Journal articles on the topic 'Hydrogen resist'

To see the other types of publications on this topic, follow the link: Hydrogen resist.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Hydrogen resist.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Horibe, Hideo, Masashi Yamamoto, Eiji Kusano, Tomokazu Ichikawa, and Seiichi Tagawa. "Resist Removal by using Atomic Hydrogen." Journal of Photopolymer Science and Technology 21, no. 2 (2008): 293–98. http://dx.doi.org/10.2494/photopolymer.21.293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Horibe, H., M. Yamamoto, T. Maruoka, Y. Goto, A. Kono, I. Nishiyama, and S. Tagawa. "Ion-implanted resist removal using atomic hydrogen." Thin Solid Films 519, no. 14 (May 2011): 4578–81. http://dx.doi.org/10.1016/j.tsf.2011.01.287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rommel, Marcus, and Jürgen Weis. "Hydrogen silsesquioxane bilayer resists—Combining high resolution electron beam lithography and gentle resist removal." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 31, no. 6 (November 2013): 06F102. http://dx.doi.org/10.1116/1.4822136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tsubouchi, Kazuo, Kazuya Masu, and Keiichi Sasaki. "Area-Selective Aluminum Patterning Using Atomic Hydrogen Resist." Japanese Journal of Applied Physics 32, Part 1, No. 1B (January 30, 1993): 278–81. http://dx.doi.org/10.1143/jjap.32.278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Manfrinato, Vitor R., Lin Lee Cheong, Huigao Duan, Donald Winston, Henry I. Smith, and Karl K. Berggren. "Sub-5keV electron-beam lithography in hydrogen silsesquioxane resist." Microelectronic Engineering 88, no. 10 (October 2011): 3070–74. http://dx.doi.org/10.1016/j.mee.2011.05.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Winston, D., B. M. Cord, B. Ming, D. C. Bell, W. F. DiNatale, L. A. Stern, A. E. Vladar, et al. "Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27, no. 6 (2009): 2702. http://dx.doi.org/10.1116/1.3250204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Maruoka, Takeshi, Yousuke Goto, Masashi Yamamoto, Hideo Horibe, Eiji Kusano, Kazuhisa Takao, and Seiichi Tagawa. "Relationship between the Thermal Hardening of Ion-Implanted Resist and the Resist Removal Using Atomic Hydrogen." Journal of Photopolymer Science and Technology 22, no. 3 (2009): 325–28. http://dx.doi.org/10.2494/photopolymer.22.325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ramjaun, T. I., S. W. Ooi, R. Morana, and H. K. D. H. Bhadeshia. "Designing steel to resist hydrogen embrittlement: Part 1 – trapping capacity." Materials Science and Technology 34, no. 14 (July 13, 2018): 1737–46. http://dx.doi.org/10.1080/02670836.2018.1475919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ooi, S. W., T. I. Ramjaun, C. Hulme-Smith, R. Morana, M. Drakopoulos, and H. K. D. H. Bhadeshia. "Designing steel to resist hydrogen embrittlement Part 2 – precipitate characterisation." Materials Science and Technology 34, no. 14 (July 13, 2018): 1747–58. http://dx.doi.org/10.1080/02670836.2018.1496536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Komori, Takuya, Hui Zhang, Takashi Akahane, Zulfakri bin Mohamad, You Yin, and Sumio Hosaka. "Effect of Salty Development on Forming HSQ Resist Nanodot Arrays with a Pitch of 15×15 nm2 by 30-keV Electron Beam Lithography." Key Engineering Materials 534 (January 2013): 113–17. http://dx.doi.org/10.4028/www.scientific.net/kem.534.113.

Full text
Abstract:
We investigated the effect of ultrahigh-resolution salty (NaCl contained) development of hydrogen silsesquioxane (HSQ) resist on forming fine dot arrays with a pitch of 15×15 nm2 by 30-keV electron beam lithography for patterned media. The optimized concentration of resist developers was determined to fabricate most packed pattern. We found that increasing the concentration of NaCl into tetramethyl ammonium hydroxide (TMAH) could greatly improve the resist contrast (γ-value) of HSQ. And by using 2.3 wt% TMAH/4 wt% NaCl developer, we demonstrated 15×15 nm2 pitched (3 Tbit/in.2) HSQ resist dot arrays with a dot size of < 10 nm.
APA, Harvard, Vancouver, ISO, and other styles
11

Whitfield, Dennis M., Stephen P. Douglas, Ting-Hua Tang, Imre G. Csizmadia, Henrianna Y. S. Pang, Frederick L. Moolten, and Jiri J. Krepinsky. "Differential reactivity of carbohydrate hydroxyls in glycosylations. II. The likely role of intramolecular hydrogen bonding on glycosylation reactions. Galactosylation of nucleoside 5′-hydroxyls for the syntheses of novel potential anticancer agents." Canadian Journal of Chemistry 72, no. 11 (November 1, 1994): 2225–38. http://dx.doi.org/10.1139/v94-284.

