Academic literature on the topic 'Hydrocarbon activation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrocarbon activation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hydrocarbon activation"
Dietrich, Cornelia. "Antioxidant Functions of the Aryl Hydrocarbon Receptor." Stem Cells International 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/7943495.
Full textRobledo, Raymond F., and Mark L. Witten. "NK1-receptor activation prevents hydrocarbon-induced lung injury in mice." American Journal of Physiology-Lung Cellular and Molecular Physiology 276, no. 2 (February 1, 1999): L229—L238. http://dx.doi.org/10.1152/ajplung.1999.276.2.l229.
Full textKovalyshyn, B. M. "THE ROLE OF ELECTRICAL ACTIVATION OF MOLECULES REAGENTS COMBUSTION REACTION IN THE ENERGY EFFICIENCY OF FUEL COMBUSTION INSTALLATIONS WITH A PROPANE-BUTANE MIXTURE AND NATURAL GAS." Energy Technologies & Resource Saving, no. 3 (March 20, 2017): 19–24. http://dx.doi.org/10.33070/etars.3.2017.02.
Full textVorobyov, Yu, S. Mishchenko, and D. Zavrazhin. "Mechanical Activation of Hydrocarbon Motor Fuels." IOP Conference Series: Earth and Environmental Science 272 (June 21, 2019): 032067. http://dx.doi.org/10.1088/1755-1315/272/3/032067.
Full textCHEN, M. J., and J. W. RATHKE. "ChemInform Abstract: Phthalocyanines in Hydrocarbon Activation." ChemInform 28, no. 48 (August 2, 2010): no. http://dx.doi.org/10.1002/chin.199748321.
Full textHeid, S. E. "Correlation of Cardiotoxicity Mediated by Halogenated Aromatic Hydrocarbons to Aryl Hydrocarbon Receptor Activation." Toxicological Sciences 61, no. 1 (May 1, 2001): 187–96. http://dx.doi.org/10.1093/toxsci/61.1.187.
Full textPhillips, David H., and Philip L. Grover. "Polycyclic Hydrocarbon Activation: Bay Regions and Beyond." Drug Metabolism Reviews 26, no. 1-2 (January 1994): 443–67. http://dx.doi.org/10.3109/03602539409029808.
Full textMETCALFE, I., P. MIDDLETON, P. PETROLEKAS, and B. STEELE. "Hydrocarbon activation in solid state electrochemical cells☆." Solid State Ionics 57, no. 3-4 (October 1992): 259–64. http://dx.doi.org/10.1016/0167-2738(92)90156-j.
Full textChang, Ching-Yi, and Alvaro Puga. "Constitutive Activation of the Aromatic Hydrocarbon Receptor." Molecular and Cellular Biology 18, no. 1 (January 1, 1998): 525–35. http://dx.doi.org/10.1128/mcb.18.1.525.
Full textMathew, Lijoy K., Eric A. Andreasen, and Robert L. Tanguay. "Aryl Hydrocarbon Receptor Activation Inhibits Regenerative Growth." Molecular Pharmacology 69, no. 1 (October 7, 2005): 257–65. http://dx.doi.org/10.1124/mol.105.018044.
Full textDissertations / Theses on the topic "Hydrocarbon activation"
Hewage, Dilrukshi C. "SPECTROSCOPIC CHARACTERIZATION OF LANTHANUM-MEDIATED HYDROCARBON ACTIVATION." UKnowledge, 2015. http://uknowledge.uky.edu/chemistry_etds/54.
Full textMacdonald, Margaret G. Templeton J. L. "Hydrocarbon C-H activation with Tp[prime]Pt complexes." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2007. http://dc.lib.unc.edu/u?/etd,788.
Full textTitle from electronic title page (viewed Dec. 18, 2007). " ... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry." Discipline: Chemistry; Department/School: Chemistry. On t.p., [prime] is the mathematical symbol.
Furness, Sebastian George Barton. "Novel mechanisms for activation of the dioxin (Aryl-hydrocarbon) receptor /." Title page, table of contents and summary only, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09phf988.pdf.
Full textForrester, Alison Ruth. "Aryl hydrocarbon receptor activation in primary human keratinocytes and epidermal equivalents." Thesis, University of Newcastle Upon Tyne, 2012. http://hdl.handle.net/10443/1489.
Full textMosher, Carrie M. "CYP2C9 binding determinants and activation mechanisms for phenytoin and (S)-warfarin metabolism /." Thesis, Connect to this title online; UW restricted, 2008. http://hdl.handle.net/1773/8170.
Full textToldra, Reig Fidel. "Development of electrochemical devices for hydrocarbon sensing purposes in car exhaust gases." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/110968.
Full textThe present thesis is focused on the development of solid-state electrochemical devices for the selective detection of hydrocarbons in car exhaust gases. For this purpose, several materials were tested as electrodes and electrolytes. Catalytic activation of the working electrode has also been taken into account to boost the electrochemical reaction of the target analyte. Ethylene is one of the most abundant hydrocarbons in an exhaust gas and was selected as the target analyte to quantify the total amount of hydrocarbons. Not only the device has to be selective to ethylene but it must also have a low cross-sensitivity toward other pollutants abundant in an exhaust gas such as carbon monoxide, water, other hydrocarbons, nitrogen dioxide, etc. Thus, a solid-state potentiometric sensor was selected based on 8% Ytria-stabilized Zirconia (8YSZ) as electrolyte. Two electrodes were screen-printed on top of each face. First, several metal oxides were tested as working electrode with platinum (Pt) as reference electrode at 550ºC. Most of the materials were discarded because of their lack of selectivity to ethylene, high cross-sensitivity toward carbon monoxide or problems regarding stability. Fe0.7Cr1.3O3 mixed with 8YSZ was finally selected as the most promising material because of its selective response to ethylene with relatively low cross-sensitivity toward carbon monoxide. This sensor configuration was then exposed to water and phenanthrene and methylnaphthalene. This led to an increase of the cross-sensitivity of the device toward carbon monoxide making the device not suitable for the purposes of the present thesis. The approach to improve the sensor performance was to modify the reference electrode. Platinum, usually employed in literature as reference electrode, was exchanged for a mixed ionic-electronic conductor active to oxygen: La0.8Sr0.2MnO3 mixed with 8YSZ (LSM/8YSZ). Unfortunately, this increases the device activity toward carbon monoxide increasing its cross-sensitivity. Several nanoparticles were added onto the working electrode to improve the catalytic activity and boost the electrochemical reaction of ethylene. Nickel, titanium and aluminum (the last two elements combined with nickel) provided the best performance: selectivity to ethylene with low cross-sensitivity toward carbon monoxide, water and phenanthrene. The effect of the electrolyte thickness was also checked in the range from 0.1 to 1.2 mm. Although there was not a huge difference between them, the cross-sensitivity toward carbon monoxide was slightly lower for the thinnest sensor. Other alternatives to 8YSZ electrolyte were tested at lower working temperatures (400 to 550ºC) with the same electrodes materials: gadolinium-doped cerium oxide (CGO) and 10% scandia-stabilized Zirconia (ScSZ). ScsZ-based device showed a good performance in dry conditions but the addition of water decreased its suitability. Once improved the catalytic activity of the working electrode, both devices showed a good performance at lower temperature in dry conditions for ethylene concentration above 100 ppm but the best response was achieved at 550ºC. Both devices were selective to ethylene with low cross-sensitivity toward carbon monoxide, water and phenanthrene. The effect of mixing the working electrode with an ionic conductor (8YSZ) was also tested by mixing La0.87Sr0.13CrO3 (LSC) with 8YSZ and no change in response was observed when compared to the bare electrode. Finally, the best sensor configuration Fe0.7Cr1.3O3/8YSZ//8YSZ//LSM/8YSZ (after infiltration with nickel) was exposed to nitrogen dioxide to check the cross-sensitivity. The response was still selective to ethylene even with the addition of nitrogen dioxide plus water.
En la present tesi doctoral s'han desenvolupat dispositius electroquímics d'estat sòlid per a la detecció selectiva d' hidrocarburs als gasos d'escapament dels automòbils. Diversos materials van ser empleats per a tal fi. També es va dur a terme l'activació catalítica de l'elèctrode de treball per a millorar la reacció electroquímica al anàlit objectiu. L' etilè va ser seleccionat com anàlit objectiu per a quantificar la quantitat total d' hidrocarburs, ja que és un dels hidrocarburs més abundants en un gas d'escapament. Però el dispositiu no ha de ser tan sols selectiu a l'etilè, sinó que també deu proporcionar una baixa sensibilitat creuada a altres elements força abundants en un gas d'escapament com són el monòxid de carboni, l'aigua, el diòxid de nitrogen, etc. Així, el dispositiu consisteix en un sensor potenciomètric d'estat sòlid en el que l'òxid de zirconi estabilitzat amb un 8% d'òxid d'itri (8YSZ) és empleat como a electròlit. Els elèctrodes van impresos a cadascuna de les superfícies del dispositiu. Primer, diversos òxids es van emprar com a elèctrode de treball fent servir platí com elèctrode de referència a 550ºC. Molts dels materials van ser descartats per motiu de la seva manca de selectivitat al etilè, la seva alta sensibilitat creuada al monòxid de carboni o perquè la resposta no era estable. Finalment, el Fe0.7Cr1.3O3 mesclat amb 8YSZ va ser seleccionat com el material més prometedor atès a la selectivitat a l'etilè i la baixa sensibilitat creuada al monòxid de carboni. Aquesta configuració és doncs exposada tant a l'aigua com al fenantrè i al metilnaftalè. Això va produir un increment de la sensibilitat creuada al monòxid de carboni, fent que el dispositiu no resulti idoni per als objectius de la present tesi. Es va adoptar com a estratègia modificar l'elèctrode de referència. Platí, empleat sovintment com a elèctrode de referència a la bibliografia, va ser canviat per un conductor mixt iònic-electrònic actiu a l'oxigen: La0.8Sr0.2MnO3 mesclat amb 8YSZ (LSM/8YSZ). Malauradament, això va provocar l'augment de la sensibilitat creuada al monòxid de carboni. Diverses nanopartícules van ser afegides al elèctrode de treball per tal de millorar la seva activitat catalítica i així augmentar la reacció electroquímica de l'etilè. Níquel, titani i alumini (especialment la combinació dels dos darrers amb níquel) van donar la millor resposta: el sensor era selectiu a l¿etilè amb una baixa sensibilitat creuada al monòxid de carboni, l'aigua i al fenantrè. L'efecte del espessor del electròlit a la resposta del sensor també va ser avaluada en un rang de 0.1 a 1.2 mm. Malgrat que no hi ha una gran diferència en la resposta, la sensibilitat creuada al monòxid de carboni és menor en el cas del dispositiu més prim. Altres alternatives al 8YSZ com a electròlit van ser també avaluades per tal de treballar a temperatures menors (400 a 550ºC): òxid de ceri dopat amb gadolini (CGO) i òxid de zirconi estabilitzat amb un 10% d'òxid d'escandi (ScSZ). El dispositiu basat en ScSZ va mostrar un bon comportament a l'etilè a baixes temperatures en condiciones seques, però la adició d'aigua provocava un augment de la sensibilitat creuada al monòxid de carboni. Una vegada que l'elèctrode de treball es infiltrat amb níquel, ambdós dispositius mostraren un bon comportament a baixes temperatures en condicions seques per a concentracions d'etilè menors de 100 ppm, encara que la millor resposta fou obtinguda a 550ºC. La resposta era selectiva a l'etilè amb una baixa sensibilitat creuada al monòxid de carboni, l'aigua i el fenantrè. Es va comprovar també l'efecte de mesclar l'elèctrode de treball amb un conductor iònic (8YSZ). Es va mesclar La0.87Sr0.13CrO3 (LSC) amb 8YSZ sense observa cap canví en la resposta comparada amb l'electrode sense 8YSZ. la millor configuració Fe0.7Cr1.3O3/8YSZ//8YSZ//LSM/8YSZ (infiltrado con níquel) fou exposada
Toldra Reig, F. (2018). Development of electrochemical devices for hydrocarbon sensing purposes in car exhaust gases [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/110968
TESIS
Tkachenko, Anna [Verfasser]. "Aryl Hydrocarbon Receptor: Molecular Mechanisms and Structural Determinants of Activation and Physiology / Anna Tkachenko." Berlin : Freie Universität Berlin, 2018. http://d-nb.info/1160515824/34.
Full textKing, Clinton R. "Computational Studies of High-Oxidation State Main-Group Metal Hydrocarbon C-H Functionalization." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8118.
Full textBacklund, Maria. "Mechanisms of activation of the aryl hydrocarbon receptor by novel inducers of the CYP1A1 gene /." Stockholm, 2003. http://diss.kib.ki.se/2003/91-7349-549-2.
Full textCao, Wenjin. "SPECTROSCOPY AND FORMATION OF LANTHANUM-HYDROCARBON COMPLEXES." UKnowledge, 2018. https://uknowledge.uky.edu/chemistry_etds/106.
Full textBooks on the topic "Hydrocarbon activation"
Shilov, A. E. Activation and catalytic reactions of saturated hydrocarbons in the presence of metal complexes. Boston: Kluwer Academic Publishers, 2000.
Find full textShilov, A. E. Activation and catalytic reactions of saturated hydrocarbons in the presence of metal complexes. Dordrecht: Kluwer Academic Publishers, 2000.
Find full textRyabov, Vladimir. Oil and Gas Chemistry. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1017513.
Full textDavies, Julian A. Hydrocarbon Activation: From Serendipity to Selectivity. Vch Pub, 1990.
Find full text(Editor), Julian A. Davies, Patricia L. Watson (Editor), Arthur Greenberg (Editor), and Joel F. Liebman (Editor), eds. Selective Hydrocarbon Activation: Principles and Progress. Wiley, 1990.
Find full textA, Davies Julian, ed. Selective hydrocarbon activation: Principles and progress. New York, N.Y: VCH Publishers, 1990.
Find full textActivation and functionalization of C-H bonds. Washington, DC: American Chemical Society, 2004.
Find full text(Editor), Karen I. Goldberg, and Alan S. Goldman (Editor), eds. Activation and Functionalization of C-H Bonds (Acs Symposium Series, 885). An American Chemical Society Publication, 2004.
Find full textActivation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes. Dordrecht: Kluwer Academic Publishers, 2002. http://dx.doi.org/10.1007/0-306-46945-6.
Full textShilov, A. E., Georgiy B. Shul'pin, and Alexander E. Shilov. Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes Category should be: CHEMISTRY (and not medicine). Springer, 2000.
Find full textBook chapters on the topic "Hydrocarbon activation"
Widdel*, F., and F. Musat. "Diversity and Common Principles in Enzymatic Activation of Hydrocarbons." In Handbook of Hydrocarbon and Lipid Microbiology, 981–1009. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-77587-4_70.
Full textNorris, Cynthia M., and Joseph L. Templeton. "Hydrocarbon C—H Bond Activation with Tp'Pt Complexes." In ACS Symposium Series, 303–18. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0885.ch018.
Full textBoll, Matthias, Sebastian Estelmann, and Johann Heider. "Anaerobic Degradation of Hydrocarbons: Mechanisms of Hydrocarbon Activation in the Absence of Oxygen." In Anaerobic Utilization of Hydrocarbons, Oils, and Lipids, 1–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-33598-8_2-1.
Full textBoll, Matthias, Sebastian Estelmann, and Johann Heider. "Anaerobic Degradation of Hydrocarbons: Mechanisms of Hydrocarbon Activation in the Absence of Oxygen." In Anaerobic Utilization of Hydrocarbons, Oils, and Lipids, 3–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-50391-2_2.
Full textWang, Xiaoshi. "Hydrocarbon Oxygenation by Heme-Thiolate Enzymes." In A Novel Heme-Thiolate Peroxygenase AaeAPO and Its Implications for C-H Activation Chemistry, 1–21. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-03236-8_1.
Full textKhenkin, Alexander M., and Craig L. Hill. "Hydrocarbon Oxidation by a Polynuclear Iron Sandwich Polyoxotungstate - Hydrogen Peroxide System." In The Activation of Dioxygen and Homogeneous Catalytic Oxidation, 463. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3000-8_54.
Full textBoll, M., and J. Heider. "Anaerobic Degradation of Hydrocarbons: Mechanisms of C–H-Bond Activation in the Absence of Oxygen." In Handbook of Hydrocarbon and Lipid Microbiology, 1011–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-77587-4_71.
Full textJones, William D., R. Martin Chin, Lingzhen Dong, Simon B. Duckett, and Edward T. Hessell. "The Role of Bond Energies in Hydrocarbon Activation by Transition Metal Centers." In Energetics of Organometallic Species, 53–67. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2466-9_4.
Full textWang, Xiaoshi. "Hydrocarbon Hydroxylations Catalyzed by AaeAPO: Evidence of Radical Intermediates and Kinetic Isotope Effects." In A Novel Heme-Thiolate Peroxygenase AaeAPO and Its Implications for C-H Activation Chemistry, 41–57. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-03236-8_3.
Full textFukuda, Itsuko, and Hitoshi Ashida. "Suppressive Effects of Flavonoids on Activation of the Aryl Hydrocarbon Receptor Induced by Dioxins." In ACS Symposium Series, 369–74. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0993.ch031.
Full textConference papers on the topic "Hydrocarbon activation"
Zapivalov, N. P. "Activation of Modern Hydrocarbon Genesis by Natural-Technogeneous Processes." In IOR 2003 - 12th European Symposium on Improved Oil Recovery. European Association of Geoscientists & Engineers, 2003. http://dx.doi.org/10.3997/2214-4609-pdb.7.p063.
Full textCocco, Pierluigi, Maria Grazia Ennas, Mariagrazia Zucca, Sonia Sanna, Marina Padoan, Angela Gambelunghe, Aldo Scarpa, et al. "O08-3 Aryl hydrocarbon receptor (AHR) activation and risk of lymphoma subtypes." In Occupational Health: Think Globally, Act Locally, EPICOH 2016, September 4–7, 2016, Barcelona, Spain. BMJ Publishing Group Ltd, 2016. http://dx.doi.org/10.1136/oemed-2016-103951.43.
Full textEdwards, Amanda L., Evripidis Gavathiotis, James L. LaBelle, Craig R. Braun, Kwadwo Opoku-Nsiah, Gregory H. Bird, and Loren D. Walensky. "Abstract 4611: Multimodal activation of apoptosis by a hydrocarbon-stapled PUMA BH3 helix." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-4611.
Full textSuarez, Guadalupe V., Binh Nguyen, and Andrea Loaiza-Perez. "Abstract 4453: Aryl hydrocarbon receptor activation by Aminoflavone: New molecular target for renal cancer treatment." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-4453.
Full textLiu, SHuang, Bin Yan, and Yongguang Tao. "Abstract 4757: Radioresistance is linked with stem-like properties via activation of aryl hydrocarbon receptor." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-4757.
Full textDesai, Tapan, John Lawson, and Pawel Keblinski. "Modeling the Initial Stage of Crosslinked Aromatic Hydrocarbon Polymer Pyrolysis." In ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ht2012-58265.
Full textMaria, Volkova, Cevher Ozcan, Monica Palmeri, and Raymond Russell. "Abstract C227: Doxorubicin induces AKT phosphorylation through activation of the aryl hydrocarbon receptor in the heart." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 15-19, 2009; Boston, MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/1535-7163.targ-09-c227.
Full textGorbunov, Mykola, Alexandr Kravchenko, Juraj Gerlici, Kateryna Kravchenko, Vladimir Hauser, and Tomas Lack. "Processing and recycling of rubber and oil wastes into hydrocarbon fuel by method of physico-chemical activation." In 18th International Scientific Conference Engineering for Rural Development. Latvia University of Life Sciences and Technologies, 2019. http://dx.doi.org/10.22616/erdev2019.18.n437.
Full textGusev, Boris. "THE RESEARCHES OF THE ELECTROMAGNETIC FIELD ON THE ACTIVATION OF COMBUSTION AND CHANGES IN THE COMPOSITION AND HYDROCARBON GASES." In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019/5.2/s20.092.
Full textCallero, Mariana A., Gabriela Luzzani, Tracey D. Bradshaw, and Andrea I. Loaiza Pérez. "Abstract 4653: 5F203-induced reactive oxidative species, DNA damage and apoptosis involves aryl hydrocarbon activation in ovarian cancer cells." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-4653.
Full textReports on the topic "Hydrocarbon activation"
Heinekey, D. M. Homolytic activation of hydrocarbons and hydrogen by persistent metal radicals. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6716196.
Full textHeinekey, D. M. Homolytic activation of hydrocarbons and hydrogen by persistent metal radicals. Progress report, January 1, 1992--November 1, 1992. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10136755.
Full text[Homolytic activation of hydrocarbons and hydrogen by persistent radicals]. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6837370.
Full text[Homolytic activation of hydrocarbons and hydrogen by persistent radicals]. Final report. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/10122867.
Full text