Dissertations / Theses on the topic 'Hydrodynamical limits'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 44 dissertations / theses for your research on the topic 'Hydrodynamical limits.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Briant, Marc. "On the Boltzmann equation, quantitative studies and hydrodynamical limits." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/246471.
Full textFeliachi, Ouassim. "From Particles to Fluids : A Large Deviation Theory Approach to Kinetic and Hydrodynamical Limits." Electronic Thesis or Diss., Orléans, 2023. http://www.theses.fr/2023ORLE1063.
Full textThe central problem of statistical physics is to understand how to describe a system with macroscopic equations, which are usually deterministic, starting from a microscopic description, which may be stochastic. This task requires taking at least two limits: a “large N ” limit and a “local equilibrium” limit. The former allows a system of N particles to be described by a phase-space distribution function, while the latter reflects the separation of time scales between the fast approach to local equilibrium and the slow evolution of hydrodynamic modes. When these two limits are taken, a deterministic macroscopic description is obtained. For both theoretical and modeling reasons (N is large but not infinite, the time-scale separation is not perfect), it is sometimes important to understand the fluctuations around this macroscopic description. Fluctuating hydrodynamics provides a framework for describing the evolution of macroscopic, coarse-grained fields while taking into account finite- particle-number induced fluctuations in the hydrodynamic limit. This thesis discusses the derivation of fluctuating hydrodynamics from the microscopic description of particle dynamics. The derivation of the fluctuating hydrodynamics is twofold. First, the “large N” limit must be refined to account for fluctuations beyond the average behavior of the system. This is done by using large deviation theory to establish kinetic large deviation principles that describe the probability of any evolution path for the empirical measure beyond the most probable path described by the kinetic equation. Then, the fluctuating hydrodynamics is derived by studying the hydrodynamical limit of the kinetic large deviation principle, or the associated fluctuating kinetic equation. This dissertation discusses this program and its application to several physical systems ranging from the dilute gas to active particles
Even, Nadine. "On Hydrodynamic Limits and Conservation Laws." Doctoral thesis, kostenfrei, 2009. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2009/3837/.
Full textGivan, Daniel Rey. "Improved operational limits for offshore pipelay vessels." ScholarWorks@UNO, 2012. http://scholarworks.uno.edu/td/1439.
Full textJiménez, Oviedo Byron. "Processus d’exclusion avec des sauts longs en contact avec des réservoirs." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4000/document.
Full textAndrade, Adriana Uquillas. "Processo de exclusão simples com taxas variáveis." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-23082008-193758/.
Full textConsider a Poisson process with rate equal to 1 in IR. Consider the nearest neighbor simple exclusion process with random jump rates § where §x =\\lambda, \\lambda > 0 if there is a Poisson mark between (x, x + 1) and §x = 1 otherwise. We prove the hydrodynamic limit of this process. This result follows from the hydrodynamic limit in the case that the jump rates {§x : x inteiro} are replaced by an array {cx,N : x inteiro} having the same distribution for each N >=1.
Machrouki, Hicham. "Incompressibilité et conditions aux limites dans la méthode Smoothed particle hydrodynamics." Poitiers, 2012. http://theses.univ-poitiers.fr/25282/2012-Machrouki-Hicham-These.pdf.
Full textA numerical particle method for solving the Bavier-Stokes equations in velocity-pressure formulation for two dimensional incompressible flows is presented. The basis of the method is the Smoothed particle hydrodynamics (SPH) formulation for the moment transport. On advantage of this meshless method is an easy treatment of computational domains with complex boundaries. The pressure is computed by solving a poisson equation that ensures the flow incompressibility and the boundary conditions are imposed by using a boundary integral method (BIM). This last method, is known to be strongly CPU time consuming. To overcome this difficulty, the source term of the poisson equation was solved by introducing a cartesian grid and by using finite differences. The same treatment has been applied to the generalize Helmholtz equation for the velocity field as well. The different steps were validated by studying several academic cases including a driven cavity low, a dam break and an impulsively started flow around a circular cylinder. Aditionaly to this standard use for flow numerical modelling, the method was also applied for rebuilding the pressure and velocity fields from velocity fields experimentally measured by a PIV method. The method was then applied to the flow around a moving NACA profile
Fathi, Max. "Etude théorique et numérique de quelques modèles stochastiques en physique statistique." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066349/document.
Full textIn this thesis, we are mainly interested in three topics : functional inequalities and their probabilistic aspects, hydrodynamic limits for interacting continuous spin systems and discretizations of stochastic differential equations. This document, in addition to a general introduction (written in French), contains three parts. The first part deals with functional inequalities, especially logarithmic Sobolev inequalities, for canonical ensembles, and with hydrodynamic limits for continuous spin systems. We prove convergence to the hydrodynamic limit for several variants of the Ginzburg--Landau model endowed with Kawasaki dynamics, with quantitative bounds in the number of spins. We also study convergence of the microscopic entropy to its hydrodynamic counterpart. In the second part, we study links between gradient flows in spaces of probability measures and large deviations for sequences of laws of solutions to stochastic differential equations. We show that the large deviations principle is equivalent to the Gamma--Convergence of a sequence of functionals that appear in the gradient flow formulation of the flow of marginals of the laws of the diffusion processes. As an application of this principle, we obtain large deviations from the hydrodynamic limit for two variants of the Ginzburg-Landau model. The third part deals with the discretization of stochastic differential equations. We prove a transport-Entropy inequality for the law of the explicit Euler scheme. This inequality implies bounds on the confidence intervals for quantities of the form $\mathbb{E}[f(X_T)]$. We also study the discretization error for the evaluation of transport coefficients with the Metropolis-Adjusted Langevin algorithm (which is a combination of the explicit Euler scheme and the Metropolis algorithm)
Koukkous, Abdellatif. "Comportement hydrodynamique de différents processus de zéro range." Rouen, 1997. http://www.theses.fr/1997ROUES051.
Full textAguiar, Guilherme Ost de. "Limite hidrodinâmico para neurônios interagentes estruturados espacialmente." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-01062016-162917/.
Full textWe study the hydrodynamic limit of a stochastic system of neurons whose interactions are given by Kac Potentials that mimic chemical and electrical synapses and leak currents. The system consists of $\\ep^$ neurons embedded in $[0,1)^2$, each spiking randomly according to a point process with rate depending on both its membrane potential and position. When neuron $i$ spikes, its membrane potential is reset to $0$ while the membrane potential of $j$ is increased by a positive value $\\ep^2 a(i,j)$, if $i$ influences $j$. Furthermore, between consecutive spikes, the system follows a deterministic motion due both to electrical synapses and leak currents. The electrical synapses are involved in the synchronization of the membrane potentials of the neurons, while the leak currents inhibit the activity of all neurons, attracting simultaneously their membrane potentials to 0. We show that the empirical distribution of the membrane potentials converges, as $\\ep$ vanishes, to a probability density $ho_t(u,r)$ which is proved to obey a nonlinear PDE of Hyperbolic type.
Simon, Marielle. "Problèmes de diffusion pour des chaînes d’oscillateurs harmoniques perturbées." Thesis, Lyon, École normale supérieure, 2014. http://www.theses.fr/2014ENSL0904/document.
Full textThe heat equation is known to be a macroscopic phenomenon, emerging after a diffusive rescaling of space and time. In linear systems of interacting oscillators, the energy ballistically disperses and the thermal conductivity is infinite. Since the Fourier law is not valid for linear interactions, non-linearities in the microscopic dynamics are needed. In order to bring ergodicity to the system, we superpose a stochastic energy conserving perturbation to the underlying deterministic dynamics.In the first part we study the Hamiltonian dynamics of linear coupled oscillators, which are perturbed by a degenerate conservative stochastic noise. The latter flips the sign of the velocities at random times. The evolution yields two conservation laws (the energy and the length of the chain), and the macroscopic behavior is given by a non-linear parabolic system.Then, we suppose the harmonic oscillators to evolve in a random environment, in addition to be stochastically perturbed. The noise is very degenerate, and we prove a macroscopic behavior that holds at equilibrium: precisely, energy fluctuations at equilibrium evolve according to an infinite dimensional Ornstein-Uhlenbeck process driven by the linearized heat equation.Finally, anomalous behaviors have been observed for one-dimensional systems which preserve momentum in addition to the energy. In the third part, we consider two different perturbations, the first one preserving the momentum, and the second one destroying that new conservation law. When the intensity of the second noise is decreasing, we observe (in a suitable time scale) a phase transition between a regime of normal diffusion and a regime of super-diffusion
Letizia, Viviana. "Modèles microscopiques pour la loi de Fourier." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLED038/document.