Full text
Abstract:
Contrary to expectations, many primary hydroxy groups are completely unreactive in glycosylation reactions, or give the desired glycosides in very low yields accompanied by products of many side reactions. Hydrogens of such primary hydroxyls are shown to be intramolecularly hydrogen bonded. Intermediates formed by nucleophilic attack by these hydroxyls on activated glycosylating agents may resist hydrogen abstraction. This resistance to proton loss is postulated to be the origin of the observed unreactivity. It is shown that successful glycosylations take place under acidic conditions under which such hydrogen bonds cease to exist. Accordingly, direct galactosylations of the normally unreactive 5′-hydroxyls of nucleosides were accomplished for the first time with a galactose trichloroacetimidate donor in chloroform under silver triflate promotion. It is noted that such galactosylated anticancer nucleosides may have improved biological specificity.
APA, Harvard, Vancouver, ISO, and other styles
12

Nagai, Tatsuo, Haruyoshi Yamakawa, Minoru Uchida, Toru Otsu, Norihito Ikemiya, and Hiroshi Morita. "Study on Resist Removal Using Electrolyzed Sulfuric Acid Solution in Comparison with SPM." Solid State Phenomena 187 (April 2012): 109–12. http://dx.doi.org/10.4028/www.scientific.net/ssp.187.109.

Full text
Abstract:
It is known that resist removal capability of SPM gradually deteriorates during the stripping process. The deterioration is theoretically explained to be the decrease in the concentration of sulfuric acid. On the contrary, in the case of electrolyzed sulfuric acid method, both concentrations of sulfuric acid and of peroxodisulfuric acid produced by electrolysis are kept constant, so that the resist removal capability is maintained for a long term even without addition of hydrogen peroxide. It is proved that resist patterned on φ300mm wafers and implanted at 1E14 atoms/cm2 can be removed using electrolyzed sulfuric acid solution without ashing process.
APA, Harvard, Vancouver, ISO, and other styles
13

Namatsu, H., T. Yamaguchi, M. Nagase, K. Yamazaki, and K. Kurihara. "Nano-patterning of a hydrogen silsesquioxane resist with reduced linewidth fluctuations." Microelectronic Engineering 41-42 (March 1998): 331–34. http://dx.doi.org/10.1016/s0167-9317(98)00076-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Pascher, Nikola, Szymon Hennel, Susanne Mueller, and Andreas Fuhrer. "Tunnel barrier design in donor nanostructures defined by hydrogen-resist lithography." New Journal of Physics 18, no. 8 (July 28, 2016): 083001. http://dx.doi.org/10.1088/1367-2630/18/8/083001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Jin, Niu, Sookyung Choi, Liang Wang, Guang Chen, DongHyun Kim, Vipan Kumar, and Ilesanmi Adesida. "Nanometer-scale gaps in hydrogen silsesquioxane resist for T-gate fabrication." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, no. 6 (2007): 2081. http://dx.doi.org/10.1116/1.2798734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mitsui, Toshiyuki, Eric Hill, and Eric Ganz. "Nanolithography by selective chemical vapor deposition with an atomic hydrogen resist." Journal of Applied Physics 85, no. 1 (January 1999): 522–24. http://dx.doi.org/10.1063/1.369483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Saleem, Muhammad Rizwan. "Hydrogen silsesquioxane resist stamp for replication of nanophotonic components in polymers." Journal of Micro/Nanolithography, MEMS, and MOEMS 11, no. 1 (March 2, 2012): 013007. http://dx.doi.org/10.1117/1.jmm.11.1.013007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Dinh, Cong Que, Akihiro Oshima, and Seiichi Tagawa. "Depth Dependence of Time Delay Effect on Hydrogen Silsesquioxane (HSQ) Resist Layers." Journal of Photopolymer Science and Technology 25, no. 1 (2012): 121–24. http://dx.doi.org/10.2494/photopolymer.25.121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Georgiev, Y. M., W. Henschel, A. Fuchs, and H. Kurz. "Surface roughness of hydrogen silsesquioxane as a negative tone electron beam resist." Vacuum 77, no. 2 (January 2005): 117–23. http://dx.doi.org/10.1016/j.vacuum.2004.07.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Matsubara, Yasushi, Jun Taniguchi, and Iwao Miyamoto. "Fabrication of Three-Dimensional Hydrogen Silsesquioxane Resist Structure using Electron Beam Lithography." Japanese Journal of Applied Physics 45, no. 6B (June 20, 2006): 5538–41. http://dx.doi.org/10.1143/jjap.45.5538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yang, Fan, David K. Taggart, and Reginald M. Penner. "Fast, Sensitive Hydrogen Gas Detection Using Single Palladium Nanowires That Resist Fracture." Nano Letters 9, no. 5 (May 13, 2009): 2177–82. http://dx.doi.org/10.1021/nl9008474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Vila-Comamala, Joan, Sergey Gorelick, Vitaliy A. Guzenko, and Christian David. "3D Nanostructuring of hydrogen silsesquioxane resist by 100 keV electron beam lithography." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 29, no. 6 (November 2011): 06F301. http://dx.doi.org/10.1116/1.3629811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Masu, Kazuya. "Atomic hydrogen resist process with electron beam lithography for selective Al patterning." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 12, no. 6 (November 1994): 3270. http://dx.doi.org/10.1116/1.587610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kato, T., J. Kamijo, T. Nakamura, C. Ohata, S. Katsumoto, and J. Haruyama. "Spin phase protection in interference of electron spin waves in lightly hydrogenated graphene." RSC Advances 6, no. 72 (2016): 67586–91. http://dx.doi.org/10.1039/c6ra11648e.

Full text
Abstract:
Here, we have realized the extremely light hydrogenation of a graphene surface on SiO2 by precisely controlling the amount of electron beam (EB) irradiation to a specific EB resist including hydrogen atoms, treated on graphene.
APA, Harvard, Vancouver, ISO, and other styles
25

Yamasaki, S., and H. K. D. H. Bhadeshia. "M 4 C 3 precipitation in Fe–C–Mo–V steels and relationship to hydrogen trapping." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, no. 2072 (March 8, 2006): 2315–30. http://dx.doi.org/10.1098/rspa.2006.1688.

Full text
Abstract:
Strong steels suffer from embrittlement due to dissolved hydrogen, a phenomenon which can be mitigated by trapping the hydrogen at carbide particles, where it is rendered benign. The precipitation and coarsening of plate-like M 4 C 3 carbides, during the tempering of quaternary Fe–C–Mo–V martensitic steels, has been characterized both experimentally and by developing appropriate kinetic theory. The trapping capacity is found to peak when the carbides are about 10 nm in length, indicating a role of coherency strains in trapping hydrogen atoms via elastic interactions. This suggests a method for developing alloys which are better able to resist the detrimental effects of hydrogen.
APA, Harvard, Vancouver, ISO, and other styles
26

Yang, Joel K. W., Bryan Cord, Huigao Duan, Karl K. Berggren, Joseph Klingfus, Sung-Wook Nam, Ki-Bum Kim, and Michael J. Rooks. "Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27, no. 6 (2009): 2622. http://dx.doi.org/10.1116/1.3253652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sidorkin, Vadim, Emile van der Drift, and Huub Salemink. "Influence of hydrogen silsesquioxane resist exposure temperature on ultrahigh resolution electron beam lithography." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 26, no. 6 (November 2008): 2049–53. http://dx.doi.org/10.1116/1.2987965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

van Delft, Falco C. M. J. M., Jos P. Weterings, Anja K. van Langen-Suurling, and Hans Romijn. "Hydrogen silsesquioxane/novolak bilayer resist for high aspect ratio nanoscale electron-beam lithography." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 18, no. 6 (2000): 3419. http://dx.doi.org/10.1116/1.1319682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Junarsa, Ivan, Mark P. Stoykovich, Paul F. Nealey, Yuansheng Ma, Franco Cerrina, and Harun H. Solak. "Hydrogen silsesquioxane as a high resolution negative-tone resist for extreme ultraviolet lithography." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 23, no. 1 (2005): 138. http://dx.doi.org/10.1116/1.1849213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Yoshimura, Toshiyuki, Akira Ishikawa, Hiroshi Okamoto, Hiroshi Miyazaki, Akemi Sawada, Takuma Tanimoto, and Shinji Okazaki. "Direct delineation of fine metallic patterns through hydrogen reduction of inorganic resist HPA." Microelectronic Engineering 13, no. 1-4 (March 1991): 97–100. http://dx.doi.org/10.1016/0167-9317(91)90056-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

