Academic literature on the topic 'Hydrodynamik'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrodynamik.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hydrodynamik"

1

Kurtin, Manfred, and Otto Molerus. "Hydrodynamik der Blasensäulen." Chemie Ingenieur Technik 58, no. 3 (1986): 252–53. http://dx.doi.org/10.1002/cite.330580325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rollbusch, Philipp, Martin Tuinier, Marc Becker, Martina Ludwig, Marcus Grünewald, and Robert Franke. "Hydrodynamik in Hochdruckblasensäulen." Chemie Ingenieur Technik 85, no. 7 (April 11, 2013): 1107–11. http://dx.doi.org/10.1002/cite.201300007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vogelpohl, Alfons, and Ulrich Wachsmann. "Zur Hydrodynamik von strahlgetriebenen Schlaufenreaktoren." Chemie Ingenieur Technik 59, no. 6 (June 1987): 510–11. http://dx.doi.org/10.1002/cite.330590620.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kiefer, T., and H. J. Bart. "Hydrodynamik in der kapillaren Ringspaltchromatographie." Chemie Ingenieur Technik 82, no. 9 (August 27, 2010): 1380–81. http://dx.doi.org/10.1002/cite.201050481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Loos, T., and N. Mollekopf. "Simulation der Hydrodynamik im Strahlwäscher." Chemie Ingenieur Technik 76, no. 8 (August 2004): 1111–16. http://dx.doi.org/10.1002/cite.200403364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jiřičný, Vladimír, Vladimír Staněk, Gert Grabbert, Lothar Strassberger, and Kurt Winkler. "Experimentelle untersuchungen der hydrodynamik ausgewählter kolonnenfüllungen." Collection of Czechoslovak Chemical Communications 52, no. 9 (1987): 2160–68. http://dx.doi.org/10.1135/cccc19872160.

Full text
Abstract:
Im vorliegenden Artikel werden die Ergebnisse hydrodynamischer Untersuchungen (des Hold-up und des Druckverlustes) an ungeordneten Kolonnenfüllungen aus keramischen Pallringen und einem neuen, in der DDR entwickelten keramischen Füllkörpertyp vorgestellt. Die Messungen wurden in Kolonnen mit Innendurchmessern von 190 mm und 123 mm durchgeführt. Die Ergebnisse stimmen mit den Korrelationen des Hold-up überein, die unter Annahme eines Automodellverhaltens von Füllkörperkolonnen gewonnen wurden.
APA, Harvard, Vancouver, ISO, and other styles
7

Ebner, A., H. Madersbacher, and F. Schöberl. "Klinische Bedeutung der Hydrodynamik von Harnröhrenkathetern." Aktuelle Urologie 22, no. 01 (January 1991): 15–19. http://dx.doi.org/10.1055/s-2008-1060469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eder, Magdalena, Helmut Kobus, and Rainer Helmig. "Dreidimensionale Modellierung der Hydrodynamik im Bodensee." WASSERWIRTSCHAFT 98, no. 10 (October 2008): 16–21. http://dx.doi.org/10.1007/bf03241494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Böhm, Dirk, Birgit Pittermann, and Harald Voß. "Magnetisch stabilisierte Wirbelschichten - Untersuchungen zur Hydrodynamik." Chemie Ingenieur Technik 71, no. 6 (June 1999): 580–83. http://dx.doi.org/10.1002/cite.330710605.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Becker, M., M. Tuinier, P. Rollbusch, G. Skillas, and M. Orabi. "Mehrphasenreaktoren: Zusammenspiel von Prozessentwicklung und Hydrodynamik." Chemie Ingenieur Technik 84, no. 8 (July 25, 2012): 1223. http://dx.doi.org/10.1002/cite.201250497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Hydrodynamik"

