Academic literature on the topic 'Hydrocarbon activation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydrocarbon activation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hydrocarbon activation"

1

Dietrich, Cornelia. "Antioxidant Functions of the Aryl Hydrocarbon Receptor." Stem Cells International 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/7943495.

Full text
Abstract:
The aryl hydrocarbon receptor (AhR) is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT) and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.
APA, Harvard, Vancouver, ISO, and other styles
2

Robledo, Raymond F., and Mark L. Witten. "NK1-receptor activation prevents hydrocarbon-induced lung injury in mice." American Journal of Physiology-Lung Cellular and Molecular Physiology 276, no. 2 (February 1, 1999): L229—L238. http://dx.doi.org/10.1152/ajplung.1999.276.2.l229.

Full text
Abstract:
Recent evidence suggests that neurokinin (NK)-receptor activation may have a protective role in maintaining lung integrity when challenged by airborne toxicants such as sulfur dioxide, ozone, acrolein, or hydrocarbons. To investigate the effect of NK1-receptor activation on hydrocarbon-induced lung injury, B6.A.D. ( Ahr d / Nats ) mice received subchronic exposures to JP-8 jet fuel (JP-8). Lung injury was assessed by the analysis of pulmonary physiology, bronchoalveolar lavage fluid, and morphology. Hydrocarbon exposure to target JP-8 concentrations of 50 mg/m3, with saline treatment, was characterized by enhanced respiratory permeability to 99mTc-labeled diethylenetriaminepentaacetic acid, alveolar macrophage toxicity, and bronchiolar epithelial damage. Mice administered [Sar9,Met(O2)11]substance P, an NK1-receptor agonist, after each JP-8 exposure had the appearance of normal pulmonary values and tissue morphology. In contrast, endogenous NK1-receptor antagonism by CP-96345 administration exacerbated JP-8-enhanced permeability, alveolar macrophage toxicity, and bronchiolar epithelial injury. These data indicate that NK1-receptor activation may have a protective role in preventing the development of hydrocarbon-induced lung injury, possibly through the modulation of bronchiolar epithelial function.
APA, Harvard, Vancouver, ISO, and other styles
3

Kovalyshyn, B. M. "THE ROLE OF ELECTRICAL ACTIVATION OF MOLECULES REAGENTS COMBUSTION REACTION IN THE ENERGY EFFICIENCY OF FUEL COMBUSTION INSTALLATIONS WITH A PROPANE-BUTANE MIXTURE AND NATURAL GAS." Energy Technologies & Resource Saving, no. 3 (March 20, 2017): 19–24. http://dx.doi.org/10.33070/etars.3.2017.02.

Full text
Abstract:
The state energy efficiency problems of fuel installations on hydrocarbons where analyzed. Shown connection energy fuel systems on hydrocarbon fuels with electrical activation and polarized molecules reagents in the field of pulsed high voltage. The results of experimental studies on the use of molecules reagents electrical activation of combustion reaction at burning propane-butane mixture and natural gas in the air. The obtained experimental results prove the effectiveness of electrical activation of molecules reagent of the combustion to improve fuel systems efficiency for hydrocarbon carriers. With us was formulated the concept of energy efficiency ricing of fuel plants, which is to increase energy efficiency by increasing the heat output of fuel combusted in the compensation of thermal energy that is spent on thermical activation molecules reagents combustion reaction, energy from other energy factors. Bibl. 11, Fig. 4.
APA, Harvard, Vancouver, ISO, and other styles
4

Vorobyov, Yu, S. Mishchenko, and D. Zavrazhin. "Mechanical Activation of Hydrocarbon Motor Fuels." IOP Conference Series: Earth and Environmental Science 272 (June 21, 2019): 032067. http://dx.doi.org/10.1088/1755-1315/272/3/032067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

CHEN, M. J., and J. W. RATHKE. "ChemInform Abstract: Phthalocyanines in Hydrocarbon Activation." ChemInform 28, no. 48 (August 2, 2010): no. http://dx.doi.org/10.1002/chin.199748321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Heid, S. E. "Correlation of Cardiotoxicity Mediated by Halogenated Aromatic Hydrocarbons to Aryl Hydrocarbon Receptor Activation." Toxicological Sciences 61, no. 1 (May 1, 2001): 187–96. http://dx.doi.org/10.1093/toxsci/61.1.187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Phillips, David H., and Philip L. Grover. "Polycyclic Hydrocarbon Activation: Bay Regions and Beyond." Drug Metabolism Reviews 26, no. 1-2 (January 1994): 443–67. http://dx.doi.org/10.3109/03602539409029808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

METCALFE, I., P. MIDDLETON, P. PETROLEKAS, and B. STEELE. "Hydrocarbon activation in solid state electrochemical cells☆." Solid State Ionics 57, no. 3-4 (October 1992): 259–64. http://dx.doi.org/10.1016/0167-2738(92)90156-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chang, Ching-Yi, and Alvaro Puga. "Constitutive Activation of the Aromatic Hydrocarbon Receptor." Molecular and Cellular Biology 18, no. 1 (January 1, 1998): 525–35. http://dx.doi.org/10.1128/mcb.18.1.525.

Full text
Abstract:
ABSTRACT The ligand-activated aromatic hydrocarbon receptor (AHR) dimerizes with the AHR nuclear translocator (ARNT) to form a functional complex that transactivates expression of the cytochrome P-450CYP1A1 gene and other genes in the dioxin-inducible [Ah] gene battery. Previous work from this laboratory has shown that the activity of the CYP1A1 enzyme negatively regulates this process. To study the relationship between CYP1A1 activity and Ah receptor activation we used CYP1A1-deficient mouse hepatomac37 cells and CYP1A1- and AHR-deficient African green monkey kidney CV-1 cells. Using gel mobility shift and luciferase reporter gene expression assays, we found that c37 cells that had not been exposed to exogenous Ah receptor ligands already contained transcriptionally active AHR-ARNT complexes, a finding that we also observed in wild-type Hepa-1 cells treated with Ellipticine, a CYP1A1 inhibitor. In CV-1 cells, transient expression of AHR and ARNT leads to high levels of AHR–ARNT-dependent luciferase gene expression even in the absence of an agonist. Using a green fluorescent protein-tagged AHR, we showed that elevated reporter gene expression correlates with constitutive nuclear localization of the AHR. Transcriptional activation of the luciferase reporter gene observed in CV-1 cells is significantly decreased by (i) expression of a functional CYP1A1 enzyme, (ii) competition with chimeric or truncated AHR proteins containing the AHR ligand-binding domain, and (iii) treatment with the AHR antagonist α-naphthoflavone. These results suggest that a CYP1A1 substrate, which accumulates in cells lacking CYP1A1 enzymatic activity, is an AHR ligand responsible for endogenous activation of the Ah receptor.
APA, Harvard, Vancouver, ISO, and other styles
10

Mathew, Lijoy K., Eric A. Andreasen, and Robert L. Tanguay. "Aryl Hydrocarbon Receptor Activation Inhibits Regenerative Growth." Molecular Pharmacology 69, no. 1 (October 7, 2005): 257–65. http://dx.doi.org/10.1124/mol.105.018044.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hydrocarbon activation"

1

Hewage, Dilrukshi C. "SPECTROSCOPIC CHARACTERIZATION OF LANTHANUM-MEDIATED HYDROCARBON ACTIVATION." UKnowledge, 2015. http://uknowledge.uky.edu/chemistry_etds/54.

Full text
Abstract:
Lanthanum (La)-promoted hydrocarbon activation reactions were carried out in a laser vaporization metal cluster beam source. Reaction products were identified by time-of-flight mass spectrometry, and the approximate ionization thresholds of La-hydrocarbon complexes were located with photoionization efficiency spectroscopy. The accurate ionization energies and vibrational frequencies of the La complexes were measured using mass analyzed threshold ionization (MATI) spectroscopy. Their molecular structures and electronic states were investigated by combing the MATI spectroscopic measurements with quantum chemical and Franck-Condon factor calculations. In this dissertation, La-mediated C-H and C-C bond activation reactions were investigated for several small alkynes (acetylene, propyne) and alkenes (propene, 1,3-butadiene, 1-butene). The C-H bond activation was observed for both alkynes and alkenes and the C-C bond activation for alkenes. The metal-hydrocarbon intermediates formed by the C-H or C-C bond cleavage reacted further with one or more parent hydrocarbon molecules to produce larger species by C-C bond coupling reactions. Structural isomers of the intermediates and products were identified within an energy range of several kilocalories per mole. Reaction pathways for the intermediate and product formations were studied by theoretical calculations. The ground electron configuration of La atom is 4d16s2.Upon the hydrocarbon coordination, La atom is excited to a 4d26s1 configuration to facilitate the formation of two La-C bonds. After the metal-hydrocarbon complex formation, only one electron is left in the 6s orbital of the metal center. Therefore, the most stable electronic state of the La complexes studied in this work is in a doublet spin state. Ionization of the doublet state yields a preferred singlet ion state. Although La is in the formal oxidation state of +2, the ionization energies of the metal-complexes are significantly lower than that of the free atom. This observation suggests that the concept of the formal oxidation state widely used in chemistry textbooks is not useful in predicting the change of the ionization energy of a metal atom upon ligation. Moreover, ionization has a very small effect on the geometry of the hydrocarbon fragment in each complex but significantly reduces the La-C distances as a result of an additional charge interaction.
APA, Harvard, Vancouver, ISO, and other styles
2

Macdonald, Margaret G. Templeton J. L. "Hydrocarbon C-H activation with Tp[prime]Pt complexes." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2007. http://dc.lib.unc.edu/u?/etd,788.

Full text
Abstract:
Thesis (Ph. D.)--University of North Carolina at Chapel Hill, 2007.
Title from electronic title page (viewed Dec. 18, 2007). " ... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry." Discipline: Chemistry; Department/School: Chemistry. On t.p., [prime] is the mathematical symbol.
APA, Harvard, Vancouver, ISO, and other styles
3

Furness, Sebastian George Barton. "Novel mechanisms for activation of the dioxin (Aryl-hydrocarbon) receptor /." Title page, table of contents and summary only, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09phf988.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Forrester, Alison Ruth. "Aryl hydrocarbon receptor activation in primary human keratinocytes and epidermal equivalents." Thesis, University of Newcastle Upon Tyne, 2012. http://hdl.handle.net/10443/1489.

Full text
Abstract:
The Aryl hydrocarbon Receptor (AhR) mediates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulting in the human specific toxicity, chloracne. To test whether the chloracnegenic potential of AhR-agonists depends upon binding affinity for the AhR, residency and/or down-regulation of the AhR, we investigated the effects of different AhR agonists in primary human keratinocytes and epidermal equivalents. The AhR agonists used were high-affinity, high-residency and high-potency TCDD, and two agonists not known to induce chloracne; low-affinity, low-residency and low-potency β-naphthoflavone (β-NF) and the low-affinity, low-residency and high-potency physiological agonist 2-(1‟H-indole-3‟-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). -NF, a partial agonist was used to test AhR dependency. The effects of these agonists on AhR activation, terminal differentiation, autophagy and expression of cathepsin D (CTSD) in primary human keratinocytes and epidermal equivalents were determined. All three agonists induced AhR activation by XRE-luciferase assay, which was inhibited by α-NF, demonstrating AhR dependence of the ligands. AhR degradation was induced by all ligands and CYP1A1 was induced strongly by TCDD but weakly by β-NF and ITE. CYP1A1 and XRE-luciferase induction correlated with ligand binding affinity; ranking levels of binding affinity as TCDD>β-NF>ITE. TCDD treatment induced a chloracne-like phenotype in epidermal equivalents, with a decrease in viable cell layer thickness and compacted stratum corneum. This was not induced by β-NF or ITE. To investigate the differential effects of AhR-ligands on epidermal equivalent phenotype, we studied differentiation markers filaggrin, involucrin and TGM-1. TGM-1 expression was induced specifically by TCDD while aberrant expression of involucrin and filaggrin were induced by TCDD, β-NF and ITE. AhR activation was not associated with increased apoptosis. Caspase-3 independent cell death has been implicated as a mechanism of decreased thickness of the viable cell layer, so we studied the effects of AhR-agonists on autophagy. Autophagy in keratinocytes and epidermal equivalents was characterised by induction of LC3 II, p62 degradation and transmission electron microscopy. TCDD robustly induced active autophagy, while ITE induced lower levels and β-NF blocked autophagy. TCDD- and ITE-induced autophagy in epidermal equivalents appeared to result in decreased numbers of lamellar bodies, which may account at least in part for the compacted stratum corneum phenotype shown by the TCDD-induced phenotype in epidermal equivalents and chloracne. As CTSD has been implicated in keratinocyte differentiation and an XRE domain has been identified upstream of CTSD, we studied the effects of ligand-dependent AhR activation on lysosomal aspartic protease CTSD expression. CTSD was increased by AhR activity in epidermal equivalents. Induction of CYP1A1 did not appear to be a specific biomarker of chloracnegenic potential of AhR agonists. The data presented have shown differential effects by TCDD, β-NF and ITE on autophagy that we hypothesise contributes to the chloracne phenotype. In this thesis, potential biomarkers specific to chloracne were identified in keratinocytes, TGM-1, CTSD, autophagy and decreased lamellar bodies, although further validation is required.
APA, Harvard, Vancouver, ISO, and other styles
5

Mosher, Carrie M. "CYP2C9 binding determinants and activation mechanisms for phenytoin and (S)-warfarin metabolism /." Thesis, Connect to this title online; UW restricted, 2008. http://hdl.handle.net/1773/8170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Toldra, Reig Fidel. "Development of electrochemical devices for hydrocarbon sensing purposes in car exhaust gases." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/110968.