van Kan, J. A., A. A. Bettiol, and F. Watt. "Hydrogen silsesquioxane a next generation resist for proton beam writing at the 20nm level." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 260, no. 1 (July 2007): 396–99. http://dx.doi.org/10.1016/j.nimb.2007.02.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Jamieson, Andrew. "Low-voltage electron beam lithography resist processes: top surface imaging and hydrogen silisesquioxane bilayer." Journal of Micro/Nanolithography, MEMS, and MOEMS 3, no. 3 (July 1, 2004): 442. http://dx.doi.org/10.1117/1.1758268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shen, Jiashi, Ferhat Aydinoglu, Mohammad Soltani, and Bo Cui. "E-beam lithography using dry powder resist of hydrogen silsesquioxane having long shelf life." Journal of Vacuum Science & Technology B 37, no. 2 (March 2019): 021601. http://dx.doi.org/10.1116/1.5079657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Westly, Daron A., Donald M. Tennant, Yukinori Aida, Hirofumi Ohki, and Takashi Ohkubo. "Improved time dependent performance of hydrogen silsesquioxane resist using a spin on top coat." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 29, no. 6 (November 2011): 06FJ02. http://dx.doi.org/10.1116/1.3660788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Lee, Hyo-Sung, Jung-Sub Wi, Sung-Wook Nam, Hyun-Mi Kim, and Ki-Bum Kim. "Two-step resist-development process of hydrogen silsesquioxane for high-density electron-beam nanopatterning." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27, no. 1 (2009): 188. http://dx.doi.org/10.1116/1.3049482.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yoshimura, Toshiyuki, Akira Ishikawa, Hiroshi Okamoto, Hiroshi Miyazaki, Akemi Sawada, Takuma Tanimoto, and Shinji Okazaki. "Direct delineation of fine metallic patterns through hydrogen reduction of the inorganic resist HPA." Microelectronic Engineering 14, no. 3-4 (September 1991): 149–58. http://dx.doi.org/10.1016/0167-9317(91)90001-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yin, You, Taichi Itagawa, and Sumio Hosaka. "Electron Beam Lithography for Fabrication of Nanophase-Change Memory." Applied Mechanics and Materials 481 (December 2013): 30–35. http://dx.doi.org/10.4028/www.scientific.net/amm.481.30.

Full text
Abstract:
In this work, we report two methods to fabricate the nanophase-change memory: (1) electron beam lithography (EBL) using the positive resist ZEP-520A followed by phase change material deposition and lift-off processes, (2) EBL using the negative resist hydrogen silsesquioxane (HSQ) followed by reactive ion etching (RIE) after phase change material deposition. For the former method, the optimized exposure dosage is around 40 μC/cm2 and the finest nanowire is about 80 nm in width. On the other hand, the latter method shows that the finest nanowire can be as small as about 15 nm in width after RIE process and the optimized exposure dosage is around 2.0 mC/cm2. In this case, collapse-preventing pattern becomes necessary for fabrication of such a fine nanowire.
APA, Harvard, Vancouver, ISO, and other styles
38

Solard, Jeanne, Mahmoud Chakaroun, and Azzedine Boudrioua. "Optimal design and fabrication of ITO photonic crystal using e-beam patterned hydrogen silsesquioxane resist." Journal of Vacuum Science & Technology B 38, no. 2 (March 2020): 022802. http://dx.doi.org/10.1116/1.5142533.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mitsui, Toshiyuki, Rob Curtis, and Eric Ganz. "Selective nanoscale growth of titanium on the Si(001) surface using an atomic hydrogen resist." Journal of Applied Physics 86, no. 3 (August 1999): 1676–79. http://dx.doi.org/10.1063/1.370946.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Choi, Sookyung, Minjun Yan, Ilesanmi Adesida, Keng H. Hsu, and Nicholas X. Fang. "Ultradense gold nanostructures fabricated using hydrogen silsesquioxane resist and applications for surface-enhanced Raman spectroscopy." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 27, no. 6 (2009): 2640. http://dx.doi.org/10.1116/1.3253610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Küpper, Daniel, David Küpper, Thorsten Wahlbrink, Wolfgang Henschel, Jens Bolten, Max C. Lemme, Yordan M. Georgiev, and Heinrich Kurz. "Impact of supercritical CO[sub 2] drying on roughness of hydrogen silsesquioxane e-beam resist." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24, no. 2 (2006): 570. http://dx.doi.org/10.1116/1.2167990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Clark, Nathaniel, Amy Vanderslice, Robert Grove, and Robert R. Krchnavek. "Time-dependent exposure dose of hydrogen silsesquioxane when used as a negative electron-beam resist." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24, no. 6 (2006): 3073. http://dx.doi.org/10.1116/1.2366697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Loong, W. A., and M. S. Yen. "Enhanced oxygen plasma stripping of P+-implanted negative resist by hydrogen plasma pretreatment: temperature effects." Electronics Letters 27, no. 12 (1991): 1079. http://dx.doi.org/10.1049/el:19910670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Wang, Fei, Jinsheng Liang, Haifeng Liu, Xinhui Duan, Qingguo Tang, and Huimin Liu. "Preparation and Performance of Inorganic Heat Insulation Panel Based on Sepiolite Nanofibers." Journal of Nanomaterials 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/876967.

Full text
Abstract:
High efficiency and low cost thermal insulation energy saving panel materials containing sepiolite nanofibers were developed by means of the synergistic action of inorganic adhesive, curing agent, and hydrogen peroxide. The water soluble sodium silicate was used as inorganic adhesive, and the sodium fluorosilicate was chosen as curing agent. Moreover, appropriate amount of hydrogen peroxide was added in order to decrease the bulk density and improve the heat insulation performance of panel materials. The results showed that the synergistic action of inorganic adhesive, curing agent, and hydrogen peroxide could make thermal insulation energy saving panel materials have low bulk density and high mechanical performance, and the optimal process was as follows: 120°C of drying temperature, 1.6% of sodium silicate as inorganic adhesive, 12% of sodium fluorosilicate as curing agent in sodium silicate, and 2.5% of hydrogen peroxide. The thermal insulation energy saving panel materials as prepared could arrest heat transmission and resist external force effectively.
APA, Harvard, Vancouver, ISO, and other styles
45

Tu, Bo, Yantao Bao, Ming Tang, Qian Zhu, Xiaopeng Lu, Hui Wang, Tianyun Hou, Ying Zhao, Ping Zhang, and Wei-Guo Zhu. "TIP60 recruits SUV39H1 to chromatin to maintain heterochromatin genome stability and resist hydrogen peroxide-induced cytotoxicity." Genome Instability & Disease 1, no. 6 (November 2020): 339–55. http://dx.doi.org/10.1007/s42764-020-00025-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Yan, M., J. Lee, B. Ofuonye, S. Choi, J. H. Jang, and I. Adesida. "Effects of salty-developer temperature on electron-beam-exposed hydrogen silsesquioxane resist for ultradense pattern transfer." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 28, no. 6 (November 2010): C6S23—C6S27. http://dx.doi.org/10.1116/1.3504497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gnan, M., S. Thoms, D. S. Macintyre, R. M. De La Rue, and M. Sorel. "Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist." Electronics Letters 44, no. 2 (2008): 115. http://dx.doi.org/10.1049/el:20082985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Choi, Sookyung, Niu Jin, Vipan Kumar, Ilesanmi Adesida, and Mark Shannon. "Effects of developer temperature on electron-beam-exposed hydrogen silsesquioxane resist for ultradense silicon nanowire fabrication." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, no. 6 (2007): 2085. http://dx.doi.org/10.1116/1.2794315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Crane, E., A. Kölker, T. Z. Stock, N. Stavrias, K. Saeedi, M. A. W. van Loon, B. N. Murdin, and N. J. Curson. "Hydrogen resist lithography and electron beam lithography for fabricating silicon targets for studying donor orbital states." Journal of Physics: Conference Series 1079 (August 2018): 012010. http://dx.doi.org/10.1088/1742-6596/1079/1/012010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Henschel, W., Y. M. Georgiev, and H. Kurz. "Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21, no. 5 (2003): 2018. http://dx.doi.org/10.1116/1.1603284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography