Journal articles on the topic 'Hydrazine oxidation reaction (HHOR)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hydrazine oxidation reaction (HHOR).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yu, Ting, Hu Zhang, Yongzhi Ning, Hongling Li, Ziteng Gao, Bo Wang, and Zhijun Cen. "Experimental and Kinetic Simulations of Technetium-Catalyzed Hydrazine Oxidation in Nitric Acid Solution." Processes 12, no. 11 (October 23, 2024): 2319. http://dx.doi.org/10.3390/pr12112319.
Full textLiu, Weiwei, Junfeng Xie, Yanqing Guo, Shanshan Lou, Li Gao, and Bo Tang. "Sulfurization-induced edge amorphization in copper–nickel–cobalt layered double hydroxide nanosheets promoting hydrazine electro-oxidation." Journal of Materials Chemistry A 7, no. 42 (2019): 24437–44. http://dx.doi.org/10.1039/c9ta07857f.
Full textBrockmann, Marcela, Freddy Navarro, José Ibarra, Constanza León, Francisco Armijo, María Jesús Aguirre, Galo Ramírez, and Roxana Arce. "Effect of the Metal of a Metallic Ionic Liquid (-butyl-methylimidazolium tetrachloroferrate) on the Oxidation of Hydrazine." Catalysts 14, no. 6 (May 31, 2024): 359. http://dx.doi.org/10.3390/catal14060359.
Full textMiao, Ruiyang, and Richard G. Compton. "The Electro-Oxidation of Hydrazine: A Self-Inhibiting Reaction." Journal of Physical Chemistry Letters 12, no. 6 (February 5, 2021): 1601–5. http://dx.doi.org/10.1021/acs.jpclett.1c00070.
Full textLee, Hak Hyeon, JI Hoon CHOI, Dong Su Kim, and Hyung Koun Cho. "Diffusion-Restricted Cation Exchange Derived Rhodium Nanoparticles for Hydrazine Assisted Hydrogen Production." ECS Meeting Abstracts MA2023-02, no. 49 (December 22, 2023): 3222. http://dx.doi.org/10.1149/ma2023-02493222mtgabs.
Full textLi, Yapeng, Jihua Zhang, Yi Liu, Qizhu Qian, Ziyun Li, Yin Zhu, and Genqiang Zhang. "Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis." Science Advances 6, no. 44 (October 2020): eabb4197. http://dx.doi.org/10.1126/sciadv.abb4197.
Full textWang, Honglei, and Shengyang Tao. "Fabrication of a porous NiFeP/Ni electrode for highly efficient hydrazine oxidation boosted H2 evolution." Nanoscale Advances 3, no. 8 (2021): 2280–86. http://dx.doi.org/10.1039/d1na00043h.
Full textLi, Bin, Kefeng Wang, Jingxiao Ren, and Peng Qu. "NiOOH@Cobalt copper carbonate hydroxide nanorods as bifunctional electrocatalysts for highly efficient water and hydrazine oxidation." New Journal of Chemistry 46, no. 16 (2022): 7615–25. http://dx.doi.org/10.1039/d2nj00518b.
Full textMa, Xiao, Jianmei Wang, Danni Liu, Rongmei Kong, Shuai Hao, Gu Du, Abdullah M. Asiri, and Xuping Sun. "Hydrazine-assisted electrolytic hydrogen production: CoS2nanoarray as a superior bifunctional electrocatalyst." New Journal of Chemistry 41, no. 12 (2017): 4754–57. http://dx.doi.org/10.1039/c7nj00326a.
Full textShukla, Madhurani, and Kishore K. Tiwari. "A Simple and Low - Cost Spectrophotometric Method for the Determination Of Hydrazine With Methyl Red-iodate System." Journal of Ravishankar University (PART-B) 30, no. 1 (January 30, 2021): 01–06. http://dx.doi.org/10.52228/jrub.2017-30-1-1.
Full textKadam, Ravishankar G., Tao Zhang, Dagmar Zaoralová, Miroslav Medveď, Aristides Bakandritsos, Ondřej Tomanec, Martin Petr, et al. "Single Co‐Atoms as Electrocatalysts for Efficient Hydrazine Oxidation Reaction." Small 17, no. 16 (March 30, 2021): 2006477. http://dx.doi.org/10.1002/smll.202006477.
Full textZhang, Chaoxiong, Wenjuan Yuan, Qian Wang, Xianyun Peng, Xijun Liu, and Jun Luo. "Single Cu Atoms as Catalysts for Efficient Hydrazine Oxidation Reaction." ChemNanoMat 6, no. 10 (July 22, 2020): 1474–78. http://dx.doi.org/10.1002/cnma.202000337.
Full textShi, Jie, Qintao Sun, Jinxin Chen, Wenxiang Zhu, Tao Cheng, Mengjie Ma, Zhenglong Fan, et al. "Nitrogen contained rhodium nanosheet catalysts for efficient hydrazine oxidation reaction." Applied Catalysis B: Environmental 343 (April 2024): 123561. http://dx.doi.org/10.1016/j.apcatb.2023.123561.
Full textLiu, Meng, Rong Zhang, Lixue Zhang, Danni Liu, Shuai Hao, Gu Du, Abdullah M. Asiri, Rongmei Kong, and Xuping Sun. "Energy-efficient electrolytic hydrogen generation using a Cu3P nanoarray as a bifunctional catalyst for hydrazine oxidation and water reduction." Inorganic Chemistry Frontiers 4, no. 3 (2017): 420–23. http://dx.doi.org/10.1039/c6qi00384b.
Full textIonita, Petre, Marcela Rovinaru, and Ovidiu Maior. "THE PREPARATION AND SOME REACTION OF 2,2-DIPHENYL-1-(3,6-DINITR0-4-COUMARINYL) HYDRAZYL FREE RADICAL." SOUTHERN BRAZILIAN JOURNAL OF CHEMISTRY 6, no. 7 (December 20, 1998): 59–66. http://dx.doi.org/10.48141/sbjchem.v6.n7.1998.58_1998_2.pdf.
Full textJetten, M. S. M., I. Cirpus, B. Kartal, L. van Niftrik, K. T. van de Pas-Schoonen, O. Sliekers, S. Haaijer, et al. "1994–2004: 10 years of research on the anaerobic oxidation of ammonium." Biochemical Society Transactions 33, no. 1 (February 1, 2005): 119–23. http://dx.doi.org/10.1042/bst0330119.
Full textWang, Yu‐Cheng, Li‐Yang Wan, Pei‐Xin Cui, Lei Tong, Yu‐Qi Ke, Tian Sheng, Miao Zhang, et al. "Hydrazine Oxidation Reaction: Porous Carbon Membrane‐Supported Atomically Dispersed Pyrrole‐Type FeN 4 as Active Sites for Electrochemical Hydrazine Oxidation Reaction (Small 31/2020)." Small 16, no. 31 (August 2020): 2070171. http://dx.doi.org/10.1002/smll.202070171.
Full textKumaran, R., S. Boopathi, M. Kundu, M. Sasidharan, and G. Maduraiveeran. "The morphology-dependent electrocatalytic activities of spinel-cobalt oxide nanomaterials for direct hydrazine fuel cell application." New Journal of Chemistry 42, no. 15 (2018): 13087–95. http://dx.doi.org/10.1039/c8nj01622d.
Full textYue, Xiaoyu, Andrea Manach, Junzhe Dong, and Wei Gao. "Preparation of Ag-decorated TiO2 nanotube electrode and its catalytic property." International Journal of Modern Physics B 33, no. 01n03 (January 30, 2019): 1940023. http://dx.doi.org/10.1142/s021797921940023x.
