Academic literature on the topic 'Hydraulic fluids contamination'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hydraulic fluids contamination.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hydraulic fluids contamination"
Paul, Sumit, Wolfgang Legner, Angelika Krenkow, Gerhard Müller, Thierry Lemettais, Francois Pradat, and Delphine Hertens. "Chemical Contamination Sensor for Phosphate Ester Hydraulic Fluids." International Journal of Aerospace Engineering 2010 (2010): 1–9. http://dx.doi.org/10.1155/2010/156281.
Full textAliboyev, B. A. "Reliability of tractor hydraulic systems in the context of purity of power fluid." Traktory i sel hozmashiny 82, no. 6 (June 15, 2015): 26–29. http://dx.doi.org/10.17816/0321-4443-65416.
Full textMajdan, R., Z. Tkáč, B. Stančík, R. Abrahám, I. Štulajter, P. Ševčík, and M. Rášo. "Elimination of ecological fluids contamination in agricultural tractors." Research in Agricultural Engineering 60, Special Issue (December 30, 2014): S9—S15. http://dx.doi.org/10.17221/27/2013-rae.
Full textMain, B. G. "Explosion Hazards in Offshore Motion Compensators." Proceedings of the Institution of Mechanical Engineers, Part A: Power and Process Engineering 199, no. 4 (November 1985): 229–35. http://dx.doi.org/10.1243/pime_proc_1985_199_029_02.
Full textSCHOLZ, Dieter. "Routes of Aircraft Cabin Air Contamination from Engine Oil, Hydraulic and Deicing Fluid." INCAS BULLETIN 14, no. 1 (March 7, 2022): 153–70. http://dx.doi.org/10.13111/2066-8201.2022.14.1.13.
Full textKučera, Marián, Zdeněk Aleš, Jan Mareček, and Pavel Máchal. "Effect of Contamination on the Lifetime of Hydraulic Oils and Systems." Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 65, no. 4 (2017): 1205–12. http://dx.doi.org/10.11118/actaun201765041205.
Full textOwens, E. H., G. H. Smith, and I. A. Reading. "An instrument for measurement of water contamination in hydraulic fluids." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 221, no. 2 (February 2007): 167–70. http://dx.doi.org/10.1243/09544070jauto457.
Full textTheissen, Heinrich W., David G. Holt, David K. Wills, and S. W. Dean. "Effects of Contamination of Biobased Hydraulic Fluids with Mineral Oil." Journal of ASTM International 6, no. 1 (2009): 101598. http://dx.doi.org/10.1520/jai101598.
Full textHunt, T. M. "Particle contamination and filtration of hydraulic fluids, lubricants and fuels." Tribology International 21, no. 5 (October 1988): 297–98. http://dx.doi.org/10.1016/0301-679x(88)90012-6.
Full textJanoško, I., T. Polonec, and S. Lindák. "Performance parameters monitoring of the hydraulic system with bio-oil." Research in Agricultural Engineering 60, Special Issue (December 30, 2014): S37—S43. http://dx.doi.org/10.17221/32/2013-rae.
Full textDissertations / Theses on the topic "Hydraulic fluids contamination"
Agars, Robert C., University of Western Sydney, of Science Technology and Environment College, and of Science Food and Horticulture School. "Assessment of the potential environmental effects of soluble hydraulic oil on natural waters." THESIS_CSTE_SFH_Agars_R.xml, 2001. http://handle.uws.edu.au:8081/1959.7/249.
Full textMaster of Science (Hons)
Agars, Robert C. "Assessment of the potential environmental effects of soluble hydraulic oil on natural waters." Thesis, [Richmond, N.S.W.] : Centre for Electrochemical Research and Analytical Technology, School of Science, Food and Horticulture, University of Western Sydney, 2001. http://handle.uws.edu.au:8081/1959.7/249.
Full textFletcher, Sarah Marie. "Risk assessment of groundwater contamination from hydraulic fracturing fluid spills in Pennsylvania." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/72885.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 109-115).
Fast-paced growth in natural gas production in the Marcellus Shale has fueled intense debate over the risk of groundwater contamination from hydraulic fracturing and the shale gas extraction process at large. While several notable incidents of groundwater contamination near shale gas wells have been investigated, the exact causes are uncertain and widely disputed. One of the most frequently occurring and widely reported environmental incidents from shale gas development is that of surface spills. Several million gallons of fluid are managed on each well site; significant risk for spill exists at several stages in the extraction process. While surface spills have been primarily analyzed from the perspective of surface water contamination, spills also have the potential to infiltrate groundwater aquifers. This thesis develops a risk assessment framework to analyze the risk of groundwater resource contamination in Pennsylvania from surface spills of hydraulic fracturing fluid. It first identifies the major sources of spills and characterizes the expected frequency and volume distribution of spills from these sources using results from a preliminary expert elicitation. It then develops a stochastic groundwater contaminant transport model to analyze the worst-case potential for groundwater contamination in local water wells. Finally, it discusses the range of risk perception and incentives from a wide-ranging stakeholder base, including industry, communities, environmentalists, and government. This thesis concludes that while the vast majority of shale gas operations do not result in large spills, the worst-case potential for groundwater contamination is high enough to warrant further attention; it also recommends increased inclusion of community stakeholders in both industry and government risk management strategies.
by Sarah Marie Fletcher.
S.M.in Technology and Policy
Zampaulo, Amarildo José. "Uma abordagem do problema de contaminação de sistemas de transmissão por fluidos e o controle através da técnica de contagem de partículas." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/18/18150/tde-07022017-105608/.
Full textThe technological advance has proportionated to the industry in general to develop and to manufacture more sophisticated products in all the fields of science. Not distant of this reality, the industry of mobility also comes incorporating through bold projects the new technologies in its products, thus answering to the needs and expectations of its customers, who ask for products with high productivity and availability to work. These technologies are related with the power transmission systems by fluids through the introduction of electrohydraulic valves, and also by the reduction of tolerance between smooth and rotary parts of the system. From the introduction of this new technology, the emphases of this dissertation was show the importance of the contamination control in the process phases of conception, manufacturing and assembly of the product, including brake the paradigm related with human factors, and specially the fluid contamination control of the power transmission using the particle counting technology. To show that through the determination of acceptable limits of contamination for each type of power transmission system, as a function of the type of added technology, it is possible to drastically reduce the failures in the power transmission systems by fluids during the operation of the product in the field, even being this contamination considered an invisible enemy.
Muttenthaler, Lukas, and Bernhard Manhartsgruber. "Optimizing hydraulic reservoirs using euler-eulerlagrange multiphase cfd simulation." Technische Universität Dresden, 2020. https://tud.qucosa.de/id/qucosa%3A71100.
Full textTaher, Dang Koo Reza. "Numerical modelling of single- and multi-phase flow and transport processes in porous media for assessing hydraulic fracturing impacts on groundwater resources." Thesis, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-13B9-5.
Full textBooks on the topic "Hydraulic fluids contamination"
Timirkeev, R. G. Promyshlennai͡a︡ chistota i tonkai͡a︡ filʹtrat͡s︡ii͡a︡ rabochikh zhidkosteĭ letatelʹnykh apparatov. Moskva: Mashinostroenie, 1986.
Find full textQunzhang, Tu, Cheng Jianhui, and Gong Liehang, eds. Ye ya xi tong wu ran kong zhi. Beijing Shi: Guo fang gong ye chu ban she, 2010.
Find full textAssociation of Hydraulic Equipment Manufacturers. Guidelines to contamination control in hydraulic fluid power systems. London: A.H.E.M., 1985.
Find full textCanada. Defence Research Establishment Atlantic. Analysis of Mil-L-23699C Synthetic Lubricant Contamination of 3-gp-26ma Hydraulic Fluid by Gas Chromatography-Mass Spectrometry. S.l: s.n, 1987.
Find full textHydraulic system contamination bibliography. London: Published on behalf of BHRA Fluid Engineering Centre by Elsevier Applied Science Publishers, 1988.
Find full textKhalil, Medhat. Hydraulic Systems Volume 3: Hydraulic Fluids and Contamination Control. COMPUDRAULIC LLC, 2019.
Find full textAssociation, British Fluid Power, ed. Guidelines to contamination control in hydraulic fluid power systems. London: BFPA, 1987.
Find full textAssociation of Hydraulic Equipment Manufacturers Limited. Technical Committee E1: Contamination Control. Guidelines to contamination control in hydraulic fluid power systems. Association of Hydraulic Equipment Manufacturers Limited, 1985.
Find full textBook chapters on the topic "Hydraulic fluids contamination"
Hodges, Peter Keith Brian. "Contamination." In Hydraulic Fluids, 120–25. Elsevier, 1996. http://dx.doi.org/10.1016/b978-034067652-3/50018-x.
Full text"- Control and Management of Particle Contamination in Hydraulic Fluids." In Handbook of Hydraulic Fluid Technology, 236–73. CRC Press, 2011. http://dx.doi.org/10.1201/b11225-10.
Full textConference papers on the topic "Hydraulic fluids contamination"
Deuster, Sebastian, and Katharina Schmitz. "Bio-Based Hydraulic Fluids in Mobile Machines: Substitution Potential in Construction Projects." In ASME/BATH 2019 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/fpmc2019-1636.
Full textNovak, Nejc, Rok Jelovčan, and Franc Majdič. "Development of portable filtration unit with self-diagnostics for industrial use." In International conference Fluid Power 2021. University of Maribor Press, 2021. http://dx.doi.org/10.18690/978-961-286-513-9.21.
Full textOlivares, Tulio Daniel, Walid Al-Zahrani, Chidiebere Anioke, and Wafa Saeed Sultan Aldarini. "Navigate Narrow Pressure Windows with Superior Performance and Minimal Risk Using Flat Rheology Oil-Based Drilling Fluids." In ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211746-ms.
Full textLonghitano, Marco, and Hubertus Murrenhoff. "Experimental Investigation of Air Bubble Behaviour in Stagnant Mineral Oils." In ASME/BATH 2015 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fpmc2015-9520.
Full textFerrar, Joseph, Philip Maun, Kenneth Wunch, Joseph Moore, Jana Rajan, Jon Raymond, Ethan Solomon, and Matheus Paschoalino. "High Pressure, High Temperature Bioreactors as a Biocide Selection Tool for Hydraulically Fractured Reservoirs." In SPE Hydraulic Fracturing Technology Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/204198-ms.
Full textMa, Bill, Alan Zhou, and Jim Steeves. "Pipeline Batch Planning to Optimize Storage Requirements." In 2010 8th International Pipeline Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ipc2010-31142.
Full textPietrangeli, Gianna, Donald Hugonin, and Laurie Hayden. "Comprehensive Protocol for Evaluation of Compatibility of Drill-In and/or Completion Fluids with Reservoir Fluids on Offshore Operations in the Caribbean Sea." In Offshore Technology Conference. OTC, 2022. http://dx.doi.org/10.4043/31786-ms.
Full textLiu, Songyuan, Chao-yu Sie, Fatee Malekahmadi, Bo Lu, Yifan Li, Cara Fan, Xinyue Zhang, Owen Serediak, Jelayne Fortin, and Ali Abedini. "Bioremediation Study on Formation Damage Caused by Hydraulic Fracturing: A Microfluidic Approach." In SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210089-ms.
Full textZeng, Rui, Yong Zhang, Zhen-Rong Lin, and Jin-Kun Sun. "Contamination Analysis and Monitoring Methods of Hydraulic Fluid." In 3rd Annual International Conference on Mechanics and Mechanical Engineering (MME 2016). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/mme-16.2017.51.
Full textJohansen, Per, Michael M. Bech, Sune Dupont, Uffe N. Christiansen, Jens L. Sørensen, David N. Østedgaard-Munck, and Anders Bentien. "An Experimental Study on High-Flowrate Ultrasonic Particle Monitoring in Oil Hydraulics." In BATH/ASME 2022 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fpmc2022-89721.
Full text