Academic literature on the topic 'Hybrid thermochemical process'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hybrid thermochemical process.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hybrid thermochemical process"
Ghazale, Hasan, Guillaume Morel, Alexis Godefroy, Emmanuel Hernandez, Jean-Jacques Huc, Pierre Neveu, Nathalie Mazet, and Maxime Perier-Muzet. "Hybrid thermochemical process for storage and conversion into cold and electricity based on a low temperature thermal source." MATEC Web of Conferences 379 (2023): 07004. http://dx.doi.org/10.1051/matecconf/202337907004.
Full textAworanti, Oluwafunmilayo Abiola, Oluseye Omotoso Agbede, Samuel Enahoro Agarry, Ayobami Olu Ajani, Oyetola Ogunkunle, Opeyeolu Timothy Laseinde, S. M. Ashrafur Rahman, and Islam Md Rizwanul Fattah. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables." Energies 16, no. 8 (April 12, 2023): 3378. http://dx.doi.org/10.3390/en16083378.
Full textKolb, Gregory J., Richard B. Diver, and Nathan Siegel. "Central-Station Solar Hydrogen Power Plant." Journal of Solar Energy Engineering 129, no. 2 (April 13, 2006): 179–83. http://dx.doi.org/10.1115/1.2710246.
Full textNAKAGIRI, Toshio, Akira OHTAKI, Taiji HOSHIYA, and Kazumi AOTO. "A New Thermochemical and Electrolytic Hybrid Hydrogen Production Process for FBR." Transactions of the Atomic Energy Society of Japan 3, no. 1 (2004): 88–94. http://dx.doi.org/10.3327/taesj2002.3.88.
Full textJiang, Xianzhu, Hui Tian, and Xuanhong Ge. "Transient numerical investigation on thermochemical erosion of C/C nozzles in hybrid rocket motors." Journal of Physics: Conference Series 2746, no. 1 (May 1, 2024): 012016. http://dx.doi.org/10.1088/1742-6596/2746/1/012016.
Full textBILGEN, E., and C. BILGEN. "A hybrid thermochemical hydrogen producing process based on the Cristina-Mark cycles." International Journal of Hydrogen Energy 11, no. 4 (1986): 241–55. http://dx.doi.org/10.1016/0360-3199(86)90185-0.
Full textNAKAGIRI, Toshio. "Development of a New Thermochemical and Electrolytic Hybrid Hydrogen Production Process for FBR." Journal of the Atomic Energy Society of Japan 50, no. 10 (2008): 644–48. http://dx.doi.org/10.3327/jaesjb.50.10_644.
Full textLee, Jechan, Kun-Yi Andrew Lin, Sungyup Jung, and Eilhann E. Kwon. "Hybrid renewable energy systems involving thermochemical conversion process for waste-to-energy strategy." Chemical Engineering Journal 452 (January 2023): 139218. http://dx.doi.org/10.1016/j.cej.2022.139218.
Full textIoka, Ikuo, Yoshiro Kuriki, Jin Iwatsuki, Shinji Kubo, Hiroki Yokota, and Daisuke Kawai. "EVALUATION OF CONTAINER USING HYBRID TECHNIQUE FOR THERMOCHEMICAL WATER-SPLITTING IODINE-SULFUR PROCESS." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2023.30 (2023): 1542. http://dx.doi.org/10.1299/jsmeicone.2023.30.1542.
Full textAdenan, Mohd Shahriman, M. N. Berhan, and Esa Haruman. "Formation of Expanded Austenite Using Hybrid Low Temperature Thermochemical Heat Treatment on 2205 Duplex Stainless Steel." Advanced Materials Research 970 (June 2014): 244–47. http://dx.doi.org/10.4028/www.scientific.net/amr.970.244.
Full textDissertations / Theses on the topic "Hybrid thermochemical process"
Venter, Gerhardus Petrus. "Process sensitivity of the hybrid sulphur thermochemical cycle / Gerhard Venter." Thesis, North-West University, 2010. http://hdl.handle.net/10394/5067.
Full textThesis (M.Ing. (Nuclear Engineering))---North-West University, Potchefstroom Campus, 2010.
Fitó, de la Cruz Jaume. "Solar-driven hybrid refrigeration systems based on thermochemical processes." Doctoral thesis, Universitat Rovira i Virgili, 2017. http://hdl.handle.net/10803/461061.
Full textEsta tesis doctoral propone dos sistemas híbridos de refrigeración basados en energía solar donde el elemento común es un proceso termoquímico: un sistema híbrido absorción / termoquímico activado con energía solar térmica de baja temperatura (< 120 ºC), y un sistema híbrido compresión / termoquímico activado con energía solar fotovoltaica y calor residual. El sistema absorción / termoquímico es presentado en su configuración más simple y sus componentes y condiciones de operación discutidas. El desempeño del ciclo es estimado preliminarmente con algunos pares de trabajo con amoníaco, con NH3/NaSCN y NH3/BaCl2 como pares interesantes. La simulación preliminar del sistema híbrido muestra que este aumenta la fracción solar. El sistema compresión / termoquímico es definido y simulado en la fase de acumulación de refrigerante asistida con compresión. Un modelo de reacción cuasi-estacionario de doble frente, que tiene en cuenta limitaciones de transferencia de masa y de calor, es usado para estudiar preliminarmente la influencia de algunas condiciones de operación y parámetros de diseño sobre la curva de reacción con el par amoníaco / cloruro de bario. Se ha construido un dispositivo experimental para obtener datos experimentales de la fase de acumulación de refrigerante asistida con compresor, y confrontar estos datos con las predicciones obtenidas del modelo de reacción de doble frente, con el objetivo de ajustar algunos parámetros del modelo. Se concluye que el modelo ajustado predice la curva de reacción con exactitud aceptable para casi todos los experimentos, con pequeñas discrepancias. Se espera que los sistemas híbridos propuestos operen con energía solar, sean relativamente compactos, almacenen energía en menor volumen, y tengan un pequeño grado de autonomía (unas pocas horas en un ciclo de operación diario). Estos sistemas son interesantes para futuros estudios.
This doctoral thesis proposes two solar-based hybrid refrigeration systems where the central piece is a thermochemical process: an absorption / thermochemical hybrid system driven by low-grade solar thermal energy (< 120 ºC), and a compression / thermochemical hybrid refrigeration system driven by solar-PV energy and waste heat. The absorption / thermochemical hybrid system is presented in its most simple configuration, and its components and operating conditions discussed. A preliminary performance estimation is carried out with some ammonia-based working pairs finding the NH3/NaSCN and NH3/BaCl2 as interesting working pairs. A preliminary simulation of the hybrid system shows that it increases the solar coverage. The compression / thermochemical hybrid system is also defined and simulated in its refrigerant storage phase assisted with compression. A 2-front quasi-steady reaction model which accounts for heat and mass transfer limitations is used to preliminarily study the influence of some operating conditions and design parameters on the system’s reaction curve with the NH3/BaCl2 working pair. An experimental setup has been built to obtain experimental data from the compression-assisted refrigerant storage phase, and confront this data with the predictions obtained from the 2-front reaction model, with the objective of adjusting some parametres of the model. It is concluded that the adjusted model predicts the reaction curve with acceptable accuracy for almost all experiments, with small discrepancies. The proposed hybrid systems are expected to operate with solar energy, be relatively compact, store energy with reduced storage volume, and have a small degree of autonomy (a few hours within a daily operating cycle). These systems are promising for further study.
Ghazale, Hasan. "Procédé thermochimique hybride pour le stockage d'énergie thermique et la cogénération de froid et de travail mécanique : preuve de concept expérimentale, simulations dynamiques et analyse exergétique." Electronic Thesis or Diss., Perpignan, 2024. http://www.theses.fr/2024PERP0023.
Full textThis thesis falls within the pillar of energy efficiency. The work presented in this manuscript is to make a modest contribution to the vast body of research on energy efficiency, focusing on the utilization of heat sources at temperatures below 250°C. These sources are referred as "low-to-medium temperature" heat sources, in reference to their limited exploitability in industry. Since the energy from these waste heat sources is often unusable directly, its conversion appears to be an interesting prospect for generating a useful effect that can be injected on-site or into a nearby energy network. The proposed and examined thermodynamic process in this research enable the conversion of low-to-medium temperature heat into two useful effects: cold (at low temperatures) and electricity, with a storage functionality of the heat source in the form of chemical potential. This so-called "hybrid" process is designed based on the integration of a work extraction machine called “volumetric expander” into a thermochemical cycle which exploits a reversible chemical reaction between a solid and a gas (in a reactor) to produce cold from a low-to-medium temperature heat source. The storage functionality in the cycle allows for the separation of the heat source availability phase from the phase of cogenerating useful effects (cold and electricity). This property is extremely advantageous because the timing of the resource and the demand can be very different. A state of the art is conducted to specifically position hybrid thermodynamic cycles involving a sorption process within the context of low-to-medium temperature heat source valorization. After reviewing existing resources (notably industrial heat waste) and the potential for heat storage, the chapter introduces current systems that generate electricity and/or cold from low-temperature heat sources, placing the discussion within the context of existing technical solutions. It highlights the research on “hybrid sorption cycles” and identifies the experimental gaps in their examination. The hybrid thermochemical prototype developed at PROMES (to achieve the proof of concept) is then presented. The first examinations on the cycle are presented. After the concept proof by producing simultaneously cold and stable mechanical power, the effect of cold temperature is studied on the dynamics of the cycle and on its cogeneration. Analytical analysis of the coupling is done too. After, numerical and experimental analyses of the hybrid cycle are done. The effect of the electrical charge coupled to the generator at the expander is studied. The dynamics of the cycle and its cogeneration are analyzed experimentally for different coupled electrical load. Main limitations affecting the production in the cycle are highlighted. The numerical model in steady state is validated, and a sensitivity study on the limiting parameters is done. Detailed numerical work on the cycle is performed. The dynamic energetic model (based on the 1st law) is set under validation with the experimental results, by identifying and adapting its parameters with the ones of the prototype. After, an exergetic model is developed. Exergy destructions in the cycle are calculated, by estimating the irreversibility at each component (based on the 2nd law). Following an exergetic analysis to minimize the exergy destruction during the production phase, the cogeneration performance is improved. Finally, the thesis concludes with a summary of the work undertaken. It outlines perspectives based on this research, including potential developments for the cycle and its components, real-world integration, and new configurations
Book chapters on the topic "Hybrid thermochemical process"
Baliban, Richard C., Josephine A. Elia, and Christodoulos A. Floudas. "Process Synthesis with Heat and Power Integration of Thermochemical Coal, Biomass, and Natural Gas Hybrid Energy Processes." In Computer Aided Chemical Engineering, 1718–22. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-444-54298-4.50122-7.
Full textConference papers on the topic "Hybrid thermochemical process"
Rivalier, Patrick, Sophie Charton, Denis Ode, Jean Duhamet, Laurence Boisset, Jean-Louis Pabion, Florent Gandi, and Jean-Pierre Croze. "Design Study of a Pilot Test Plant for Hydrogen Production by a Hybrid Thermochemical Process." In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48584.
Full textSummers, William A., John L. Steimke, David T. Hobbs, Hector R. Colon-Mercado, and Maximilian B. Gorensek. "Development of a Sulfur Dioxide Depolarized Electrolyzer for Hydrogen Production Using the Hybrid Sulfur Thermochemical Process." In Fourth International Topical Meeting on High Temperature Reactor Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/htr2008-58196.
Full textKolb, Gregory J., Richard B. Diver, and Nathan Siegel. "Central-Station Solar Hydrogen Power Plant." In ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76052.
Full textGhazale, Hasan, Nathalie Mazet, Pierre Neveu, and Maxime Perier-Muzet. "Hybrid Thermochemical Cycle for Cold and Electricity Cogeneration: Experimental Analysis of the Process Behavior and Expander-Reactor Coupling." In 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2023). Las Palmas De Gran Canaria, Spain: ECOS 2023, 2023. http://dx.doi.org/10.52202/069564-0011.
Full textIoka, Ikuo, Yoshiro Kuriki, Jin Iwatsuki, Daisuke Kawai, Yoshiyuki Inagaki, Shinji Kubo, and Yoshiyuki Inagaki. "Corrosion Property of Container Using Hybrid Material for Thermal Decomposition Process of Sulfuric Acid." In 2020 International Conference on Nuclear Engineering collocated with the ASME 2020 Power Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/icone2020-16783.
Full textRichards, Matt, and Arkal Shenoy. "Hydrogen Generation Using the Modular Helium Reactor." In 12th International Conference on Nuclear Engineering. ASMEDC, 2004. http://dx.doi.org/10.1115/icone12-49228.
Full textDean, Jered, Robert Braun, Michael Penev, Christopher Kinchin, and David Mun˜oz. "Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90067.
Full textMaldonado, Pedro, Giane G. Lenzi, Helder T. Gomes, and Paulo Brito. "MODELING AND SIMULATION OF BIOMASS PYROLYSIS AND GASIFICATION PROCESSES." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022v/4.2/s17.71.
Full textArosio, Franco, and Ingo Lange. "Lifetime Protection of Iron Casted Brake Discs for Electric Vehicles through Advanced Heat Treatment Technology." In EuroBrake 2021. FISITA, 2021. http://dx.doi.org/10.46720/1978791eb2021-mds-006.
Full textReports on the topic "Hybrid thermochemical process"
Summers, William A., and Melvin R. Buckner. Hybrid Sulfur Thermochemical Process Development Annual Report. Office of Scientific and Technical Information (OSTI), July 2005. http://dx.doi.org/10.2172/881458.
Full text