Full text
Abstract:
En la presente tesis doctoral se han desarrollado dispositivos electroquímicos de estado sólido para la detección selectiva de hidrocarburos en los gases de escape de coches. Diversos materiales fueron empleados para ello. También se llevó a cabo la activación catalítica del electrodo de trabajo para mejorar la reacción electroquímica del analito objetivo. El etileno fue seleccionado como el analito objetivo para cuantificar la cantidad total de hidrocarburos ya que es uno de los hidrocarburos más abundantes en un gas de escape. Pero el dispositivo no solo debe proporcionar una respuesta selectiva al etileno, sino que también debe tener una baja sensibilidad cruzada a otros compuestos también abundantes en un gas de escape como monóxido de carbono, agua, dióxido de nitrógeno, etc. El dispositivo consiste en un sensor potenciométrico de estado sólido en el que óxido de zirconio estabilizado con 8% de óxido de itrio (8YSZ) es empleado como electrolito. Dos electrodos son impresos en la superficie de cada cara. Primero, diversos óxidos fueron empleados como electrodo de trabajo utilizando a su vez platino como electrodo de referencia a 550ºC. Muchos de los materiales fueron descartados por su falta de selectividad al etileno, su alta sensibilidad cruzada al monóxido de carbono o por su respuesta no estable. Finalmente, Fe0.7Cr1.3O3 mezclado con 8YSZ fue seleccionado como el material más prometedor dada su buena selectividad al etileno con baja sensibilidad cruzada al monóxido de carbono. Esta configuración fue expuesta a agua como a fenantreno y metilnaftaleno. Esto produjo un aumento de la sensibilidad cruzada del dispositivo al monóxido de carbono, motivo por el que el sensor no sea adecuado para los objetivos de esta tesis. La estrategia adoptada consistió en actuar sobre el electrodo de referencia. El Platino, empleado habitualmente en la bibliografía como electrodo de referencia, fue cambiado por un conductor mixto iónico-electrónico activo al oxigeno: La0.8Sr0.2MnO3 mezclado con 8YSZ (LSM/8YSZ). Desgraciadamente, esto provocó un aumento de la sensibilidad cruzada al monóxido de carbono. Diversas nanopartículas fueron añadidas en el electrodo de trabajo para mejorar la actividad catalítica y aumentar la reacción electroquímica al etileno. Níquel, titanio y aluminio (especialmente la combinación de los dos últimos con níquel) dieron la mejor respuesta: el sensor era selectivo al etileno con baja sensibilidad cruzada al monóxido de carbono, agua y fenantreno. El efecto del espesor del electrolito en la respuesta del sensor también fue evaluado en un rango de 0.1 a 1.2 mm. Aunque no había una gran diferencia en la respuesta, la sensibilidad cruzada al monóxido de carbono era menor en el caso del dispositivo más fino. Otras alternativas al 8YSZ como electrolito también fueron evaluadas para trabajar a menores temperaturas (400 a 550ºC): oxido de cerio dopado con gadolinio (CGO) y óxido de zirconio estabilizado con un 10% de óxido de escandio (ScSZ). El dispositivo basado en ScSZ mostró un buen comportamiento a etileno a bajas temperaturas y en condiciones secas pero la adición de agua provocaba un aumento de la sensibilidad cruzada al monóxido de carbono. Una vez infiltrado el electrodo de trabajo con níquel, ambos dispositivos mostraron un buen comportamiento a bajas temperaturas en condiciones secas para concentraciones de etileno inferiores a 100 ppm, aunque la mejor respuesta fue obtenida a 550ºC. Ambos dispositivos mostraron una respuesta selectiva al etileno con baja sensibilidad cruzada al monóxido de carbono, agua y fenantreno. Se estudió también el efecto de mezclar el electrodo de trabajo con un conductor iónico (8YSZ). Se mezcló La0.87Sr0.13CrO3 (LSC) con 8YSZ sin observarse un cambio en la respuesta comparado con el electrodo solo. Además la mejor configuración Fe0.7Cr1.3O3/8YSZ//8YSZ//LSM/8YSZ (infiltrado con níquel) fue expuesto a dioxide de nitr
The present thesis is focused on the development of solid-state electrochemical devices for the selective detection of hydrocarbons in car exhaust gases. For this purpose, several materials were tested as electrodes and electrolytes. Catalytic activation of the working electrode has also been taken into account to boost the electrochemical reaction of the target analyte. Ethylene is one of the most abundant hydrocarbons in an exhaust gas and was selected as the target analyte to quantify the total amount of hydrocarbons. Not only the device has to be selective to ethylene but it must also have a low cross-sensitivity toward other pollutants abundant in an exhaust gas such as carbon monoxide, water, other hydrocarbons, nitrogen dioxide, etc. Thus, a solid-state potentiometric sensor was selected based on 8% Ytria-stabilized Zirconia (8YSZ) as electrolyte. Two electrodes were screen-printed on top of each face. First, several metal oxides were tested as working electrode with platinum (Pt) as reference electrode at 550ºC. Most of the materials were discarded because of their lack of selectivity to ethylene, high cross-sensitivity toward carbon monoxide or problems regarding stability. Fe0.7Cr1.3O3 mixed with 8YSZ was finally selected as the most promising material because of its selective response to ethylene with relatively low cross-sensitivity toward carbon monoxide. This sensor configuration was then exposed to water and phenanthrene and methylnaphthalene. This led to an increase of the cross-sensitivity of the device toward carbon monoxide making the device not suitable for the purposes of the present thesis. The approach to improve the sensor performance was to modify the reference electrode. Platinum, usually employed in literature as reference electrode, was exchanged for a mixed ionic-electronic conductor active to oxygen: La0.8Sr0.2MnO3 mixed with 8YSZ (LSM/8YSZ). Unfortunately, this increases the device activity toward carbon monoxide increasing its cross-sensitivity. Several nanoparticles were added onto the working electrode to improve the catalytic activity and boost the electrochemical reaction of ethylene. Nickel, titanium and aluminum (the last two elements combined with nickel) provided the best performance: selectivity to ethylene with low cross-sensitivity toward carbon monoxide, water and phenanthrene. The effect of the electrolyte thickness was also checked in the range from 0.1 to 1.2 mm. Although there was not a huge difference between them, the cross-sensitivity toward carbon monoxide was slightly lower for the thinnest sensor. Other alternatives to 8YSZ electrolyte were tested at lower working temperatures (400 to 550ºC) with the same electrodes materials: gadolinium-doped cerium oxide (CGO) and 10% scandia-stabilized Zirconia (ScSZ). ScsZ-based device showed a good performance in dry conditions but the addition of water decreased its suitability. Once improved the catalytic activity of the working electrode, both devices showed a good performance at lower temperature in dry conditions for ethylene concentration above 100 ppm but the best response was achieved at 550ºC. Both devices were selective to ethylene with low cross-sensitivity toward carbon monoxide, water and phenanthrene. The effect of mixing the working electrode with an ionic conductor (8YSZ) was also tested by mixing La0.87Sr0.13CrO3 (LSC) with 8YSZ and no change in response was observed when compared to the bare electrode. Finally, the best sensor configuration Fe0.7Cr1.3O3/8YSZ//8YSZ//LSM/8YSZ (after infiltration with nickel) was exposed to nitrogen dioxide to check the cross-sensitivity. The response was still selective to ethylene even with the addition of nitrogen dioxide plus water.
En la present tesi doctoral s'han desenvolupat dispositius electroquímics d'estat sòlid per a la detecció selectiva d' hidrocarburs als gasos d'escapament dels automòbils. Diversos materials van ser empleats per a tal fi. També es va dur a terme l'activació catalítica de l'elèctrode de treball per a millorar la reacció electroquímica al anàlit objectiu. L' etilè va ser seleccionat com anàlit objectiu per a quantificar la quantitat total d' hidrocarburs, ja que és un dels hidrocarburs més abundants en un gas d'escapament. Però el dispositiu no ha de ser tan sols selectiu a l'etilè, sinó que també deu proporcionar una baixa sensibilitat creuada a altres elements força abundants en un gas d'escapament com són el monòxid de carboni, l'aigua, el diòxid de nitrogen, etc. Així, el dispositiu consisteix en un sensor potenciomètric d'estat sòlid en el que l'òxid de zirconi estabilitzat amb un 8% d'òxid d'itri (8YSZ) és empleat como a electròlit. Els elèctrodes van impresos a cadascuna de les superfícies del dispositiu. Primer, diversos òxids es van emprar com a elèctrode de treball fent servir platí com elèctrode de referència a 550ºC. Molts dels materials van ser descartats per motiu de la seva manca de selectivitat al etilè, la seva alta sensibilitat creuada al monòxid de carboni o perquè la resposta no era estable. Finalment, el Fe0.7Cr1.3O3 mesclat amb 8YSZ va ser seleccionat com el material més prometedor atès a la selectivitat a l'etilè i la baixa sensibilitat creuada al monòxid de carboni. Aquesta configuració és doncs exposada tant a l'aigua com al fenantrè i al metilnaftalè. Això va produir un increment de la sensibilitat creuada al monòxid de carboni, fent que el dispositiu no resulti idoni per als objectius de la present tesi. Es va adoptar com a estratègia modificar l'elèctrode de referència. Platí, empleat sovintment com a elèctrode de referència a la bibliografia, va ser canviat per un conductor mixt iònic-electrònic actiu a l'oxigen: La0.8Sr0.2MnO3 mesclat amb 8YSZ (LSM/8YSZ). Malauradament, això va provocar l'augment de la sensibilitat creuada al monòxid de carboni. Diverses nanopartícules van ser afegides al elèctrode de treball per tal de millorar la seva activitat catalítica i així augmentar la reacció electroquímica de l'etilè. Níquel, titani i alumini (especialment la combinació dels dos darrers amb níquel) van donar la millor resposta: el sensor era selectiu a l¿etilè amb una baixa sensibilitat creuada al monòxid de carboni, l'aigua i al fenantrè. L'efecte del espessor del electròlit a la resposta del sensor també va ser avaluada en un rang de 0.1 a 1.2 mm. Malgrat que no hi ha una gran diferència en la resposta, la sensibilitat creuada al monòxid de carboni és menor en el cas del dispositiu més prim. Altres alternatives al 8YSZ com a electròlit van ser també avaluades per tal de treballar a temperatures menors (400 a 550ºC): òxid de ceri dopat amb gadolini (CGO) i òxid de zirconi estabilitzat amb un 10% d'òxid d'escandi (ScSZ). El dispositiu basat en ScSZ va mostrar un bon comportament a l'etilè a baixes temperatures en condiciones seques, però la adició d'aigua provocava un augment de la sensibilitat creuada al monòxid de carboni. Una vegada que l'elèctrode de treball es infiltrat amb níquel, ambdós dispositius mostraren un bon comportament a baixes temperatures en condicions seques per a concentracions d'etilè menors de 100 ppm, encara que la millor resposta fou obtinguda a 550ºC. La resposta era selectiva a l'etilè amb una baixa sensibilitat creuada al monòxid de carboni, l'aigua i el fenantrè. Es va comprovar també l'efecte de mesclar l'elèctrode de treball amb un conductor iònic (8YSZ). Es va mesclar La0.87Sr0.13CrO3 (LSC) amb 8YSZ sense observa cap canví en la resposta comparada amb l'electrode sense 8YSZ. la millor configuració Fe0.7Cr1.3O3/8YSZ//8YSZ//LSM/8YSZ (infiltrado con níquel) fou exposada
Toldra Reig, F. (2018). Development of electrochemical devices for hydrocarbon sensing purposes in car exhaust gases [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/110968
TESIS
APA, Harvard, Vancouver, ISO, and other styles
7

Tkachenko, Anna [Verfasser]. "Aryl Hydrocarbon Receptor: Molecular Mechanisms and Structural Determinants of Activation and Physiology / Anna Tkachenko." Berlin : Freie Universität Berlin, 2018. http://d-nb.info/1160515824/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

King, Clinton R. "Computational Studies of High-Oxidation State Main-Group Metal Hydrocarbon C-H Functionalization." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8118.

Full text
Abstract:
High-oxidation state main-group metal complexes are potential alternatives to transition metals for electrophilic C-H functionalization reactions. However, there is little known about how selection of the p-block, main-group metal and ligand impact C-H activation and functionalization thermodynamics and reactivity. Chapter 2 reports density functional theory (DFT) calculations used to determine qualitative and quantitative features of C-H activation and metal-methyl functionalization energy landscapes for reaction between high-oxidation state d10s0 InIII, TlIII, SnIV, and PbIV carboxylate complexes with methane. While the main-group metal influences the C-H activation barrier height in a periodic manner, the carboxylate ligand has a much larger quantitative impact on C-H activation with stabilized carboxylate anions inducing the lowest barriers. For metal-methyl reductive functionalization reactions, the barrier heights, are correlated to bond heterolysis energies as model two-electron reduction energies.In Chapter 3, DFT calculations reveal that arene C-H functionalization by the p-block main-group metal complex TlIII(TFA)3 (TFA = trifluoroacetate) occurs by a C-H activation mechanism akin to transition metal-mediated C-H activation. For benzene, toluene, and xylenes a one-step C-H activation is preferred over electron transfer or proton-coupled electron transfer. The proposed C-H activation mechanism is consistent with calculation and comparison to experiment, of arene thallation rates, regioselectivity, and H/D kinetic isotope effects. For trimethyl and tetramethyl substituted arenes, electron transfer becomes the preferred pathway and thermodynamic and kinetic calculations correctly predict the experimentally reported electron transfer crossover region.In Chapter 4, DFT calculations are used to understand the C-H oxidation reactions of methane and isobutane with SbVF5. SbVF5 is generally assumed to oxidize methane through a methanium-methyl cation mechanism. DFT calculations were used to examine methane oxidation by SbVF5 in the presence of CO leading to the acylium cation, [CH3CO]+. While there is a low barrier for methane protonation by [SbVF6]-[H]+ to give the [SbVF5]-[CH5]+ ion pair, H2 dissociation is a relatively higher energy process, even with CO assistance, and so this protonation pathway is reversible. The C-H activation/[]-bond metathesis mechanism with formation of an SbV-Me intermediate is the lowest energy pathway examined. This pathway leads to [CH3CO]+ by functionalization of the SbV-Me intermediate by CO, and is consistent with no observation of H2. In contrast to methane, due to the much lower carbocation hydride affinity, isobutane significantly favors hydride transfer to give tert-butyl carbocation with concomitant SbV to SbIII reduction. In this mechanism, the resulting highly acidic SbV-H intermediate provides a route to H2 through protonation of isobutane.
APA, Harvard, Vancouver, ISO, and other styles
9

Backlund, Maria. "Mechanisms of activation of the aryl hydrocarbon receptor by novel inducers of the CYP1A1 gene /." Stockholm, 2003. http://diss.kib.ki.se/2003/91-7349-549-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cao, Wenjin. "SPECTROSCOPY AND FORMATION OF LANTHANUM-HYDROCARBON COMPLEXES." UKnowledge, 2018. https://uknowledge.uky.edu/chemistry_etds/106.

Full text
Abstract:
Lanthanum-mediated bond activation reactions of small hydrocarbon molecules, including alkenes, alkynes, and alkadienes, were carried out in a laser vaporization metal cluster beam source. Time-of-flight mass spectrometry and mass-analyzed threshold ionization (MATI) spectroscopy, in combination with quantum chemical and multi-dimensional Franck-Condon factor calculations, were utilized to identify the reaction products and investigate their geometries, electronic structures, and formation mechanisms. La-hydrocarbon association was only observed in the reaction of La with isoprene. C-H bond activation was observed in all reactions, hydrogen elimination was observed as the prominent reaction for the alkenes (2-butene, isobutene, 1-pentene, and 2-pentene), alkynes (1-butyne, 2-butyne, and 1-pentyne), and 1,4-pentadiene, and C-C bond activation was observed for the five-membered hydrocarbons (1-pentene, 2-pentene, 1-pentyne, isoprene, and 1,4-pentadiene). The La-hydrocarbon radicals formed in these reactions had lanthanacyclic structures in various sizes, and each of the La-hydrocarbon complexes had a doublet ground state with a 6s1 La-based electron configuration. Ionization removed the 6s electron, and the resultant ion was in a singlet state. Formations of dehydrogenated products were either through a concerted hydrogen elimination process or the dehydrogenation after ligand isomerization. The C-C bond activation proceeded through La-assisted hydrogen migration, followed by C-C bond cleavage, or vice versa.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Hydrocarbon activation"

1

Shilov, A. E. Activation and catalytic reactions of saturated hydrocarbons in the presence of metal complexes. Boston: Kluwer Academic Publishers, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shilov, A. E. Activation and catalytic reactions of saturated hydrocarbons in the presence of metal complexes. Dordrecht: Kluwer Academic Publishers, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ryabov, Vladimir. Oil and Gas Chemistry. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1017513.

Full text
Abstract:
The textbook provides up-to-date data on the composition and properties of hydrocarbons and other oil and gas compounds, on the physical and chemical methods and methods for separating and identifying oil components (molecular spectroscopy, mass spectrometry, NMR spectroscopy, electron paramagnetic resonance, atomic adsorption spectroscopy, neutron activation analysis). The chemistry and mechanism of thermal and catalytic transformations of oil components in the main processes of oil raw materials processing, as well as the problems of the origin of oil and the transformation of oil in the environment are considered. Meets the requirements of the federal state educational standards of higher education of the latest generation. It is intended for training in the course "Chemistry of oil and gas", for the preparation of bachelors, masters and certified specialists in the field of training "Oil and Gas business". It can be used for training in other areas in oil and gas universities and be of interest to specialists working in the field of chemistry and technology of oil refining and in other areas of the oil and gas industry.
APA, Harvard, Vancouver, ISO, and other styles
4

Davies, Julian A. Hydrocarbon Activation: From Serendipity to Selectivity. Vch Pub, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

(Editor), Julian A. Davies, Patricia L. Watson (Editor), Arthur Greenberg (Editor), and Joel F. Liebman (Editor), eds. Selective Hydrocarbon Activation: Principles and Progress. Wiley, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

A, Davies Julian, ed. Selective hydrocarbon activation: Principles and progress. New York, N.Y: VCH Publishers, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Activation and functionalization of C-H bonds. Washington, DC: American Chemical Society, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

(Editor), Karen I. Goldberg, and Alan S. Goldman (Editor), eds. Activation and Functionalization of C-H Bonds (Acs Symposium Series, 885). An American Chemical Society Publication, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes. Dordrecht: Kluwer Academic Publishers, 2002. http://dx.doi.org/10.1007/0-306-46945-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shilov, A. E., Georgiy B. Shul'pin, and Alexander E. Shilov. Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes Category should be: CHEMISTRY (and not medicine). Springer, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hydrocarbon activation"

1

Widdel*, F., and F. Musat. "Diversity and Common Principles in Enzymatic Activation of Hydrocarbons." In Handbook of Hydrocarbon and Lipid Microbiology, 981–1009. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-77587-4_70.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Norris, Cynthia M., and Joseph L. Templeton. "Hydrocarbon C—H Bond Activation with Tp'Pt Complexes." In ACS Symposium Series, 303–18. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2004-0885.ch018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Boll, Matthias, Sebastian Estelmann, and Johann Heider. "Anaerobic Degradation of Hydrocarbons: Mechanisms of Hydrocarbon Activation in the Absence of Oxygen." In Anaerobic Utilization of Hydrocarbons, Oils, and Lipids, 1–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-33598-8_2-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Boll, Matthias, Sebastian Estelmann, and Johann Heider. "Anaerobic Degradation of Hydrocarbons: Mechanisms of Hydrocarbon Activation in the Absence of Oxygen." In Anaerobic Utilization of Hydrocarbons, Oils, and Lipids, 3–29. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-50391-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Xiaoshi. "Hydrocarbon Oxygenation by Heme-Thiolate Enzymes." In A Novel Heme-Thiolate Peroxygenase AaeAPO and Its Implications for C-H Activation Chemistry, 1–21. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-03236-8_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Khenkin, Alexander M., and Craig L. Hill. "Hydrocarbon Oxidation by a Polynuclear Iron Sandwich Polyoxotungstate - Hydrogen Peroxide System." In The Activation of Dioxygen and Homogeneous Catalytic Oxidation, 463. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-3000-8_54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Boll, M., and J. Heider. "Anaerobic Degradation of Hydrocarbons: Mechanisms of C–H-Bond Activation in the Absence of Oxygen." In Handbook of Hydrocarbon and Lipid Microbiology, 1011–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-77587-4_71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jones, William D., R. Martin Chin, Lingzhen Dong, Simon B. Duckett, and Edward T. Hessell. "The Role of Bond Energies in Hydrocarbon Activation by Transition Metal Centers." In Energetics of Organometallic Species, 53–67. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2466-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Xiaoshi. "Hydrocarbon Hydroxylations Catalyzed by AaeAPO: Evidence of Radical Intermediates and Kinetic Isotope Effects." In A Novel Heme-Thiolate Peroxygenase AaeAPO and Its Implications for C-H Activation Chemistry, 41–57. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-03236-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fukuda, Itsuko, and Hitoshi Ashida. "Suppressive Effects of Flavonoids on Activation of the Aryl Hydrocarbon Receptor Induced by Dioxins." In ACS Symposium Series, 369–74. Washington, DC: American Chemical Society, 2008. http://dx.doi.org/10.1021/bk-2008-0993.ch031.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hydrocarbon activation"

1

Zapivalov, N. P. "Activation of Modern Hydrocarbon Genesis by Natural-Technogeneous Processes." In IOR 2003 - 12th European Symposium on Improved Oil Recovery. European Association of Geoscientists & Engineers, 2003. http://dx.doi.org/10.3997/2214-4609-pdb.7.p063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cocco, Pierluigi, Maria Grazia Ennas, Mariagrazia Zucca, Sonia Sanna, Marina Padoan, Angela Gambelunghe, Aldo Scarpa, et al. "O08-3 Aryl hydrocarbon receptor (AHR) activation and risk of lymphoma subtypes." In Occupational Health: Think Globally, Act Locally, EPICOH 2016, September 4–7, 2016, Barcelona, Spain. BMJ Publishing Group Ltd, 2016. http://dx.doi.org/10.1136/oemed-2016-103951.43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Edwards, Amanda L., Evripidis Gavathiotis, James L. LaBelle, Craig R. Braun, Kwadwo Opoku-Nsiah, Gregory H. Bird, and Loren D. Walensky. "Abstract 4611: Multimodal activation of apoptosis by a hydrocarbon-stapled PUMA BH3 helix." In Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-4611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Suarez, Guadalupe V., Binh Nguyen, and Andrea Loaiza-Perez. "Abstract 4453: Aryl hydrocarbon receptor activation by Aminoflavone: New molecular target for renal cancer treatment." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-4453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, SHuang, Bin Yan, and Yongguang Tao. "Abstract 4757: Radioresistance is linked with stem-like properties via activation of aryl hydrocarbon receptor." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-4757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Desai, Tapan, John Lawson, and Pawel Keblinski. "Modeling the Initial Stage of Crosslinked Aromatic Hydrocarbon Polymer Pyrolysis." In ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ht2012-58265.

Full text
Abstract:
Ablative materials are employed as thermal insulators in hypersonic space vehicles and for fire proofing in commercial applications. However, the chemical reactions involved in the transformation of ablative materials to char during pyrolysis are not well understood. Reactive molecular dynamics simulations were performed to study the initial stage of the pyrolysis of crosslinked aromatic hydrocarbon polymers. The products formed were characterized and acetylene was found to be the primary product. The value of the activation energy for acetylene formation was estimated. The acetylene formation mechanisms were analyzed at different degrees of crosslinking and the graphitic precursor formation mechanism was studied.
APA, Harvard, Vancouver, ISO, and other styles
7

Maria, Volkova, Cevher Ozcan, Monica Palmeri, and Raymond Russell. "Abstract C227: Doxorubicin induces AKT phosphorylation through activation of the aryl hydrocarbon receptor in the heart." In Abstracts: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics--Nov 15-19, 2009; Boston, MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/1535-7163.targ-09-c227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gorbunov, Mykola, Alexandr Kravchenko, Juraj Gerlici, Kateryna Kravchenko, Vladimir Hauser, and Tomas Lack. "Processing and recycling of rubber and oil wastes into hydrocarbon fuel by method of physico-chemical activation." In 18th International Scientific Conference Engineering for Rural Development. Latvia University of Life Sciences and Technologies, 2019. http://dx.doi.org/10.22616/erdev2019.18.n437.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gusev, Boris. "THE RESEARCHES OF THE ELECTROMAGNETIC FIELD ON THE ACTIVATION OF COMBUSTION AND CHANGES IN THE COMPOSITION AND HYDROCARBON GASES." In 19th SGEM International Multidisciplinary Scientific GeoConference EXPO Proceedings. STEF92 Technology, 2019. http://dx.doi.org/10.5593/sgem2019/5.2/s20.092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Callero, Mariana A., Gabriela Luzzani, Tracey D. Bradshaw, and Andrea I. Loaiza Pérez. "Abstract 4653: 5F203-induced reactive oxidative species, DNA damage and apoptosis involves aryl hydrocarbon activation in ovarian cancer cells." In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-4653.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hydrocarbon activation"

1

Heinekey, D. M. Homolytic activation of hydrocarbons and hydrogen by persistent metal radicals. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6716196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Heinekey, D. M. Homolytic activation of hydrocarbons and hydrogen by persistent metal radicals. Progress report, January 1, 1992--November 1, 1992. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10136755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

[Homolytic activation of hydrocarbons and hydrogen by persistent radicals]. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6837370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

[Homolytic activation of hydrocarbons and hydrogen by persistent radicals]. Final report. Office of Scientific and Technical Information (OSTI), February 1993. http://dx.doi.org/10.2172/10122867.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography