Studies"
Yelon, William B. In-Situ Neutron Diffraction Studies of Complex Hydrogen Storage Materials. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1079211.
Full text