Full textThe object of research of this thesis is the derivation of heat equation from the underlying microscopic dynamics of the system. Two main models have been studied: a microscopic system described by the discrete Schrödinger equation and an anharmonic chain of oscillators in presence of a gradient of temperature. The first model considered is the one-dimensional discrete linear Schrödinger (DLS) equation perturbed by a conservative stochastic dynamics, that changes the phase of each particles, conserving the total norm (or number of particles). The resulting total dynamics is a degenerate hypoelliptic diffusion with a smooth stationary state. It has been shown that the system has a hydrodynamical limit given by the solution of the heat equation. When it is coupled at the boundaries to two Langevin thermostats at two different chemical potentials, it has been proven that the stationary state, in the limit to infinity, satisfies the Fourier’s law. The second model considered is a chain of anharmonic oscillators immersed in a heat bath with a temperature gradient and a time varying tension applied to one end of the chain while the other side is fixed to a point. We prove that under diffusive space-time rescaling the volume strain distribution of the chain evolves following a non-linear diffusive equation. The stationary states of the dynamics are of non-equilibrium and have a positive entropy production, so the classical relative entropy methods cannot be used. We develop new estimates based on entropic hypocoercivity, that allows to control the distribution of the positions configurations of the chain. The macroscopic limit can be used to model isothermal thermodynamic transformations between non-equilibrium stationary states. CEMRACS project on simulating Rayleigh- Taylor and Richtmyer-Meshkov turbulent mixing zones with a probability density function method at last
Erignoux, Clément. "Limite hydrodynamique pour un dynamique sur réseau de particules actives." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX011/document.
Full textCollective dynamics can be observed among many animal species, and have given rise in the last decades to an active and interdisciplinary field of study. Such behaviors are usually modeled by active matter, in which each individual is self-driven and tends to align its velocity with that of its neighbors.In a classical model introduced by Vicsek & al., as well as in numerous related active matter models, a phase transition between chaotic behavior at high temperature and global order at low temperature can be observed. Even though ample evidence of these phase transitions has been obtained for collective dynamics, from a mathematical standpoint, such active systems are not fully understood yet. Some progress has been achieved in the recent years under an assumption of mean-field interactions, however to this day, few rigorous results have been obtained for models involving purely local interactions.In this manuscript, we describe a lattice active particle system interacting locally to align their velocities. This thesis aims at rigorously obtaining, using the formalism developed for hydrodynamic limits of lattice gases, the scaling limit of this out-of-equilibrium system, for which numerous technical and theoretical difficulties arise
Mourragui, Mustapha. "Comportement hydrodynamique des processus de sauts, de naissances et de morts." Rouen, 1993. http://www.theses.fr/1993ROUES002.
Full textClement, Adrien. "Étude hydroacoustique de la réponse d'une structure à une excitation de couche limite turbulente." Thesis, Paris, ENSAM, 2015. http://www.theses.fr/2015ENAM0033/document.
Full textThe following work consist in the study of the vibroacoustic response of a structure submerged in fluid, under a turbulent boundary layer flow, the response of the structure is driven by the low wavenumber behaviour, for a small Mach number. This work aims at providing better means of predicting the noise radiated in such setups, mainly regarding stealthiness of ships and submarines and noise radiated by outer structures.A numerical modal analysis based on the (u,p,φ) formulation available in the finite element software Code_Aster is performed. The pressure induced by the boudary layer is then described as a sum of plane waves and several harmonical analysis are performed on the reduced problem, projected on the (u,p,φ) modal basis, one for each term of the sum. This allows us to account for the fluid-structure interaction (inertial and acoustic) in confined and infinite fluid domains. Most numerical models found in scientific papers are making the assumption of a light fluid, or a fluid loaded plate, thus not taking clearly into account the fluid-strucure interaction or only the inertialpart. Here the interaction due to the acoustic field radiated by the plate is fully accounted for.The validity of the proposed numerical method is assesed and numerical results are compared to data obtained from an experimental setup used within a hydrodynamic tunnel. Numerically, a good reproduction of the behaviour of the plate is obtained, both in terms of displacement and spectral levels. The acoustic levels are also compared to their numerical counterparts at the position of the transducer. Moreover, an experimantal analysis is performed, for backward and forward steps of height smaller than the thickness of the boundary layer, in order to investigate the influence of such configurations on the boundary layer excitation and on the vibroacoustic response
Ayi, Nathalie. "Influence du stochastique sur des problématiques de changements d'échelle." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4061/document.
Full textThe work of this thesis belongs to the field of partial differential equations and is linked to the problematic of scale changes in the context of kinetic of gas. Indeed, knowing that there exists different scales of description for a gas, we want to link these different associated scales in a context where some randomness acts, in initial data and/or distributed on all the time interval. In a first part, we establish the rigorous derivation of the linear Boltzmann equation without cut-off starting from a particle system interacting via a potential of infinite range starting from a perturbed equilibrium. The second part deals with the passage from a stochastic BGK model with high-field scaling to a scalar conservation law with stochastic forcing. First, we establish the existence of a solution to the considered BGK model. Under an additional assumption, we prove then the convergence to a kinetic formulation associated to the conservation law with stochastic forcing. In the third part, first we quantify in the case of discrete velocities the defect of regularity in the averaging lemmas. Then, we establish a stochastic averaging lemma in that same case. We apply then the result to the context of Rosseland approximation to establish the diffusive limit associated to this model.Finally, we are interested into the numerical study of Uchiyama's model of square particles with four velocities in dimension two. After adapting the methods of simulation which were developed in the case of hard spheres, we carry out a statistical study of the limits at different scales of this model. We reject the hypothesis of a fractional Brownian motion as diffusive limit
Müller, Patrick Erich [Verfasser]. "Limiting Properties of a Continuous Local Mean-Field Interacting Spin System : Hydrodynamic Limit, Propagation of Chaos, Energy Landscape and Large Deviations / Patrick Erich Müller." Bonn : Universitäts- und Landesbibliothek Bonn, 2016. http://d-nb.info/1122193866/34.
Full textBaldasso, Rangel. "Comportamento hidrodinâmico para o processo de exclusão com taxa lenta no bordo." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/79776.
Full textWe present the hydrodynamic limit theorem for the simple symmetric exclusion process with slow driven boundary. In this process, particles describe independent random walks in the space {O, 1, , N}, using the exclusion rule (which says that two particles do not occupy the same place at the same time). We also suppose that particles can be born or die on the sites O and N with rates proportional to N -1 . With the right rescaling procedure, the density of particles converges to the weak solution of a parabolic partial differential equation. In the first chapter, we present sections about Prohorov's Theorem, the càdlàg function space and Skorohod's metric defined in this space.
Marahrens, Daniel. "On some nonlinear partial differential equations for classical and quantum many body systems." Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/244203.
Full textJennesson, Didier. "Étude de l'influence des phénomènes de couche limite sur le fonctionnement de photoréacteurs." Vandoeuvre-les-Nancy, INPL, 1994. http://www.theses.fr/1994INPL114N.
Full textMonavon, Arnault. "Etude d'une couche limite instationnaire sur une paroi déformable." Paris 6, 1986. http://www.theses.fr/1986PA066369.
Full textPeerhossaini, Hassan. "L'instabilite d'une couche limite sur une paroi concave : les tourbillons de gortler." Paris 6, 1987. http://www.theses.fr/1987PA066023.
Full textJaoui, Alexandre. "Charge and Entropy Transport in Dilute metals." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS151.
Full textThis manuscript focuses on the electronic heat/charge transport dichotomy and the beyond-quantum-limit transport properties of dilute metals.In the first part, we report on a study of two semi-metals, WP2 and Sb. In both cases, we found that the Wiedemann-Franz (WF) law is recovered at low temperature (T ≈ 2 K), but not at T ≈ 15 K. We show that the finite-temperature deviation from the WF law is due to a mismatch between the prefactors of the T 2-resistivities. In the Boltzmann picture of transport, this difference is associated with abundant small-angle scattering among electrons. However, we argue that momentum-conserving fermionic collisions in normal-state liquid 3He also produce a thermal T2-resistivity. This opens the door for an alternative interpretation : the existence of a hydrodynamic regime of electrons in these semi-metals. In this scenario, the larger T2 thermal resistivity is due to momentum-conserving electronic collisions. In the case of Sb, the ratio of the two T2-prefactors evolves with sample size. This observation supports the hydrodynamic scenario. Finally, we find a large hydrodynamic correction in the phononic thermal conductivity. The second part deals with the fate of the Fermi sea in the quantum limit (QL). In the doped semi-conductor InAs, we observe a field-induced insulating state for all geometries of transport. The comparison with the succession of field-induced states in graphite up to B = 90 T reveals that the ground state of a 3D electron gas beyond the QL is system-dependent. The observation of a saturating resistivity accompanied by vanishing thermoelectric coefficients in InAs points to the existence of a conductive surface state
Morthomas, Julien. "Intéractions hydrodynamiques entre colloïdess confinés le long d'une paroi." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13882/document.
Full textApplying a steady electric field or a constant thermal gradient to a colloidal suspension induces a finite velocity of the dispersed particles. The motion of particles is not due to a net body force like in sedimentation but to interfacial forces acting on the electric double layer at their surface. These forces involve a surface flow, which, in turn, results in a velocity field of the surrounding fluid in 1/r³ in the opposite direction of the particle displacement, with r the distance from the centre of the particle. In this work we consider a somewhat different situation, where the suspension is confined to a semi-infinite half space. The particle, under the action of the applied field, is trapped against the solid interface. Still, the creep flow remains; more precisely the particle continues to pump the fluid in the opposite direction. As a consequence there arises a lateral flow along the solid surface towards the particle. Thus others particles inserting themselves in this flow undergo drag forces and form clusters. Particles aggregation has been observed in Electrophoresis deposition and more recently in Thermophoresis deposition for micron sized polystyrene beads in aqueous solution. The total velocity field takes a form significantly more complicated than in the above mentioned unbounded cases; it must satisfy boundary conditions both at the particle surface and at the confining wall. Using the perturbative method of reflections or Oseen method based on Fourier transform we resolve the Stokes equation and find an analytic solution for the drag flow along the interface in powers of the ratio e=a/h of particle radius and wall distance. The usual solution at the zero order induces poor approximation, when following corrections in e involves better results in agreement with experimental measurements of hydrodynamic pair potential between two particles along a wall
Szubert, Damien. "Physics and modelling of unsteady turbulent flows around aerodynamic and hydrodynamic structures at high Reynold number by numerical simulation." Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/15129/2/szubert_1.pdf.
Full textPitters, Hermann-Helmut. "Aspects of exchangeable coalescent processes." Thesis, University of Oxford, 2015. http://ora.ox.ac.uk/objects/uuid:dbd83051-cffa-4fc9-b33f-59f837d8a9c2.
Full textVillaret, Catherine. "Etude expérimentale et numérique des lois d'érosion pour des sédiments cohésifs." Grenoble 1, 1987. http://www.theses.fr/1987GRE10140.
Full textPaquier, Anne-Éléonore. "Interactions de la dynamique hydro-sédimentaire avec les herbiers de phanérogames, Étang de Berre." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM3064/document.
Full textBerre lagoon was occupied by extensive meadows at the turn of the 20th century which regressed down under the impact of urban and industrial pollution and inflow of the EDF canal. Even though freshwater inputs and pollutions were drastically reduced respectively in the 1980s and 1990s, meadows have not significantly gained ground. This thesis aims at analysing the interactions between seagrass meadows of Berre lagoon, hydrodynamics and sedimentary processes, based on the postulate that these mechanisms are important in the maintenance of the meadows in their present dispersed form. In the lagoon, winds constitute the dominant influence on hydrodynamics in the lagoon by generating wind waves and currents. Wave attenuation is linked to wave height, which is, in turn, dependent on wind intensity and fetch length and modified by the bay morphology. Wave attenuation is also modulated by meadow biometry, and by water levels and currents.Whereas currents are strong and strongly influenced by wind and wind waves above the meadow, a transition canopy-water layer dissipates waves and currents. In the canopy, currents are thus attenuated.The meadow is not just a passive element in the overall sediment dynamics since it reduces energy and thus modifies substrate changes within and in the back of the meadow, thus protecting the shoreline. However, it is the recurrence of strong wind that seems to drive sedimentary changes. The strong interactions between the meadow and the hydrodynamic and sedimentary processes could limit the extension of the meadow in areas more exposed to waves
Yadala, Venkata Srikar. "Plasma-flow interfaces for instability control." Thesis, Poitiers, 2020. http://www.theses.fr/2020POIT2292.
Full textThe research presented in this thesis focuses on the design and use of dielectric barrier discharge (DBD) plasma actuators with thin and complex geometry electrodes to exert instability control on two flow configurations whose dynamics are governed by primary and/or secondary instability mechanisms.The case of a three-dimensional boundary layer as encountered on a swept wing is studied using two forcing strategies to manipulate the transition induced by a stationary instability phenomenon. Here, an array of discrete roughness elements (DRE) is installed upstream of the DBD forcing in order to lock the origin and evolution of the stationary cross-flow (CF) vortices in the boundary layer. The first forcing approach is upstream flow deformation (UFD). The second approach based on direct modification of the base flow is also introduced (BFM). Independent of the forcing applied, a transition delay is observed. However, as the CF vortices are strongly amplified due to the use of DRE, the action by UFD approach can lead both to a direct attenuation of the CF vortices as envisaged but also to an unintentional action on the inflectional nature of the base flow. The BFM method results in a direct attenuation of the CF velocity component, which is also confirmed by a theoretical study of instability under the effect of the DBD actuator through a simplified model. This is not only the first experimental demonstration of transition delay on a swept wing using plasma actuators, but also the first experimental proof of concept of the BFM strategy.The wake of a plane mixed layer with a thick edge and the primary and secondary instability phenomena responsible for the spatio-temporal expansion of the wake are also studied. Frequency and then spatial forcing conditions are successively tested and analysed by spectral approach (spectral proper orthogonal decomposition, SPOD) on experimental data from multi-field time-resolved particle image velocimetry. The primary instability is excited by a spatially uniform forcing pulsed at the naturally most amplified frequency. It is shown that the mean component of the flow is not modified while the spectral content of the mixing layer is largely affected. This forcing leads, in particular, to the inhibition of the pairing of vortical structures due to the attenuation of sub-harmonic instabilities. Conversely, direct forcing of sub-harmonic instabilities results in a reinforcement of the pairing phenomena, leading to a higher growth rate of the mixing layer. Finally, spatially modulated forcing results in a growth that varies according to the spanwise position, which reflects both the reinforcement and the spatial modulation of large-scale spanwise structures. The modulation of the forcing according to the scale of the mixing layer always allows the modification of the spanwise structures but in addition, the coalescence of the streamwise and spanwise structures is favoured.The research work carried out confirms the ability of DBD plasma actuators to exert a forcing modulated both temporally and spatially. The proposed actuators allow only a partial control of the instability phenomena in the three-dimensional boundary layer while the high receptivity of the initial region of a mixing layer has led to significant results both on the dynamics of spanwise and streamwise coherent structures. Thanks to a large reduction of the electrical power consumed in the case of spatially modulated forcing, the efficiency of the control system is greatly improved
Taileb, Saïd. "Vers des simulations numériques prédictives des détonations gazeuses : influence de la cinétique chimique, de l’equation d’etat et des effets tridimensionnels Influence of the chemical modeling on the quenching limits of gaseous detonation waves confined by an inert layer Computation of the mean hydrodynamic structure of gaseous detonations with losses Numerical study of 3D gaseous detonations in a square channel." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2020. http://www.theses.fr/2020ESMA0012.
Full textThis study is part of the general framework of numerical simulations of detonations under non-ideal conditions.The configurations discussed correspond to flows encountered in industrial hazards and rotating detonation engines.Simulations are based on an inhouse code RESIDENT (REcycling mesh SImulation of DEtonations) developed at the Pprime Institute. It is based on high-order shock capturing schemes, with a MP9 interpolation scheme, a HLLC-M solver and a 3rd Runge-Kutta time integration. At first, the influence of the equation of state (EOS) on the cellular detonation structure has been studied with two EOS : Perfect gas and Noble-Abel. The numerical results have shown that new triples points are generated from the interaction of a slip line with already existing triple points. The increase of the post-shock isentropic coeffient has inhibited the appearance of these instabilities and has regularized the cell structure. This results may be important as engineering correlations are based on the cell size and regularity. Secondly, the influence of chemical modelling on the structure of the detonation and its extinction limits were studied using three kinetic models of increasing complexity : single-step, three-step chain-branching and detailed chemistry. Despite the macroscopic features are similar, the outcome of the critical height of a detonation confined by an inert layer is significantly different, highlighting the impact of the kinetics in predicting the extinction limits observed in experiments. Finally, the influence of three-dimensional effects on the dynamics of detonation was studied. Comparisons of 2-D and 3-D simulations are carried out in the case of marginal and semi-confined detonations. Despite the differences observed in the flow topology, similarities were found in the mean structure when the detonation propagation is ideal. The analysis of the total fluctuation energy revealed that entropy fluctuations are more important than pressure fluctuations. In the case of semi-confined detonation, 3-D effects manifests a smaller velocity deficit than in 2-D when the detonation propagates at the same reactive height. The velocity deficitis correlated to the ratio of the hydrodynamic thickness to the radius of curvature, despite the higher average curvature of the 3-D front
Aelbrecht, Denis. "Étude expérimentale de la rectification d'un écoulement alternatif pariétal en milieu tournant et de la turbulence d'une couche d'Ekman oscillante : application aux courants de marée en Manche orientale." Université Joseph Fourier (Grenoble ; 1971-2015), 1995. http://www.theses.fr/1995GRE10103.
Full textJosserand, Jacques, and Antoine Alemany. "Modélisation des processus de l'électrodéposition continue : approche couplée hydrodynamique et électrochimique." Grenoble INPG, 1994. http://www.theses.fr/1994INPG0031.
Full textAmailland, Sylvain. "Caractérisation de sources acoustiques par imagerie en écoulement d'eau confiné." Thesis, Le Mans, 2017. http://www.theses.fr/2017LEMA1037/document.
Full textThe noise requirements for naval and research vessels lead to the development of new characterization methods. The propeller, which is the most important source in the far field, is usually studied in a water tunnel. However, due to the reverberation in the tunnel and the high level of flow noise, the characterization may be difficult. The aim of the thesis is to improve the measurement capabilities of the DGA Hydrodynamic tunnel (GTH) in terms of noise radiated by models in flow configurations.The propagation model is described through the image source method. Unfortunately, the reflection coefficients of the tunnel walls are generally unknown and it is proposed to estimate these parameters using an inverse method and the knowledge of some reference transfer functions. The boundary layer noise (BLN) may be stronger than the acoustic signal, therefore a Robust Principal Component Analysis is introduced in order to separate, blindly or semi-blindly, the acoustic signal from the noise. This algorithm is taking advantage of the low rank and sparse structure of the acoustic and the BLN cross-spectrum matrices. Then an acoustic imaging technique based on the equivalent source method is applied in order to localize and quantify correlated or decorrelated sources. Finally, the potentiality of the proposed techniques is evaluated experimentally in the GTH in the presence of an acoustic source and a controlled flow
Cathelain, Marie. "Développement d’un modèle de simulation déterministe pour l’étude du couplage entre un écoulement atmosphérique et un état de mer." Thesis, Ecole centrale de Nantes, 2017. http://www.theses.fr/2017ECDN0001/document.