Full textJiao, Dongxu, Yu Tian, Hongxia Wang, Qinghai Cai, and Jingxiang Zhao. "Single transition metal atoms anchored on a C2N monolayer as efficient catalysts for hydrazine electrooxidation." Physical Chemistry Chemical Physics 22, no. 29 (2020): 16691–700. http://dx.doi.org/10.1039/d0cp02930k.
Full textTang, Piaoping, He Wen, and Ping Wang. "Hierarchically nanostructured Ni2Fe2N as an efficient electrocatalyst for hydrazine oxidation reaction." Chemical Engineering Journal 431 (March 2022): 134123. http://dx.doi.org/10.1016/j.cej.2021.134123.
Full textLashkenari, Mohammad Soleimani, Behnia Shahrokhi, Mohsen Ghorbani, Jaber falah, and Hussein Rostami. "Polyrhodanine/NiFe2 O4 nanocomposite: A novel electrocatalyst for hydrazine oxidation reaction." International Journal of Hydrogen Energy 43, no. 24 (June 2018): 11244–52. http://dx.doi.org/10.1016/j.ijhydene.2018.05.019.
Full textShi, Jie, Qintao Sun, Wenxiang Zhu, Tao Cheng, Fan Liao, Mengjie Ma, Junjun Yang, Hao Yang, Zhenglong Fan, and Mingwang Shao. "Lattice stain dominated hydrazine oxidation reaction in single-metal-element nanosheet." Chemical Engineering Journal 463 (May 2023): 142385. http://dx.doi.org/10.1016/j.cej.2023.142385.
Full textKoh, Katherine, Yuying Meng, Xiaoxi Huang, Xiaoxin Zou, Manish Chhowalla, and Tewodros Asefa. "N- and O-doped mesoporous carbons derived from rice grains: efficient metal-free electrocatalysts for hydrazine oxidation." Chemical Communications 52, no. 93 (2016): 13588–91. http://dx.doi.org/10.1039/c6cc06140k.
Full textGao, Xueqing, Yigang Ji, Shan He, Shuni Li, and Jong-Min Lee. "Self-assembly synthesis of reduced graphene oxide-supported platinum nanowire composites with enhanced electrocatalytic activity towards the hydrazine oxidation reaction." Catalysis Science & Technology 6, no. 9 (2016): 3143–48. http://dx.doi.org/10.1039/c5cy01764e.
Full textKovaleva, Svetlana V., and Andrey V. Korshunov. "Voltammetric method for determining hydrazine at a composite polymer-carbon electrode modified with gold particles." Bulletin of the Tomsk Polytechnic University Geo Assets Engineering 335, no. 11 (November 27, 2024): 142–56. http://dx.doi.org/10.18799/24131830/2024/11/4858.
Full textMa, Yuanyuan, Hui Wang, Weizhong Lv, Shan Ji, Bruno G. Pollet, Shunxi Li, and Rongfang Wang. "Amorphous PtNiP particle networks of different particle sizes for the electro-oxidation of hydrazine." RSC Advances 5, no. 84 (2015): 68655–61. http://dx.doi.org/10.1039/c5ra13774h.
Full textStepanova, Elena V., and Andrei I. Stepanov. "UNUSUAL WAY OF REACTION OF 3-AMINO-4-(5-CHLOROMETHYL-1,2,4-OXADIAZOLE-3-YL)-FURAZAN WITH HYDRAZINE." IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 60, no. 4 (May 12, 2017): 26. http://dx.doi.org/10.6060/tcct.2017604.5522.
Full textBreza, Martin, and Alena Manova. "Hydrazine Oxidation in Aqueous Solutions I: N4H6 Decomposition." Inorganics 11, no. 10 (October 18, 2023): 413. http://dx.doi.org/10.3390/inorganics11100413.
Full textNa, Jaedo, and Seong Jung Kwon. "Expanding Single-Entity Electrochemistry with Agarose Hydrogel: Enhanced Signal Stability." ECS Meeting Abstracts MA2024-02, no. 70 (November 22, 2024): 4904. https://doi.org/10.1149/ma2024-02704904mtgabs.
Full textSchalk, Jos, Hege Oustad, J. Gijs Kuenen, and Mike S. M. Jetten. "The anaerobic oxidation of hydrazine: a novel reaction in microbial nitrogen metabolism." FEMS Microbiology Letters 158, no. 1 (January 1998): 61–67. http://dx.doi.org/10.1111/j.1574-6968.1998.tb12801.x.
Full textHu, Sheng-Nan, Na Tian, Meng-Ying Li, Chi Xiao, Yao-Yin Lou, Zhi-You Zhou, and Shi-Gang Sun. "Trapezohedral platinum nanocrystals with high-index facets for high-performance hydrazine electrooxidation." Chemical Synthesis 3, no. 1 (2023): 4. http://dx.doi.org/10.20517/cs.2022.32.
Full textZhang, Weijie, Pingping Jiang, Ying Wang, Jian Zhang, Yongxue Gao, and Pingbo Zhang. "Bottom-up approach to engineer a molybdenum-doped covalent-organic framework catalyst for selective oxidation reaction." RSC Adv. 4, no. 93 (2014): 51544–47. http://dx.doi.org/10.1039/c4ra09304f.
Full textMitic, Violeta, Snezana Nikolic, and Vesna Stankov-Jovanovic. "Kinetic spectrophotometric determination of hydrazine." Open Chemistry 8, no. 3 (June 1, 2010): 559–65. http://dx.doi.org/10.2478/s11532-010-0021-3.
Full textLiu, Feng, Xin Jiang, Hong-Hui Wang, Cheng Chen, Yu-Han Yang, Tian Sheng, Yong-Sheng Wei, Xin-Sheng Zhao, and Lu Wei. "Boosting Electrocatalytic Hydrazine Oxidation Reaction on High-Index Faceted Au Concave Trioctahedral Nanocrystals." ACS Sustainable Chemistry & Engineering 10, no. 2 (January 3, 2022): 696–702. http://dx.doi.org/10.1021/acssuschemeng.1c07700.
Full textWang, Yahui, Xianyi Liu, Juan Han, Yumao Kang, Yajun Mi, and Wei Wang. "Phosphatized pseudo-core-shell Ni@Pt/C electrocatalysts for efficient hydrazine oxidation reaction." International Journal of Hydrogen Energy 45, no. 11 (February 2020): 6360–68. http://dx.doi.org/10.1016/j.ijhydene.2019.12.132.
Full textKahani, Seyed Abolghasem, and Massumeh Khedmati. "Mechanochemical Preparation of Cobalt Nanoparticles through a Novel Intramolecular Reaction in Cobalt(II) Complexes." Journal of Nanomaterials 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/246254.
Full textOp den Camp, H. J. M., B. Kartal, D. Guven, L. A. M. P. van Niftrik, S. C. M. Haaijer, W. R. L. van der Star, K. T. van de Pas-Schoonen, et al. "Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria." Biochemical Society Transactions 34, no. 1 (January 20, 2006): 174–78. http://dx.doi.org/10.1042/bst0340174.
Full textPang, Kanglei, and Kanglei Pang. "Redirecting Configuration of Atomically Dispersed Selenium Catalytic Sites for Efficient Hydrazine Oxidation." ECS Meeting Abstracts MA2024-02, no. 60 (November 22, 2024): 4065. https://doi.org/10.1149/ma2024-02604065mtgabs.
Full textWang, Hui, Qing Dong, Lu Lei, Shan Ji, Palanisamy Kannan, Palaniappan Subramanian, and Amar Prasad Yadav. "Co Nanoparticle-Encapsulated Nitrogen-Doped Carbon Nanotubes as an Efficient and Robust Catalyst for Electro-Oxidation of Hydrazine." Nanomaterials 11, no. 11 (October 26, 2021): 2857. http://dx.doi.org/10.3390/nano11112857.
Full textLellek, Vit, Cheng-yi Chen, Wanggui Yang, Jie Liu, Xuebao Ji, and Roger Faessler. "An Efficient Synthesis of Substituted Pyrazoles from One-Pot Reaction of Ketones, Aldehydes, and Hydrazine Monohydrochloride." Synlett 29, no. 08 (February 15, 2018): 1071–75. http://dx.doi.org/10.1055/s-0036-1591941.
Full textMótyán, Gergő, Barnabás Molnár, János Wölfling, and Éva Frank. "Microwave-Assisted Stereoselective Heterocyclization to Novel Ring d-fused Arylpyrazolines in the Estrone Series." Molecules 24, no. 3 (February 4, 2019): 569. http://dx.doi.org/10.3390/molecules24030569.
Full textChen, Shi, Changlai Wang, Shuai Liu, Minxue Huang, Jian Lu, Pengping Xu, Huigang Tong, Lin Hu, and Qianwang Chen. "Boosting Hydrazine Oxidation Reaction on CoP/Co Mott–Schottky Electrocatalyst through Engineering Active Sites." Journal of Physical Chemistry Letters 12, no. 20 (May 17, 2021): 4849–56. http://dx.doi.org/10.1021/acs.jpclett.1c00963.
Full textKim, Yong Seok, Byeongkyu Kim, Tae Yup Jeong, Na Hyeon Kim, Eunchae Ko, Jong Wook Bae, and Chan-Hwa Chung. "The development of a gas-feeding CO2 fuel cell using direct hydrazine oxidation reaction." Journal of CO2 Utilization 73 (July 2023): 102527. http://dx.doi.org/10.1016/j.jcou.2023.102527.
Full textMunde, Ajay, Priti Sharma, Somnath Dhawale, Ravishankar G. Kadam, Subodh Kumar, Hanumant B. Kale, Jan Filip, Radek Zboril, Bhaskar R. Sathe, and Manoj B. Gawande. "Interface Engineering of SRu-mC3N4 Heterostructures for Enhanced Electrochemical Hydrazine Oxidation Reactions." Catalysts 12, no. 12 (December 2, 2022): 1560. http://dx.doi.org/10.3390/catal12121560.
Full textYu, Hui Jiang, Zheng Guang Zou, Fei Long, Chun Yan Xie, and Hao Ma. "Preparation of Graphene with Ultrasound-Assisted in the Process of Oxidation." Applied Mechanics and Materials 34-35 (October 2010): 1784–87. http://dx.doi.org/10.4028/www.scientific.net/amm.34-35.1784.
Full textZhu, Libo, Jian Huang, Ge Meng, Tiantian Wu, Chang Chen, Han Tian, Yafeng Chen, et al. "Active site recovery and N-N bond breakage during hydrazine oxidation boosting the electrochemical hydrogen production." Nature Communications 14, no. 1 (April 10, 2023). http://dx.doi.org/10.1038/s41467-023-37618-2.
Full textXiao, Zehao, Jie Wang, Hongxiu Lu, Yinyin Qian, Qiang Zhang, Aidong Tang, and Huaming Yang. "Hierarchical Co/MoNi Heterostructure Grown on Monocrystalline CoNiMoOx Nanorods with Robust Bifunctionality for Hydrazine-oxidation-assisted Energy-saving Hydrogen Evolution." Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d3ta02930a.
Full textBurshtein, Tomer Y., Kesha Tamakuwala, Matan Sananis, Ilya Grinberg, Nagaprasad Reddy Samala, and David Eisenberg. "Understanding hydrazine oxidation electrocatalysis on undoped carbon." Physical Chemistry Chemical Physics, 2022. http://dx.doi.org/10.1039/d2cp00213b.
Full textZhang, Chao, mengrui zhang, Jianping Zhu, Bin Liu, Yongkang Hou, Jingping Wang, and Jingyang Niu. "Ultrafine Co6W6C as an Efficient Anode Catalyst for Direct Hydrazine Fuel Cell." Chemical Communications, 2021. http://dx.doi.org/10.1039/d1cc03446d.
Full text