1

Walz, Christof. "Zur Hydrodynamik in Quasikristallen." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB11244200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lel, Viacheslav Viktor. "Hydrodynamik und Wärmeübertragung laminar-welliger Rieselfilme." Göttingen Sierke, 2007. http://d-nb.info/988624869/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lel, Viačeslav V. "Hydrodynamik und Wärmeübertragung laminar-welliger Rieselfilme /." Göttingen : Sierke, 2008. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=017071185&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kopp, Thomas Jakob. "Zusammenhang zwischen Hydrodynamik und Stofftransport im Torus-Bioreaktor /." [S.l.] : [s.n.], 1985. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=7913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Michel, Tobias [Verfasser]. "Tropfen-Wand Interaktion: Hydrodynamik und Benetzungsphänomene / Tobias Michel." Aachen : Shaker, 2007. http://d-nb.info/1164341405/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Qamar, Shamsul. "Kinetic schemes for the relativistic hydrodynamics." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975630040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Spindeldreher, Stefan. "The discontinuous Galerkin method applied on the equations of ideal relativistic hydrodynamics." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965285502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Heller, Winfried. "Hydrodynamische Effekte unter besonderer Berücksichtigung der Wasserqualität und ihre Messverfahren." Tönning; Lübeck; Marburg Der Andere Verl, 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=979397332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Klingler, Markus. "Die Methode der finiten Massen in der astrophysikalischen Hydrodynamik." Tübingen, Kelternstr. 19 : M. Klingler, 2003. http://deposit.d-nb.de/cgi-bin/dokserv?idn=969738749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hainke, Miriam [Verfasser]. "Hydrodynamik in einem dreiphasig betriebenen Treibstrahl-Schlaufenreaktor / Miriam Hainke." Aachen : Shaker, 2006. http://d-nb.info/1170538355/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Hydrodynamik"

1

Wolschin, Georg. Hydrodynamik. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-64144-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wolschin, Georg. Hydrodynamik. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48024-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guyon, Etienne, Jean-Pierre Hulin, and Luc Petit. Hydrodynamik. Wiesbaden: Vieweg+Teubner Verlag, 1997. http://dx.doi.org/10.1007/978-3-322-89831-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Martin, Helmut. Numerische Strömungssimulation in der Hydrodynamik. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17208-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Author, Ehlers Wolfgang, and Wriggers Peter Author, eds. Kinetik, Hydrodynamik: [jetzt durchgehend zweifarbig]. 9th ed. Berlin [u.a.]: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Diebold, Steffen M. Hydrodynamik und Loesungsgeschwindigkeit: Untersuchungen zum Einfluß der Hydrodynamik auf die Lösungsgeschwindigkeit schwer wasserlöslicher Arzneistoffe (Hydrodynamics and Dissolution – Influence of Hydrodynamics on Dissolution Rate of Poorly Soluble Drugs. Aachen (Germany): Shaker Verlag, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Matthias, Diebold Steffen. Hydrodynamik und Lösungsgeschwindigkeit: Untersuchungen zum Einfluß der Hydrodynamik auf die Lösungsgeschwindigkeit schwer wasserlöslicher Arzneistoffe. Aachen: Shaker, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Räbiger, Norbert. Hydrodynamik und Stoffaustausch in strahlangetriebenen Schlaufenreaktoren. Köln: TÜV Rheinland, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bischofberger, Claus. Beitrag zum Einfluss der Hydrodynamik beim Flotationsprozess. Leipzig: Deutscher Verlag für Grundstoffindustrie, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Käppeli, Ernst. Aufgabensammlung zur Fluidmechanik: Hydrostatik, Hydrodynamik, Gasdynamik, Strömungsmaschinen. Frankfurt am Main: Deutsch, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Hydrodynamik"

1

Gross, Dietmar, Wolfgang Ehlers, Peter Wriggers, Jörg Schröder, and Ralf Müller. "Hydrodynamik." In Formeln und Aufgaben zur Technischen Mechanik 3, 227–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-54039-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gross, Dietmar, Wolfgang Ehlers, and Peter Wriggers. "Hydrodynamik." In Formeln und Aufgaben zur Technischen Mechanik 3, 201–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-89099-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brandt, Siegmund, and Hans Dieter Dahmen. "Hydrodynamik." In Springer-Lehrbuch, 372–407. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-08591-2_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zanke, Ulrich C. E. "Hydrodynamik." In Hydromechanik der Gerinne und Küstengewässer, 23–219. Wiesbaden: Vieweg+Teubner Verlag, 2002. http://dx.doi.org/10.1007/978-3-322-80212-5_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Engel, Hans O. "Hydrodynamik." In Stellgeräte für die Prozeßautomatisierung, 17–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-52072-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Böge, G. "Hydrodynamik." In Arbeitshilfen und Formeln für das technische Studium 1, 155–61. Wiesbaden: Vieweg+Teubner Verlag, 2000. http://dx.doi.org/10.1007/978-3-322-91546-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Böge, G. "Hydrodynamik." In Arbeitshilfen und Formeln für das technische Studium, 155–61. Wiesbaden: Vieweg+Teubner Verlag, 1999. http://dx.doi.org/10.1007/978-3-322-91559-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Böge, G. "Hydrodynamik." In Arbeitshilfen und Formeln für das technische Studium 1, 155–61. Wiesbaden: Vieweg+Teubner Verlag, 2003. http://dx.doi.org/10.1007/978-3-322-88922-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gross, Dietmar, Wolfgang Ehlers, Peter Wriggers, Jörg Schröder, and Ralf Müller. "Hydrodynamik." In Formeln und Aufgaben zur Technischen Mechanik 3, 237–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-59681-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bais, Sander. "Hydrodynamik." In Die Gleichungen der Physik, 54–57. Basel: Birkhäuser Basel, 2005. http://dx.doi.org/10.1007/978-3-7643-7362-7_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hydrodynamik"

1

Vernengo, Giuliano, Yigit Kemal Demirel, Claire De Marco Muscat-Fenech, Stefano Gaggero, and Diego Villa. "Hydrodynamic Interactions of Multiple Surface-Piercing Struts by Smoothed Particles Hydrodynamics." In ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-81431.

Full text
Abstract:
Abstract The hydrodynamics of surface piercing struts and pile-like structures in general presents some very complex fluid dynamics phenomena that are worth investigating. Among them there are the forward wave pile-up at stagnation, the wave breaking with flow reversal like that observed in Bidone-type hydraulic jumps, flow separation caused by interactions of steep free-surface waves and the turbulent wall boundary layer. Such a type of flow structures plays a key role in several engineering applications, ranging from naval architecture to civil and ocean engineering. The hydrodynamic analysis of different surface-piercing struts in tandem configuration has been done in the framework of a Smoothed Particle Hydrodynamic approach available through the open-source software DualSPHysics, developed to exploit the GP-GPU architecture to speed up the computation. A numerical wave tank has been set-up to carry out calm water tests. Beyond the influence of the forward speed, the analysis has focused on the effect of three main geometric parameters establishing the configuration: the longitudinal and the lateral distance among the vertical, surface-piercing, struts and the relative size among them. The mean and the rms values of the unsteady near-field free surface elevation have been analyzed and compared among the selected cases and interaction effects are studied in comparison to the free surface obtained for the equivalent single strut configuration.
APA, Harvard, Vancouver, ISO, and other styles
2

Lim, Hyun, and Marc Klasky. "A Fully Differentiable Hydrodynamics Framework for Parameter Estimations." In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/3d.2023.jtu4a.8.

Full text
Abstract:
We present a fully differentiable hydrodynamics framework to facilitate the recovery of hydrodynamic code parameters and accompanying density fields consistent with radiographic projections. This framework is used to recover parameter directly from hydrodynamics simulations by using automatic differentiation.
APA, Harvard, Vancouver, ISO, and other styles
3

Fenical, S. W., and J. D. Carter. "Comprehensive Vessel Hydrodynamics Model for Prediction of Sinkage, Mooring Forces, Bank Hydrodynamic Effects and Coastal Impacts." In International Conference on Ship Manoeuvring in Shallow and Confined Water: Bank Effects. RINA, 2009. http://dx.doi.org/10.3940/rina.bank.2009.03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Weizhi, Csaba Pákozdi, Arun Kamath, Tobias Martin, and Hans Bihs. "Hydrodynamic Coupling of Viscous and Non-Viscous Numerical Wave Solutions Within the Open-Source Hydrodynamics Framework REEF3D." In ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/omae2021-62185.

Full text
Abstract:
Abstract A comprehensive understanding of the marine environment in the offshore area requires phase-resolved wave information. For the far-field wave propagation, computational efficiency is crucial, as large spatial and temporal scales are involved. For the near-field extreme wave events and wave impacts, high resolution is required to resolve the flow details and turbulence. The combined use of a computationally efficient large-scale model and a high-resolution local-scale solver provides a solution the combines accuracy and efficiency. This article introduces a coupling strategy between the efficient fully nonlinear potential flow (FNPF) solver REEF3D::FNPF and the high-fidelity computational fluid dynamics (CFD) model REEF3D::CFD within in the open-source hydrodynamics framework REEF3D. REEF3D::FNPF solves the Laplace equation together with the boundary conditions on a sigma-coordinate. The free surface boundary conditions are discretised using high-order finite difference methods. The Laplace equation for the velocity potential is solved with a conjugated gradient solver preconditioned with geometric multi-grid provided by the open-source library hypre. The model is fully parallelised following the domain decomposition strategy and the MPI protocol. The waves calculated with the FNPF solver are used as wave generation boundary condition for the CFD based numerical wave tank REEF3D::CFD. The CFD model employs an interface capturing two-phase flow approach that can resolve complex wave structure interaction, including breaking wave kinematics and turbulent effects. The presented hydrodynamic coupling strategy is tested for various wave conditions and the accuracy is fully assessed.
APA, Harvard, Vancouver, ISO, and other styles
5

Gadd, G. E. "Far Field Waves Made By High Speed Ferries." In Hydrodynamics for High Speed Craft. RINA, 1999. http://dx.doi.org/10.3940/rina.hs.1999.05.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Warren, N., and J. Keesmar. "Practical Design Aspects In The Hydrodynamics of Fast Craft." In Hydrodynamics for High Speed Craft. RINA, 1999. http://dx.doi.org/10.3940/rina.hs.1999.15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stumbo, Stan, Larry Elliot, and Kenneth Fox. "An Assessment of Wake Wash Reduction of Fast Ferries at Supercritical Froude Numbers and at Optimized Trim." In Hydrodynamics of High Speed Craft. RINA, 2000. http://dx.doi.org/10.3940/rina.hs.2000.04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Garme, Karl, and Anders Rosen. "Experimental Pressure Investigation on a High-Speed Craft in Waves." In Hydrodynamics of High Speed Craft. RINA, 2000. http://dx.doi.org/10.3940/rina.hs.2000.18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Robinson, J. "Performance Prediction of Chine and Round Bilge Hull Forms." In Hydrodynamics for High Speed Craft. RINA, 1999. http://dx.doi.org/10.3940/rina.hs.1999.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

van Walree, F., and H. R. Luth. "Scale Effects on Foils and Fins in Steady and Unsteady Flow." In Hydrodynamics of High Speed Craft. RINA, 2000. http://dx.doi.org/10.3940/rina.hs.2000.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hydrodynamik"

1

Torres, Marissa, and Norberto Nadal-Caraballo. Rapid tidal reconstruction with UTide and the ADCIRC tidal database. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41503.

Full text
Abstract:
The quantification of storm surge is vital for flood hazard assessment in communities affected by coastal storms. The astronomical tide is an integral component of the total still water level needed for accurate storm surge estimates. Coastal hazard analysis methods, such as the Coastal Hazards System and the StormSim Coastal Hazards Rapid Prediction System, require thousands of hydrodynamic and wave simulations that are computationally expensive. In some regions, the inclusion of astronomical tides is neglected in the hydrodynamics and tides are instead incorporated within the probabilistic framework. There is a need for a rapid, reliable, and accurate tide prediction methodology to provide spatially dense reconstructed or predicted tidal time series for historical, synthetic, and forecasted hurricane scenarios. A methodology is proposed to combine the tidal harmonic information from the spatially dense Advanced Circulation hydrodynamic model tidal database with a rapid tidal reconstruction and prediction program. In this study, the Unified Tidal Analysis program was paired with results from the tidal database. This methodology will produce reconstructed (i.e., historical) and predicted tidal heights for coastal locations along the United States eastern seaboard and beyond and will contribute to the determination of accurate still water levels in coastal hazard analysis methods.
APA, Harvard, Vancouver, ISO, and other styles
2

Chapman, Ray, Phu Luong, Sung-Chan Kim, and Earl Hayter. Development of three-dimensional wetting and drying algorithm for the Geophysical Scale Transport Multi-Block Hydrodynamic Sediment and Water Quality Transport Modeling System (GSMB). Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41085.

Full text
Abstract:
The Environmental Laboratory (EL) and the Coastal and Hydraulics Laboratory (CHL) have jointly completed a number of large-scale hydrodynamic, sediment and water quality transport studies. EL and CHL have successfully executed these studies utilizing the Geophysical Scale Transport Modeling System (GSMB). The model framework of GSMB is composed of multiple process models as shown in Figure 1. Figure 1 shows that the United States Army Corps of Engineers (USACE) accepted wave, hydrodynamic, sediment and water quality transport models are directly and indirectly linked within the GSMB framework. The components of GSMB are the two-dimensional (2D) deep-water wave action model (WAM) (Komen et al. 1994, Jensen et al. 2012), data from meteorological model (MET) (e.g., Saha et al. 2010 - http://journals.ametsoc.org/doi/pdf/10.1175/2010BAMS3001.1), shallow water wave models (STWAVE) (Smith et al. 1999), Coastal Modeling System wave (CMS-WAVE) (Lin et al. 2008), the large-scale, unstructured two-dimensional Advanced Circulation (2D ADCIRC) hydrodynamic model (http://www.adcirc.org), and the regional scale models, Curvilinear Hydrodynamics in three dimensions-Multi-Block (CH3D-MB) (Luong and Chapman 2009), which is the multi-block (MB) version of Curvilinear Hydrodynamics in three-dimensions-Waterways Experiments Station (CH3D-WES) (Chapman et al. 1996, Chapman et al. 2009), MB CH3D-SEDZLJ sediment transport model (Hayter et al. 2012), and CE-QUAL Management - ICM water quality model (Bunch et al. 2003, Cerco and Cole 1994). Task 1 of the DOER project, “Modeling Transport in Wetting/Drying and Vegetated Regions,” is to implement and test three-dimensional (3D) wetting and drying (W/D) within GSMB. This technical note describes the methods and results of Task 1. The original W/D routines were restricted to a single vertical layer or depth-averaged simulations. In order to retain the required 3D or multi-layer capability of MB-CH3D, a multi-block version with variable block layers was developed (Chapman and Luong 2009). This approach requires a combination of grid decomposition, MB, and Message Passing Interface (MPI) communication (Snir et al. 1998). The MB single layer W/D has demonstrated itself as an effective tool in hyper-tide environments, such as Cook Inlet, Alaska (Hayter et al. 2012). The code modifications, implementation, and testing of a fully 3D W/D are described in the following sections of this technical note.
APA, Harvard, Vancouver, ISO, and other styles
3

Taylor, Lafe, Robert Wilson, and Bruce Hilbert. Hydrodynamic Drag Reduction. Fort Belvoir, VA: Defense Technical Information Center, April 2015. http://dx.doi.org/10.21236/ada618198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

McAlpin, Jennifer, and Cassandra Ross. Houston Ship Channel numerical model update and validation. Engineer Research and Development Center (U.S.), August 2023. http://dx.doi.org/10.21079/11681/47498.

Full text
Abstract:
The Houston Ship Channel (HSC) is one of the busiest deep-draft navigation channels in the United States and must be able to accommodate increasing vessel sizes. The US Army Corps of Engineers, Galveston District (SWG), requested the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, update and revalidate a previously developed three-dimensional Adaptive Hydraulics (AdH) hydrodynamic and sediment model of the HSC, Galveston, and Trinity Bays. The model is necessary for analyzing potential impacts on salinity, sediment, and hydrodynamics due to alternatives designed to reduce shoaling in the HSC. SWG requested an updated validation of the previously developed AdH model of this area to calendar years 2010 and 2017, utilizing newly collected sediment data. Updated model inputs were supplied for riverine suspended sediment loads as well as for the ocean tidal boundary condition. The updated model shows good agreement to field data in most conditions but also indicates potential issues with freshwater flow inputs as well as the ocean salinity boundary condition.
APA, Harvard, Vancouver, ISO, and other styles
5

Brenner, H. Macrostatistical hydrodynamics. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5123752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brenner, H. Macrostatistical hydrodynamics. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5295862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brenner, H. Macrostatistical hydrodynamics. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6629036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boghosian, Bruce M. Lattice Hydrodynamics. Fort Belvoir, VA: Defense Technical Information Center, February 2001. http://dx.doi.org/10.21236/ada387925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dimiduk, Thomas G., Christopher Jay Bourdon, Anne Mary Grillet, Thomas A. Baer, Maarten Pieter de Boer, Michael Loewenberg, Allen D. Gorby, and Carlton, F. Brooks. Hydrodynamic effects on coalescence. Office of Scientific and Technical Information (OSTI), October 2006. http://dx.doi.org/10.2172/897639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Judi, David Ryan, and Byron Alexander Tasseff. Lotic Water Hydrodynamic Model. Office of Scientific and Technical Information (OSTI), January 2015. http://dx.doi.org/10.2172/1168702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography