To see the other types of publications on this topic, follow the link: Hydrated amorphous silicon dioxide.

Journal articles on the topic 'Hydrated amorphous silicon dioxide'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Hydrated amorphous silicon dioxide.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

McIntyre, Hannah M., and Megan L. Hart. "Immobilization of TiO2 Nanoparticles in Cement for Improved Photocatalytic Reactivity and Treatment of Organic Pollutants." Catalysts 11, no. 8 (August 1, 2021): 938. http://dx.doi.org/10.3390/catal11080938.

Full text
Abstract:
Non-point organic pollutants in stormwater are a growing problem in the urban environment which lack effective and efficient treatment technologies. Incorporation of conventional wastewater techniques within stormwater management practices could fundamentally change how stormwater quality is managed because contaminants can be degraded during stormwater transport or storage. This study investigated the photocatalytic reactivity of titanium dioxide functionalized with maleic anhydride (Ti-MAH) within cement pastes when compared to ordinary Portland cement. Preparation of Ti-MAH was performed by permanently bonding maleic anhydride to titanium in methanol, drying and powdering the residual material, and then inter-grinding the preparation with cement during mixing. When compared with OPC, the Ti-MAH cured cement paste is more reactive under a wider range of light wavelengths, possesses a higher band gap, sustains this heightened reactivity over multiple testing iterations, and treats organics effectively (>95% methylene blue removal). Amorphous silica within calcium-silica-hydrate, C-S-H, is theorized to bond to the powdered Ti-MAH during curing. Verification of silicon bonding to the titanium by way of MAH was demonstrated by FTIR spectra, SEM imagery, and XRD. Creating a sustainable and passive photocatalytic cement that precisely bonds silica to Ti-MAH is useful for organic contaminants in urban stormwater, but use can translate to other applications because Ti-MAH bonds readily with any amorphous silica such as glass materials, paints and coatings, optics, and LEDS, among many others.
APA, Harvard, Vancouver, ISO, and other styles
2

Putrolainen, V. V., P. P. Boriskov, A. A. Velichko, A. L. Pergament, and N. A. Kuldin. "Memory electrical switching in hydrated amorphous vanadium dioxide." Technical Physics 55, no. 2 (February 2010): 247–50. http://dx.doi.org/10.1134/s1063784210020143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Golikova, O. A. "Defects in intrinsic and pseudodoped amorphous hydrated silicon." Semiconductors 31, no. 3 (March 1997): 228–31. http://dx.doi.org/10.1134/1.1187117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ravindra, N. M., and J. Narayan. "Optical properties of amorphous silicon and silicon dioxide." Journal of Applied Physics 60, no. 3 (August 1986): 1139–46. http://dx.doi.org/10.1063/1.337358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Ming, Hongliang He, F. F. Xu, T. Sekine, T. Kobayashi, and Y. Bando. "Cubic silicon nitride embedded in amorphous silicon dioxide." Journal of Materials Research 16, no. 8 (August 2001): 2179–81. http://dx.doi.org/10.1557/jmr.2001.0296.

Full text
Abstract:
A cubic silicon nitride embedded in amorphous SiO2 compound has been characterized by means of high-resolution analytical electron microscopy. The specimen was prepared from β–Si3N4 powders at a high pressure and temperature by shock wave compression. The typical high-resolution electron microscopy image from one small crystallite together with its diffractodiagram pattern indicated that the Si3N4 crystallites had a cubic symmetry. The electron energy loss spectrum from the small crystallite is very different from those of outside amorphous SiO2 phase and raw β–Si3N4 particles, and there are more N elements that were detected in this small crystallite than those in standard Si3N4.
APA, Harvard, Vancouver, ISO, and other styles
6

Gunde, Marta Klanjšek. "Vibrational modes in amorphous silicon dioxide." Physica B: Condensed Matter 292, no. 3-4 (November 2000): 286–95. http://dx.doi.org/10.1016/s0921-4526(00)00475-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ablova, M. S., G. S. Kulikov, and S. K. Persheev. "Gamma-induced metastable states of doped, amorphous, hydrated silicon." Semiconductors 32, no. 2 (February 1998): 222–24. http://dx.doi.org/10.1134/1.1187346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kazanskiı̆, A. G. "Photoconductivity of amorphous hydrated silicon doped by ion implantation." Semiconductors 33, no. 3 (March 1999): 332. http://dx.doi.org/10.1134/1.1187690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Griscom, David L. "Self-trapped holes in amorphous silicon dioxide." Physical Review B 40, no. 6 (August 15, 1989): 4224–27. http://dx.doi.org/10.1103/physrevb.40.4224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stathis, J. H., and M. A. Kastner. "Time-resolved photoluminescence in amorphous silicon dioxide." Physical Review B 35, no. 6 (February 15, 1987): 2972–79. http://dx.doi.org/10.1103/physrevb.35.2972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Suzdal'tsev, E. I., and A. K. Lesnikov. "Amorphous Silicon Dioxide: Preparation Techniques and Applications." Refractories and Industrial Ceramics 46, no. 3 (May 2005): 189–92. http://dx.doi.org/10.1007/s11148-005-0082-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kabaldin, A. N., V. B. Neimash, V. M. Tsmots’, and V. S. Shtym. "Diffusion saturation of nondoped hydrated amorphous silicon by tin impurity." Semiconductors 32, no. 3 (March 1998): 263–66. http://dx.doi.org/10.1134/1.1187376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Zvyagin, I. P., I. A. Kurova, N. N. Ormont, and K. B. Chitaya. "Characteristics of recombination processes in doped hydrated amorphous silicon films." Soviet Physics Journal 30, no. 6 (June 1987): 451–60. http://dx.doi.org/10.1007/bf00897333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Skorb, E. V., V. G. Sokolov, T. V. Byk, T. V. Gaevskaya, D. V. Sviridov, and Chang-Ho Noh. "Photocatalytic lithography based on thin films of amorphous hydrated titanium dioxide." High Energy Chemistry 42, no. 2 (March 2008): 127–31. http://dx.doi.org/10.1134/s0018143908020124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ossikovski, R., H. Shirai, and B. Drévillon. "Insituinvestigation of amorphous silicon‐silicon dioxide interfaces by infrared ellipsometry." Applied Physics Letters 64, no. 14 (April 4, 1994): 1815–17. http://dx.doi.org/10.1063/1.111765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Warren, W. L., E. H. Poindexter, M. Offenberg, and W. Müller‐Warmuth. "Paramagnetic Point Defects in Amorphous Silicon Dioxide and Amorphous Silicon Nitride Thin Films: I ." Journal of The Electrochemical Society 139, no. 3 (March 1, 1992): 872–80. http://dx.doi.org/10.1149/1.2069318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Warren, W. L., J. Kanicki, F. C. Rong, and E. H. Poindexter. "Paramagnetic Point Defects in Amorphous Silicon Dioxide and Amorphous Silicon Nitride Thin Films: II ." Journal of The Electrochemical Society 139, no. 3 (March 1, 1992): 880–89. http://dx.doi.org/10.1149/1.2069319.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Tsujiuchi, Yutaka, Keigo Furuya, Jun Matsumoto, Yukinobu Makino, Hiroshi Masumoto, and Takashi Goto. "Surface Structural Comparison of Composite Film of Bacteriorhodopsin and Phosphatidylcholine Fabricated on Amorphous Silicon Dioxide, Crystal Silicon Dioxide, and Hydrogenated Amorphous Silicon." Japanese Journal of Applied Physics 49, no. 1 (January 20, 2010): 01AE15. http://dx.doi.org/10.1143/jjap.49.01ae15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Keyong Chen, 陈可勇, 冯雪 Xue Feng, and 黄翊东 Yidong Huang. "Modeling of silicon-nanocrystal formation in amorphous silicon/silicon dioxide multilayer structure." Chinese Optics Letters 8, no. 12 (2010): 1199–202. http://dx.doi.org/10.3788/col20100812.1199.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yang, Lin, Qian Zhang, Zhiguang Cui, Matthew Gerboth, Yang Zhao, Terry T. Xu, D. Greg Walker, and Deyu Li. "Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide." Nano Letters 17, no. 12 (November 7, 2017): 7218–25. http://dx.doi.org/10.1021/acs.nanolett.7b02380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Panov, Nikolai, Alexander Pitukhin, Gennady Kolesnikov, and Sergei Vasil. "MANUFACTURING TECHNOLOGY CHIPBOARD USING THE AMORPHOUS SILICON DIOXIDE." Resources and Technology 2, no. 13 (2016): 34–44. http://dx.doi.org/10.15393/j2.art.2016.3261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Guttman, Lester, and Shafiqur M. Rahman. "Simulation of the structure of amorphous silicon dioxide." Physical Review B 37, no. 5 (February 15, 1988): 2657–68. http://dx.doi.org/10.1103/physrevb.37.2657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zemnukhova, L. A., G. A. Fedorishcheva, E. D. Shkorina, T. A. Kaydalova, and N. N. Barinov. "Amorphous silicon dioxide from waste of Ferroally production." Russian Journal of Applied Chemistry 84, no. 4 (April 2011): 565–71. http://dx.doi.org/10.1134/s107042721104001x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gupta, Raju P. "Electronic structure of crystalline and amorphous silicon dioxide." Physical Review B 32, no. 12 (December 15, 1985): 8278–92. http://dx.doi.org/10.1103/physrevb.32.8278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Guttman, Lester, and Shafiqur M. Rahman. "Modeling a ‘‘tunneling’’ state in amorphous silicon dioxide." Physical Review B 33, no. 2 (January 15, 1986): 1506–8. http://dx.doi.org/10.1103/physrevb.33.1506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Mariucci, Luigi, Guglielmo Fortunato, Piero Foglietti, Carlo Reita, and Dario Della Sala. "Transport properties of plasma-deposited amorphous silicon dioxide." Journal of Non-Crystalline Solids 115, no. 1-3 (December 1989): 123–25. http://dx.doi.org/10.1016/0022-3093(89)90381-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Fortunato, G., L. Mariucci, and C. Reita. "Dispersive charge injection model for hydrogenated amorphous silicon/amorphous silicon dioxide thin‐film transistor instability." Applied Physics Letters 59, no. 7 (August 12, 1991): 826–28. http://dx.doi.org/10.1063/1.105275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Duzhko, V., and L. Tsybeskov. "Time-resolved carrier tunneling in nanocrystalline silicon/amorphous silicon dioxide superlattices." Applied Physics Letters 83, no. 25 (December 22, 2003): 5229–31. http://dx.doi.org/10.1063/1.1630151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kamenev, B. V., H. Grebel, and L. Tsybeskov. "Laser-induced structural modifications in nanocrystalline silicon/amorphous silicon dioxide superlattices." Applied Physics Letters 88, no. 14 (April 3, 2006): 143117. http://dx.doi.org/10.1063/1.2193040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Chaudhari, Smruti P., Mittal Bhadiyadra, and Rutesh H. Dave. "Evaluating the effect of the porous and non-porous colloidal silicon dioxide as a stabilizer on amorphous solid dispersion." Journal of Drug Delivery and Therapeutics 10, no. 5 (September 15, 2020): 255–63. http://dx.doi.org/10.22270/jddt.v10i5.4323.

Full text
Abstract:
Advancement in the discovery of drugs has led to many highly lipophilic compounds with very low water solubility. Amorphous solid dispersion is one of the emerging technologies to increase the solubility of these drugs. The stability of these systems is critical since the high energy system tends to recrystallize, which negates the benefits of these systems. In this paper, we are evaluating the use of colloidal silicon dioxide as a potential stabilizer to stabilize the amorphous solid dispersions. Two types of colloidal silicon dioxide are used: porous colloidal silicon dioxide -Syloid 244 Fp and nonporous fumed silica – Aerosil 200. These silicon dioxides have a high surface area. Two methods of incorporation are used to incorporate silicon dioxide into the solid dispersion. The spray drying method is used to make amorphous solid dispersion. It was found that porous silicon dioxide is better to increase stability as well as increasing dissolution rate and % release of the drug. The addition of silicon dioxide internally to the dispersion increases the dissolution rate, and the addition of silicon dioxide externally increases the stability of the solid dispersion. Keywords: colloidal silicon dioxide, stabilizer, amorphous solid dispersion, low water solubility
APA, Harvard, Vancouver, ISO, and other styles
31

Kurova, I. A., L. I. Belogorokhova, and A. I. Belogorokhov. "Characteristic features of the IR spectra of amorphous boron-doped hydrated silicon." Semiconductors 32, no. 5 (May 1998): 565–67. http://dx.doi.org/10.1134/1.1187439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wen, Sun, In Hyeong Yeo, Jong Man Park, and Sun Il Mho. "Amorphous Manganese Dioxide as a Material for an Electrochemical Pseudocapacitor." Key Engineering Materials 277-279 (January 2005): 703–7. http://dx.doi.org/10.4028/www.scientific.net/kem.277-279.703.

Full text
Abstract:
The charge storage process of amorphous hydrated manganese dioxide (MnO2) as a pseudo-capacitor involves a fast redox reaction at the electrode surface. In order to understand the charge storage mechanism of MnO2 as a pseudo-capacitor in an aqueous KCl solution, we monitored the change of the capacitance by varying the pH of the solution, the cation of the electrolyte, the concentration of the KCl electrolyte, and the solvent. The charge storage mechanism of a metal oxide electrode such as MnO2 is concluded to involve a fast redox reaction through both the potassium ion exchange, MnO2 + δK+ + δe- ⇔ MnO2-δ(OK)δ and the proton exchange, MnO2 + δH+ + δe- ⇔ MnO2-δ(OH)δ dependent upon the availability of the cations in the electrolyte.
APA, Harvard, Vancouver, ISO, and other styles
33

Vlasukova, L. A., F. F. Komarov, V. N. Yuvchenko, O. V. Mil’chanin, A. Yu Didyk, V. A. Skuratov, and S. B. Kislitsyn. "A new nanoporous material based on amorphous silicon dioxide." Bulletin of the Russian Academy of Sciences: Physics 76, no. 5 (May 2012): 582–87. http://dx.doi.org/10.3103/s1062873812050267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

El-Sayed, Al-Moatasem, Matthew B. Watkins, Tibor Grasser, Valeri V. Afanas’ev, and Alexander L. Shluger. "Hole trapping at hydrogenic defects in amorphous silicon dioxide." Microelectronic Engineering 147 (November 2015): 141–44. http://dx.doi.org/10.1016/j.mee.2015.04.073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Matveev, V. A., V. I. Zakharov, D. B. Mayorov, and T. V. Kondratenko. "Physicochemical properties of amorphous silicon dioxide produced from nepheline." Russian Journal of Inorganic Chemistry 56, no. 3 (March 2011): 338–40. http://dx.doi.org/10.1134/s0036023611030144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Buscarino, G., S. Agnello, and F. M. Gelardi. "Hyperfine structure of theE′δcentre in amorphous silicon dioxide." Journal of Physics: Condensed Matter 18, no. 22 (May 19, 2006): 5213–19. http://dx.doi.org/10.1088/0953-8984/18/22/020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Lenahan, P. M., J. J. Mele, R. K. Lowry, and D. Woodbury. "Leakage currents and silicon dangling bonds in amorphous silicon dioxide thin films." Journal of Non-Crystalline Solids 266-269 (May 2000): 835–39. http://dx.doi.org/10.1016/s0022-3093(99)00851-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shimizu-Iwayama, T., S. Nakao, K. Saitoh, and N. Itoh. "Photoluminescence from nanoparticles of silicon embedded in an amorphous silicon dioxide matrix." Journal of Physics: Condensed Matter 6, no. 39 (September 26, 1994): L601—L606. http://dx.doi.org/10.1088/0953-8984/6/39/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ossikovski, R., H. Shirai, and B. Drévillon. "In situ investigation of amorphous silicon-silicon dioxide interfaces by infrared ellipsometry." Journal of Non-Crystalline Solids 164-166 (December 1993): 825–28. http://dx.doi.org/10.1016/0022-3093(93)91124-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Nghia, Ngo Hong, L. A. Zenitova, Le Quang Dien, and Dao Ngoc Truyen. "The Method of Obtaining Amorphous Nanosized Silicon Dioxide from Rice Production Waste." Ecology and Industry of Russia 23, no. 4 (April 3, 2019): 30–35. http://dx.doi.org/10.18412/1816-0395-2019-4-30-35.

Full text
Abstract:
The method of using rice husk, which is a rice production waste, as a raw material for the production of silicon dioxide as an alternative to synthetic silicon dioxide – aerosil is considered. A low-energy process for extracting silicon dioxide and cellulose from the husk by alkaline digestion in an NaOH solution was proposed, followed by treating the black liquor with an acid solution and calcining the precipitate at 575 °C during 5 hours. The yield of inorganic products from rice husk is determined based on the ash content of the pulp. It was shown that the product obtained mainly consists of silicon dioxide (SiO2) of amorphous structure, has an average particle size of less than 100 nm, which makes it possible to characterize it as nanosilica. At the same time, silicon dioxide consists of 51.7 % silicon and 48.3% oxygen against theoretical amounts of 30.4 % silicon and 69.6 % oxygen, respectively. The output of silicon dioxide is 8.8 % by weight of rice husk. At the same time, the process allows to obtain another valuable nanocellulose product.
APA, Harvard, Vancouver, ISO, and other styles
41

Nemtsova, Ye V., A. V. Harin, and I. A. Razlugo. "THE INFLUENCE OF SILICON DIOXIDE «KOVELOS-SORB» ON GROWTH CHARACHTERISTICS OF RHODODENDRON ROSEUM (LOISEL.) REHDER CULTIVATED IN VITRO." Bulletin of Nizhnevartovsk State University, no. 1 (December 15, 2020): 48–55. http://dx.doi.org/10.36906/2311-4444/20-1/08.

Full text
Abstract:
The article reveals a stimulating effect of synthetic amorphous silicon dioxide on growth parameters Rhododendron roseum (Loisel.) Rehder, propagating itself in vitro . The purpose of this study was to identify the optimum composition of culture medium on the basis of amorphous silica ‘Kovelos-Sorb’, used for clonal micropropagation of rhododendrons. It was established that it is preferable to add to Anderson culture medium 100 mg/L of amorphous silicon dioxide, which stimulated the growth of mericlone germs Rhododendron roseum (Loisel.) Rehder. In order to stimulate propagation and for receiving a vast amount of propagating material, it was optimal to use Anderson medium which contained 50 mg/L of amorphous silicon dioxide. For establishment of regenerative plants Rhododendron roseum (Loisel.) Rehder in vitro, it was optimal to use Anderson medium which contained synthetic amorphous silicon dioxide in amounts of 50-150 mg/L combined with indoleacetic acid in amounts of 1.5 mg/L.
APA, Harvard, Vancouver, ISO, and other styles
42

Mezdrogina, M. M., M. P. Annaorazova, E. I. Terukov, I. N. Trapeznikova, and N. Nazarov. "Formation of optically active centers in films of erbium-doped amorphous hydrated silicon." Semiconductors 33, no. 10 (October 1999): 1145–48. http://dx.doi.org/10.1134/1.1187884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Gridneva, Tatiana, Alexander Kravchenko, Vadim Barsky, and Natalia Gurevina. "Obtaining of High Purity Amorphous Silicon Dioxide from Rice Husk." Chemistry & Chemical Technology 10, no. 4 (September 15, 2016): 499–505. http://dx.doi.org/10.23939/chcht10.04.499.

Full text
Abstract:
Using maximum extraction of carbon-containing components the content of amorphous silicon dioxide was increased in the rice husk solid residue. In accordance with the hypothesis about the mechanism of extracting carbon-containing components from rice husk by liquid extractants, proper extractants were selected. The effect of main technological factors including process temperature, time and concentration of the extractants was determined.
APA, Harvard, Vancouver, ISO, and other styles
44

SELYAEV, V. P., V. A. NEVEROV, R. E. NURLYBAEV, P. V. SELYAEV, E. L. KECHUTKINA, and O. V. LIYASKIN. "Synthesis of Nanoproushers Amorphous Silicon Dioxide for the Construction Industry." Stroitel'nye Materialy 776, no. 11 (2019): 15–25. http://dx.doi.org/10.31659/0585-430x-2019-776-11-15-25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Skuja, Linards. "Optically active oxygen-deficiency-related centers in amorphous silicon dioxide." Journal of Non-Crystalline Solids 239, no. 1-3 (October 1998): 16–48. http://dx.doi.org/10.1016/s0022-3093(98)00720-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Miller, A. J., R. G. Leisure, and Wm R. Austin. "X-ray induced luminescence of high-purity, amorphous silicon dioxide." Journal of Applied Physics 86, no. 4 (August 15, 1999): 2042–50. http://dx.doi.org/10.1063/1.371006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Di Francesca, D., A. Boukenter, S. Agnello, A. Alessi, S. Girard, M. Cannas, and Y. Ouerdane. "Resonance Raman of oxygen dangling bonds in amorphous silicon dioxide." Journal of Raman Spectroscopy 48, no. 2 (August 3, 2016): 230–34. http://dx.doi.org/10.1002/jrs.5006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Krishna, K. V., J. J. Delima, and A. E. Owen. "Electronic instabilities in transition metal doped amorphous silicon dioxide films." Journal of Non-Crystalline Solids 77-78 (December 1985): 1321–24. http://dx.doi.org/10.1016/0022-3093(85)90902-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

KROT, V. V., L. N. ZORYA, O. D. ORLOVA, G. P. PANASYUK, V. B. LAZAREV, E. E. VINOGRADOV, G. N. TARASOVA, I. M. KARATAEVA, and L. N. NIKOLAEVA. "ChemInform Abstract: Preparation of Amorphous Silicon Dioxide from Hexafluorosilicic Acid." ChemInform 23, no. 48 (August 21, 2010): no. http://dx.doi.org/10.1002/chin.199248026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Rivera, Felipe, Laurel Burk, Robert Davis, and Richard Vanfleet. "Electron back-scattered diffraction of crystallized vanadium dioxide thin films on amorphous silicon dioxide." Thin Solid Films 520, no. 7 (January 2012): 2461–66. http://dx.doi.org/10.1016/j.tsf.2011.10.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography