Academic literature on the topic 'Hydrodynamic and biokinetic modeling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrodynamic and biokinetic modeling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hydrodynamic and biokinetic modeling"
Huang, Chenfu, Anika Kuczynski, Martin T. Auer, David M. O’Donnell, and Pengfei Xue. "Management Transition to the Great Lakes Nearshore: Insights from Hydrodynamic Modeling." Journal of Marine Science and Engineering 7, no. 5 (May 4, 2019): 129. http://dx.doi.org/10.3390/jmse7050129.
Full textOrtiz, Antonio, Rubén Díez-Montero, Joan García, Nadeem Khalil, and Enrica Uggetti. "Advanced biokinetic and hydrodynamic modelling to support and optimize the design of full-scale high rate algal ponds." Computational and Structural Biotechnology Journal 20 (2022): 386–98. http://dx.doi.org/10.1016/j.csbj.2021.12.034.
Full textZeng, Ming, Audrey Soric, and Nicolas Roche. "Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions." Bioresource Technology 144 (September 2013): 202–9. http://dx.doi.org/10.1016/j.biortech.2013.06.111.
Full textXu, Qi, Yanlei Wan, Qiongxiang Wu, Keke Xiao, Wenbo Yu, Sha Liang, Yuwei Zhu, et al. "An efficient hydrodynamic-biokinetic model for the optimization of operational strategy applied in a full-scale oxidation ditch by CFD integrated with ASM2." Water Research 193 (April 2021): 116888. http://dx.doi.org/10.1016/j.watres.2021.116888.
Full textBoltz, Joshua P., Bruce R. Johnson, Imre Takács, Glen T. Daigger, Eberhard Morgenroth, Doris Brockmann, Róbert Kovács, Jason M. Calhoun, Jean-Marc Choubert, and Nicolas Derlon. "Biofilm carrier migration model describes reactor performance." Water Science and Technology 75, no. 12 (March 17, 2017): 2818–28. http://dx.doi.org/10.2166/wst.2017.160.
Full textYang, Jixiang, Yanqing Yang, Xin Ji, Youpeng Chen, Jinsong Guo, and Fang Fang. "Three-Dimensional Modeling of Hydrodynamics and Biokinetics in EGSB Reactor." Journal of Chemistry 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/635281.
Full textMeister, Michael, Daniel Winkler, Massoud Rezavand, and Wolfgang Rauch. "Integrating hydrodynamics and biokinetics in wastewater treatment modelling by using smoothed particle hydrodynamics." Computers & Chemical Engineering 99 (April 2017): 1–12. http://dx.doi.org/10.1016/j.compchemeng.2016.12.020.
Full textMeister, Michael, and Wolfgang Rauch. "Modelling aerated flows with smoothed particle hydrodynamics." Journal of Hydroinformatics 17, no. 4 (March 9, 2015): 493–504. http://dx.doi.org/10.2166/hydro.2015.132.
Full textPrades, L., A. D. Dorado, J. Climent, X. Guimerà, S. Chiva, and X. Gamisans. "CFD modeling of a fixed-bed biofilm reactor coupling hydrodynamics and biokinetics." Chemical Engineering Journal 313 (April 2017): 680–92. http://dx.doi.org/10.1016/j.cej.2016.12.107.
Full textBlaauboer, Bas J. "Biokinetic Modeling andin Vitro–in VivoExtrapolations." Journal of Toxicology and Environmental Health, Part B 13, no. 2-4 (June 17, 2010): 242–52. http://dx.doi.org/10.1080/10937404.2010.483940.
Full textDissertations / Theses on the topic "Hydrodynamic and biokinetic modeling"
Vink, J. S. "Discussion: Hydrodynamic modeling." Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2008/1804/.
Full textNzokou, Tanekou François. "Ice rupture hydrodynamic modeling." Thesis, Université Laval, 2010. http://www.theses.ulaval.ca/2010/26683/26683.pdf.
Full textMarchand, Philippe. "Hydrodynamic modeling of shallow basins." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0003/MQ44218.pdf.
Full textMarchand, Philippe 1972. "Hydrodynamic modeling of shallow basins." Thesis, McGill University, 1997. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=20274.
Full textMeakin, Casey Adam. "Hydrodynamic Modeling of Massive Star Interiors." Diss., The University of Arizona, 2006. http://hdl.handle.net/10150/194035.
Full textSherburn, Jesse Andrew. "HYDRODYNAMIC MODELING OF IMPACT CRATERS IN ICE." MSSTATE, 2008. http://sun.library.msstate.edu/ETD-db/theses/available/etd-11052007-091023/.
Full textLuca, Liliana. "Hydrodynamic modeling of electron transport in graphene." Doctoral thesis, Università di Catania, 2019. http://hdl.handle.net/10761/4103.
Full textEriksson, Jonas. "Evaluation of SPH for hydrodynamic modeling,using DualSPHysics." Thesis, Uppsala universitet, Avdelningen för beräkningsvetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-339557.
Full textEsmond, Micah Jeshurun. "Two-dimensional, Hydrodynamic Modeling of Electrothermal Plasma Discharges." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/81447.
Full textPh. D.
MEGGIOLARO, MARCO ANTONIO. "HYDRODYNAMIC BEARING MODELING FOR THE SIMULATION OF ROTATING SYSTEMS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1996. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19287@1.
Full textNeste trabalho a análise do comportamento de sistemas rotativos do tipo eixo-rotormancal é estendida para incluir os efeitos da presença de mancais hidrodinâmicos na resposta dinâmica. Estes efeitos estão associados à não-linearidade da força de reação exercida pelos suportes sobre o eixo e dependem dos deslocamentos, velocidades transversais e da rotação própia do rotor. A modelagem estrutural do sistema é obtida empregando-se o método dos elementos finitos. O eixo é representado pelo modelo de viga de Timoshenko com dois nós, quatro graus-de-liberdade por nó, e a interpolação do campo de deslocamentos é obtida utilizando-se as funções de Hermite. Os rotores são modelados empregando-se elementos de inércia concentrada associada aos graus-de-liberdade de um ponto nodal do modelo. E, na representação dos mancais hidrodinâmicos utilizou-se a equação de Reynolds, com as hipóteses simplificadoras para mancais curtos, obtendo-se a solução para a distribuição de pressão do filme de óleo em forma fechada. Essa distribuição de pressão permite a obtenção dos coeficientes das matrizes e rigidez e de amortecimento associadas aos graus de liberdade do eixo no ponto nodal de representação do mancal. Para a integração temporal do sistema de equações diferencias utiliza-se o procedimento passo-a-passo, tendo-se implementado os métodos implícitos de Newmark e Wilson – teta, na forma incondicionalmente estável. Devido à não-linearidade das equações obtidas com a presença dos mancais hidrodinâmicos, em cada intervalo de tempo utiliza-se o procedimento de Newton-Raphson modificado para a correção da solução numérica obtida com outros resultados analíticos/numéricos disponíveis na literatura. Também, uma representação numérica para mancais hidrodinâmicos segmentados é apresentada, utilizando-se o desenvolvimento teórico para mancais simples. Neste caso a avaliação do procedimento numérico é fornecida comparando-se a solução numérica com resultados experimentais obtidos dos rotores de usina hidrogenada avaliada pelo CEPEL. Em ambos os procedimentos o rotor idealizado de jeffcott é empregado no estudo de casos. Verifica-se que os principais resultados associados aos efeitos da precessão auto-excitada (oil whirl), de chicoteamento (oil whip), e da estabilização dinâmica do sistema são reproduzidos pelos modelos numéricos utilizados.
In this work a formulation for the analysis of shaft-rotor-bearing type rotating systems is extendend to accommodate the effects of hydrodynamic bearings in its dynamic response. These effects, which are associated to the nonlinear force on the shaft at the bearings, are dependent of the transverse displacements, transverse linear velocities an the angular veolicty of the shaft. The structure behavior is modeled by employing the finite element method. The shaft is represented by the two node timoshenko model for bearns, with four desgrees-of-freedom per node and Hermite interpolation functions to represent the displacement fields along the bearn axis. Rotors are modeled by using concentrated inertia elements associated to the shaft degrees-of-freedom at the bearing nodal point. In the numerical analysis considering the time integration of the system differential equation, a step-by-step procedure was employed with the newmark technique in this unconditionally stable form. Due to the nonlearities associated with the hydrodynamic bearings, the solution of the system of equations is obtained using a modified Newton-Raphson precedure at each time step for solution convergence. In the evaluation of the proposed computacional system, comparison with solutions obtained from analytical/numerical results available in the literature are used. Also, a numeric represemtation of tilting-pad bearings is presented using the theory for plain journal bearings, under the same simplified conditions. In this case an evaluation of the numerical procedure is given by comparing calculated solutions with experimental results obtained from the evaluation of a hydrogenaration plant provided by CEPEL-Brazilian Research Center For Eletrobras. In both plain an tilting-pad journal bearing numerical procedures, the idealized Jeffcott rotor is employed as a case study for different operating conditions. As a result, it is shown that the solutions associated to the main oil whirl and oil whip effects and afterwards dynamic stabilization are represented by the proposed numerical procedures employed.