Full textModelling the dynamic coupling of ocean-atmosphere systems requires a fundamental and quantitative understanding of the mechanisms governing the windwave interactions: despite numerous studies, our current understanding remains quite incomplete and, in certain conditions, sparse field observations contradict the usual theoretical and stochastic models. Within the context of a growing exploitation of the offshore wind energy and the development of met ocean models, a fine description of this resource is a key issue. Field experiments and numerical modelling have revealed that atmospheric stability and wave effects, including the dynamic sea surface roughness, are two major factors affecting the wind field over oceans. A numerical tool has been implemented in order to study the coupling between an atmospheric flow and the seastate. A massively parallel large-eddy simulation developed by P. Sullivan at the National Center for Atmospheric Research is then coupled to a High-Order Spectral wave model developed at the Hydrodynamics,Energetics & Atmospheric Environment Laboratory in Ecole Centrale de Nantes. Numerous configurations of wind and sea states are investigated. It appears that, under strongly forced wind conditions above a small sea state, the semi-empirical laws referred to as standards in the international guidelines are a good approximation for the vertical profile of the mean wind speed. However, for light winds overlying fast-moving swell, the presence of a wave induced wind jet is observed, invalidating the use of such logarithmic laws
Chapalain, Georges. "Étude hydrodynamique et sédimentaire des environnements littoraux dominés par la houle." Université Joseph Fourier (Grenoble ; 1971-2015), 1988. http://www.theses.fr/1988GRE10121.
Full textPorras, Vazquez Alejandro. "A molecular approach to the ultimate friction response of confined fluids." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI087.
Full textIn order to control energy losses in mechanical systems, a thin film of lubricant is often introduced between the solids in contact. The lubricated point contacts operate in the elastohydrodynamic regime, characterized by high pressures (of the order of GPa) and thin film thicknesses (of the order of 100 nanometers). At high shear rates, the fluid may exhibit a limiting shear stress whose physical origin is still uncertain. At present, the empirical models available for the prediction of friction fail to describe the ultimate response of lubricants at these severe operating conditions. In addition, in-situ experimental analysis is very difficult to achieve due to confinement and high pressures. Thus, in this thesis, the problem is approached from the angle of modeling at the atomic scale. The shear behavior of three fluids (a traction fluid, a model lubricant and an industrial lubricant for the aerospace industry) is analyzed by Molecular Dynamics Simulation. The numerical results are then compared qualitatively and quantitatively with experimental tests. The friction response is independent of the velocity profile in the confinement thickness, the latter appearing rather as a consequence of boundary conditions at the surfaces. The limiting friction regime naturally occurs when the lubricant is subjected to thermodynamic conditions characteristic of a solid state. In this case, the dynamics of the molecules is strongly slowed down. The activation energy increases rapidly with the pressure, so that the diffusion becomes negligible at high pressure, even at the severe shear rates imposed in the Molecular Dynamics simulations. The macroscopic response to this phenomenon is thus a saturation of the value of friction. This work ends by laying the foundations of a modeling that will allow the prediction of lubricated friction under severe conditions
Hugues, Florian. "Modelling the vibrations generated by turbulent flows in ducts." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2470/document.
Full textPipeline and duct vibrations can cause a range of issues from unplanned shutdownsto decreased equipment life time. Thus, the prediction of flow-induced vibrations is essential in piping design in many industrial plants, especially, for Gas industry. This study deals with the prediction of pipe flow noise and vibration at low Mach number. We aim to present a numerical and experimental study which can offer engineers a better understanding of the coupling between random excitation and duct section for two geometries (circular or rectangular). An experimental facility and measurement approach is developed and used to validate numerical predictions. Two cases are investigated: (i) a straight duct with no singularity, duct acoustic modes are excited by the Turbulent Boundary Layer (TBL) and (ii) a straight duct with a diaphragm inserted upstream generating a localized acoustic source. The acoustic contribution is either measured via cross-spectra based methods or calculated using Computational Fluid Dynamics (CFD) and aeroacoustic analogies. The response of the structure is estimated via a ‘blocked’ approach using analytical modal Frequency Response Functions (FRFs) of a simply supported finite duct. Measurements will lead to evaluate and suggest improvements to existing Cross Power Spectral Density (CPSD) empirical models in a context of internal turbulent flows. Experimental modalanalysis of a finite rectangular duct are confronted to computational methods to assess the effect of the Boundary Conditions (BCs), the resistive damping from coupling with the internal acoustic medium and aerodynamic damping. The fluid-structure coupling is analyzed through the joint acceptance function both in the spatial and wave number domain. The excitation includes both the acoustic and hydrodynamic contributions using CPSD written on the basis of Corcos, Diffuse Acoustic Field (DAF) and acoustic duct mode coherence functions. Finally, the numerical and experimental studies in this thesis were used to develop a framework for studying and modelling pipe flow noise and vibration which links CFD, analytical and empirical models to efficient random analysis techniques
"Hydrodynamic limits of the Navier-Stokes equations." Thesis, 2008. http://library.cuhk.edu.hk/record=b6074632.
Full textThis thesis deals with the low Mach number limit of the compressible Navier-Stokes equations. It is to verify that the compressible fluids become incompressible as Mach number tends to zero. In another words, the pressure due to compression can be neglected. This is a singular limit.
We will show that, as the Mach number tends to zero, the local smooth solutions of compressible Navier-Stokes equations with zero thermal conductivity coefficient converge strongly to the solutions of incompressible Navier-Stokes equations, provided that the initial data satisfy the "bounded derivative conditions". The key point, which is one of our main contributions, is the uniform high norm estimates in Mach number. We will study two cases. The first case is that, the domain is a finite interval and the boundary condition for the velocity is no-slip. In the second case, the domain is bounded, smooth, and simply connected in R2 . The boundary condition for the velocity is replaced by the slip-type's, thus the vorticity and the divergence of velocity can be estimated separately.
Ou, Yaobin.
Adviser: Zhouping Xin.
Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3546.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2008.
Includes bibliographical references (leaves 107-111).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstracts in English and Chinese.
School code: 1307.
Even, Nadine [Verfasser]. "On hydrodynamic limits and conservation laws / by Nadine Even." 2009. http://d-nb.info/997142081/34.
Full textSavu, Anamaria. "Hydrodynamic scaling limit of the continuum solid-on-solid model." 2004. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=94719&T=F.
Full textLin, Hsuan-Chih, and 林軒馳. "Large Deviations from the Hydrodynamic Limit of the Generalized Symmetric Exclusion Process." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/83205989088006003439.
Full text國立臺灣大學
數學研究所
95
In the present article, we study the large deviation property of the generalized symmetric exclusion process. Once the hydrodynamic limit, which corresponds to a space-time law of large numbers type result, of a Markov process has been established, a natural step is to consider the large deviations from the limit. Kipnis, et al. derived the hydrodynamic limit of a generalized symmetric exclusion process, which is a non-gradient system. We then derive the large deviation principle of this model.
Lin, Hsuan-Chih. "Large Deviations from the Hydrodynamic Limit of the Generalized Symmetric Exclusion Process." 2007. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0001-1607200700241900.
Full textCampanale, Angelo. "Fluid-structure interaction problems in linear and nonlinear engineering applications: theory and experiments." Doctoral thesis, 2021. http://hdl.handle.net/11589/217863.
Full textIn this dissertation, two fluid-structure interaction problems, related to different engineering applications, are analysed. In the first linear case, an analytical but effective model is formulated in order to correctly estimate the dynamic response of a quartz tuning fork (QTF) device immersed in a fluid environment. This kind of resonator is widely used for gas sensing applications. In the second nonlinear case, a numerical model is developed to get the aeroelastic response of thin cantilever flat plate, with a particular emphasis on the applicability of the inextensible plate theory to the structural modelling of the problem. Specifically, the main goal is to numerically predict flutter conditions and limit cycle oscillations (LCO) closer to experimental outcomes, since earlier model that makes use of Von Kármán thin plate theory overpredicts the LCO amplitude. In the first part, the linear fluid-structure interaction problem is analysed: the mathematical model concerning the dynamics of the resonator and its interaction with the surrounding fluid is presented, the experimental setup, used to asses the model, is described, the theoretical response is fitted on the experimental data and, finally, a discussion on how each parameter of the mathematical model can affect the overall system dynamics is provided. In the second part, where the nonlinear fluid-structure interaction case is studied, the mathematical model concerning the inextensible plate vibrating in low speed airflow is derived, the flutter condition and the limit cycle, in terms of amplitude and period, are calculated, and a comparison with Von Kármán plate structural model is provided with needed remarks on the obtained numerical results.
TAGLIAFERRI, CRISTINA. "Homogenization, simple exclusion processes and random resistor networks on Delaunay triangulations." Doctoral thesis, 2022. http://hdl.handle.net/11573/1654218.
Full text