Books on the topic "Hydrodynamic and biokinetic modeling"
Shirer, Hampton N., ed. Nonlinear Hydrodynamic Modeling: A Mathematical Introduction. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/3-540-17557-1.
Full textN, Shirer Hampton, ed. Nonlinear hydrodynamic modeling: A mathematical introduction. Berlin: Springer-Verlag, 1987.
Find full textShirer, Hampton N. Nonlinear Hydrodynamic Modeling: A Mathematical Introduction. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987.
Find full textConstructive modeling of structural turbulence and hydrodynamic instabilities. New Jersey: World Scientific, 2009.
Find full textBelot︠s︡erkovskiĭ, O. M. Constructive modeling of structural turbulence and hydrodynamic instabilities. New Jersey: World Scientific, 2009.
Find full textBelot͡serkovskiĭ, O. M. Constructive modeling of structural turbulence and hydrodynamic instabilities. New Jersey: World Scientific, 2009.
Find full textGeiger, Sam R. Hydrodynamic modeling of towed buoyant submarine antenna's in multidirectional seas. Springfield, Va: Available from National Technical Information Service, 2000.
Find full textPeng, Jian. An integrated geochemical and hydrodynamic model for tidal coastal environments. Los Angeles, CA: University of Southern California, 2006.
Find full textMeasurement of soil-borne lead bioavailability in human adults, and its application in biokinetic modeling. [New York]: [Columbia University], 1998.
Find full textRahmani, M. Hydrodynamic modeling of corrosion of carbon steels and cast irons in sulfuric acid. Houston, TX: Published for the Materials Technology Institute of the Chemical Process Industries by the National Association of Corrosion Engineers, 1992.
Find full textBook chapters on the topic "Hydrodynamic and biokinetic modeling"
Hargrove, James L. "The Biokinetic Database." In Dynamic Modeling in the Health Sciences, 270–75. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1644-5_26.
Full textSinclair, Jennifer L. "Hydrodynamic modeling." In Circulating Fluidized Beds, 149–80. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0095-0_5.
Full textUrsegov, Stanislav, and Armen Zakharian. "Adaptive Hydrodynamic Modeling." In Adaptive Approach to Petroleum Reservoir Simulation, 51–60. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67474-8_6.
Full textHagler, Gina. "Hydrodynamic Theorists." In Modeling Ships and Space Craft, 65–83. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4596-8_4.
Full textTannenbaum, Lawrence V. "Validate Biokinetic Uptake Modeling for Freshwater Fish." In Ecological Risk Assessment, 91–96. Boca Raton : Taylor & Francis, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781351261289-14.
Full textRichards, R. G., and D. G. Torr. "Hydrodynamic models of the plasmasphere." In Modeling Magnetospheric Plasma, 67–77. Washington, D. C.: American Geophysical Union, 1988. http://dx.doi.org/10.1029/gm044p0067.
Full textYoshizawa, Akira. "Conventional Turbulence Modeling." In Hydrodynamic and Magnetohydrodynamic Turbulent Flows, 83–144. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1810-3_4.
Full textYoshizawa, Akira. "Subgrid-Scale Modeling." In Hydrodynamic and Magnetohydrodynamic Turbulent Flows, 145–72. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1810-3_5.
Full textYoshizawa, Akira. "Compressible Turbulence Modeling." In Hydrodynamic and Magnetohydrodynamic Turbulent Flows, 265–303. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1810-3_8.
Full textYoshizawa, Akira. "Magnetohydrodynamic Turbulence Modeling." In Hydrodynamic and Magnetohydrodynamic Turbulent Flows, 305–69. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-017-1810-3_9.
Full textConference papers on the topic "Hydrodynamic and biokinetic modeling"
Harries, Stefan, Claus Abt, and Hochkirch Hochkirch. "Hydrodynamic Modeling of Sailing Yachts." In SNAME 15th Chesapeake Sailing Yacht Symposium. SNAME, 2001. http://dx.doi.org/10.5957/csys-2001-005.
Full textTamsalu, R., S. Ovsienko, and V. Zalesny. "Hydrodynamic-oil spill modeling forecasting system." In 2008 IEEE/OES US/EU-Baltic International Symposium (BALTIC). IEEE, 2008. http://dx.doi.org/10.1109/baltic.2008.4625528.
Full textXu, Aiguo, Yudong Zhang, Feng Chen, Yanbiao Gan, Huilin Lai, and Chuandong Lin. "Discrete Boltzmann Modeling of Hydrodynamic Instability." In Proceedings of the 32nd International Symposium on Shock Waves (ISSW32 2019). Singapore: Research Publishing Services, 2019. http://dx.doi.org/10.3850/978-981-11-2730-4_0042-cd.
Full textLiu, Yun, and Hong-da Shi. "Hydrodynamic Modeling of Port Container Logistics." In First International Conference on Transportation Engineering. Reston, VA: American Society of Civil Engineers, 2007. http://dx.doi.org/10.1061/40932(246)206.
Full textWang, Lu, Jason Jonkman, Greg Hayman, Andy Platt, Bonnie Jonkman, and Amy Robertson. "Recent Hydrodynamic Modeling Enhancements in OpenFAST." In ASME 2022 4th International Offshore Wind Technical Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iowtc2022-98094.
Full textNarozhny, Boris. "Hydrodynamic approach to electronic transport." In LOW-DIMENSIONAL MATERIALS: THEORY, MODELING, EXPERIMENT, DUBNA 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0098950.
Full textde Soria, María Isabel García, Pablo Maynar, Gregory Schehr, Alain Barrat, Emmanuel Trizac, Joaquín Marro, Pedro L. Garrido, and Pablo I. Hurtado. "Hydrodynamic description for ballistic annihilation systems." In MODELING AND SIMULATION OF NEW MATERIALS: Proceedings of Modeling and Simulation of New Materials: Tenth Granada Lectures. AIP, 2009. http://dx.doi.org/10.1063/1.3082280.
Full textBennecib, N., D. Kerdoun, and M. Madaci. "Modeling of a magneto-hydrodynamic DC pump." In 2013 International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE). IEEE, 2013. http://dx.doi.org/10.1109/taeece.2013.6557344.
Full textLiu, Xiyan, Xulong Yuan, Kai Luo, Cheng Chen, and Xiaobin Qi. "Hydrodynamic Force Modeling of an Irregular Body." In OCEANS 2018 MTS/IEEE Charleston. IEEE, 2018. http://dx.doi.org/10.1109/oceans.2018.8604618.
Full textDoiphode, P. "Magneto-hydrodynamic modeling of gas discharge switches." In BEAMS 2002: 14th International Conference on High-Power Particle Beams. AIP, 2002. http://dx.doi.org/10.1063/1.1530898.
Full textReports on the topic "Hydrodynamic and biokinetic modeling"
Walker, David T., Ales Alajbegovic, and Jason D. Hunt. Hydrodynamic Modeling for Stationary Breaking Waves. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada427960.
Full textWang, P. F., C. N. Katz, D. B. Chadwick, and R. Barua. Hydrodynamic Modeling of Diego Garcia Lagoon. Fort Belvoir, VA: Defense Technical Information Center, August 2014. http://dx.doi.org/10.21236/ada611456.
Full textKnight, Earl E., and Esteban Rougier. Current SPE Hydrodynamic Modeling and Path Forward. Office of Scientific and Technical Information (OSTI), August 2012. http://dx.doi.org/10.2172/1048858.
Full textLeggett, Richard Wayne, Keith F. Eckerman, Wilson McGinn, and Dr Robert A. Meck. Controlling intake of uranium in the workplace: Applications of biokinetic modeling and occupational monitoring data. Office of Scientific and Technical Information (OSTI), January 2012. http://dx.doi.org/10.2172/1034382.
Full textClark, D. S. Modeling Hydrodynamic Instabilities and Mix in National Ignition Facility Hohlraums. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1572235.
Full textRocheleau, Greg. Predicting Performance of Macroalgae Farms with Hydrodynamic and Biological Modeling. Office of Scientific and Technical Information (OSTI), February 2022. http://dx.doi.org/10.2172/1846625.
Full textDieffenbach, Payson Coy, and Joshua Eugene Coleman. Diagnostic development and hydrodynamic modeling of warm dense plasmas at DARHT. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1467297.
Full textLackey, Tahirih, Susan Bailey, Joseph Gailani, Sung-Chan Kim, and Paul Schroeder. Hydrodynamic and sediment transport modeling for James River dredged material management. Engineer Research and Development Center (U.S.), September 2020. http://dx.doi.org/10.21079/11681/38255.
Full textYang, Zhaoqing, and Taiping Wang. Hydrodynamic Modeling Analysis of Union Slough Restoration Project in Snohomish River, Washington. Office of Scientific and Technical Information (OSTI), December 2010. http://dx.doi.org/10.2172/1004544.
Full textCoffing, Shane. Modeling Hydrodynamic Instabilities, Shocks, and Radiation Waves in High Energy Density Experiments. Office of Scientific and Technical Information (OSTI), January 2023. http://dx.doi.org/10.2172/1922742.
Full text