Academic literature on the topic 'Hybrid systems modeling and verification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hybrid systems modeling and verification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hybrid systems modeling and verification"
Mosterman, Pieter J., Gautam Biswas, and Janos Sztipanovits. "Hybrid Modeling and Verification of Embedded Control Systems." IFAC Proceedings Volumes 30, no. 4 (April 1997): 33–38. http://dx.doi.org/10.1016/s1474-6670(17)43608-1.
Full textMotallebi, Hassan, and Mohammad Abdollahi Azgomi. "Modeling and verification of hybrid dynamic systems using multisingular hybrid Petri nets." Theoretical Computer Science 446 (August 2012): 48–74. http://dx.doi.org/10.1016/j.tcs.2012.05.023.
Full textMosterman, Pieter J., Gautam Biswas, and Janos Sztipanovits. "A hybrid modeling and verification paradigm for embedded control systems." Control Engineering Practice 6, no. 4 (April 1998): 511–21. http://dx.doi.org/10.1016/s0967-0661(98)00045-8.
Full textPark, Jaeyong, Arda Kurt, and Ümit Özgüner. "Hybrid Systems Modeling and Reachability-Based Controller Design Methods for Vehicular Automation." Unmanned Systems 02, no. 02 (April 2014): 101–19. http://dx.doi.org/10.1142/s2301385014500071.
Full textFRIBOURG, LAURENT, and ULRICH KÜHNE. "PARAMETRIC VERIFICATION AND TEST COVERAGE FOR HYBRID AUTOMATA USING THE INVERSE METHOD." International Journal of Foundations of Computer Science 24, no. 02 (February 2013): 233–49. http://dx.doi.org/10.1142/s0129054113400091.
Full textSchupp, Stefan, Francesco Leofante, Leander Behr, Erika Ábrahám, and Armando Taccella. "Robot Swarms as Hybrid Systems: Modelling and Verification." Electronic Proceedings in Theoretical Computer Science 361 (July 10, 2022): 61–77. http://dx.doi.org/10.4204/eptcs.361.7.
Full textLu, Tsung-Yu, Mu-En Wu, Er-Hao Chen, and Yeong-Luh Ueng. "Reference Selection for Offline Hybrid Siamese Signature Verification Systems." Computers, Materials & Continua 73, no. 1 (2022): 935–52. http://dx.doi.org/10.32604/cmc.2022.026717.
Full textMaheshwari, Sachin, Spyros Stathopoulos, Jiaqi Wang, Alexander Serb, Yihan Pan, Andrea Mifsud, Lieuwe B. Leene, et al. "Design Flow for Hybrid CMOS/Memristor Systems—Part I: Modeling and Verification Steps." IEEE Transactions on Circuits and Systems I: Regular Papers 68, no. 12 (December 2021): 4862–75. http://dx.doi.org/10.1109/tcsi.2021.3122343.
Full textWang, Miaosen, Yuan Xue, and Kang Wang. "Modeling and Simulation in an Aircraft Safety Design Based on a Hybrid AHP and FCA Algorithm." Computational Intelligence and Neuroscience 2022 (May 27, 2022): 1–11. http://dx.doi.org/10.1155/2022/6424057.
Full textSharykin, Raman E., and Alexander N. Kourbatski. "A model of distributed objectbased stochastic hybrid systems." Journal of the Belarusian State University. Mathematics and Informatics, no. 2 (August 1, 2019): 52–61. http://dx.doi.org/10.33581/2520-6508-2019-2-52-61.
Full textDissertations / Theses on the topic "Hybrid systems modeling and verification"
Mohammed, Ammar Mohammed [Verfasser]. "Hybrid multi-agent systems: modeling, specification and verification / Ammar Mohammed Mohammed." Koblenz : Universitätsbibliothek Koblenz, 2010. http://d-nb.info/1008134155/34.
Full textBecker, Basil, and Holger Giese. "Cyber-physical systems with dynamic structure : towards modeling and verification of inductive invariants." Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/6243/.
Full textCyber-physical Systeme erzielen ihr ausgefeiltes Systemverhalten durch die enge Verschränkung von physikalischer Kopplung, wie sie in Systemen der klassichen Igenieurs-Disziplinen vorkommt, und der Kopplung durch Informationstechnologie. Eine besondere Herausforderung stellen in diesem Zusammenhang Systeme dar, die durch die spontane Vernetzung einzelner Cyber-Physical-Systeme entsprechend der lokalen, topologischen Gegebenheiten, verfügbarer Netzwerkfähigkeiten und der Anforderungen und Beschränkungen der Teilsysteme, die durch den informationsverabeitenden Teil vorgegeben sind, entstehen. In diesem Bericht stellen wir einen Formalismus vor, der die Modellierung der eingangs skizzierten Systeme erlaubt. Ein auf UML aufbauender Graph-Transformations-Ansatz wird genutzt, um die spontane Bildung eng kooperierender Teilsysteme beliebiger Größe zu spezifizieren. Differentialgleichungen beschreiben das kombinierte Verhalten auf physikalischer Ebene. In Kombination ergeben diese beiden Formalismen hybride Graph-Transformations-Systeme, in denen die Graph-Transformationen diskrete Schritte und die Differentialgleichungen das kontinuierliche, physikalische Verhalten des Systems beschreiben. Zusätzlich, präsentieren wir die Erweiterung einer automatischen Analysetechnik zur Verifikation induktiver Invarianten, die bereits für zeitbehaftete Systeme bekannt ist, auf den ausdrucksstärkeren Fall der hybriden Modelle.
Aljarbouh, Ayman. "Accelerated simulation of hybrid systems : method combining static analysis and run-time execution analysis." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S033/document.
Full textThis thesis deals with Zeno behavior of hybrid systems, and it has four main contributions : a method of eliminating "chattering" phenomena of hybrid automata, by computing an equivalent dynamics using a new convexification approach ; a method for accelerating the simulation of geometric-Zeno behavior in which the solution converges to a Zeno limit point according to a geometric series ; a proof of preservation by the above methods of a semantics of hybrid automata based on non-standard analysis ; a development of three prototype software, one in the form of a Simulink library, the other in the form of an FMI simulation environment, and the third being an implementation of the regularization method in the Modeling and simulation tool Acumen
Bujorianu, Manuela-Luminita. "Stochastic hybrid system : modelling and verification." Thesis, University of Stirling, 2005. http://hdl.handle.net/1893/3451.
Full textMitra, Sayan. "A verification framework for hybrid systems." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42238.
Full textIncludes bibliographical references (p. 193-205) and index.
Combining; discrete state transitions with differential equations, Hybrid system models provide an expressive formalism for describing software systems that interact with a physical environment. Automatically checking properties, such as invariance and stability, is extremely hard for general hybrid models, and therefore current research focuses on models with restricted expressive power. In this thesis we take a complementary approach by developing proof techniques that are not necessarily automatic, but are applicable to a general class of hybrid systems. Three components of this thesis, namely, (i) semantics for ordinary and probabilistic hybrid models, (ii) methods for proving invariance, stability, and abstraction, and (iii) software tools supporting (i) and (ii), are integrated within a common mathematical framework. (i) For specifying nonprobabilistic hybrid models, we present Structured Hybrid I/O Automata (SHIOAs) which adds control theory-inspired structures, namely state models, to the existing Hybrid I/O Automata, thereby facilitating description of continuous behavior. We introduce a generalization of SHIOAs which allows both nondeterministic and stochastic transitions and develop the trace-based semantics for this framework. (ii) We present two techniques for establishing lower-bounds on average dwell time (ADT) for SHIOA models. This provides a sufficient condition of establishing stability for SHIOAs with stable state models. A new simulation-based technique which is sound for proving ADT-equivalence of SHIOAs is proposed. We develop notions of approximate implementation and corresponding proof techniques for Probabilistic I/O Automata. Specifically, a PIOA A is an E-approximate implementation of B, if every trace distribution of A is c-close to some trace distribution of B-closeness being measured by a metric on the space of trace distributions.
(cont.) We present a new class of real-valued simulation functions for proving c-approximate implementations, and demonstrate their utility in quantitatively reasoning about probabilistic safety and termination. (iii) We introduce a specification language for SHIOAs and a theorem prover interface for this language. The latter consists of a translator to typed high order logic and a set of PVS-strategies that partially automate the above verification techniques within the PVS theorem prover.
by Sayan Mitra.
Ph.D.
Livadas, Carolos. "Formal verification of safety-critical hybrid systems." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/42817.
Full textIncludes bibliographical references (p. 181-185).
This thesis investigates how the formal modeling and verification techniques of computer science can be used for the analysis of hybrid systems [7,14,22,37] - systems involving both discrete and continuous behavior. The motivation behind such research lies in the inherent similarity of the hierarchical and decentralized control strategies of hybrid systems and the communication and operation protocols used for distributed systems in computer science. As a case study, the thesis focuses on the development of techniques that use hybrid I/O automata [29,30] to model and analyze automated vehicle transportation systems and, in particular, their various protection subsystems - control systems that are used to ensure that the physical plant at hand does not violate its various safety requirements. The thesis is split into two major parts. In the first part, we develop an abstract model of a physical plant and its various protection subsystems - also referred to as protectors. The specialization of this abstract model results in the specification of a particular automated transportation system. Moreover, the proof of correctness of the abstract model leads to simple correctness proofs of the protector implementations for particular specializations of the abstract model. In this framework, the composition of independent protectors is straightforward - their composition guarantees the conjunction of the safety properties guaranteed by the individual protectors. In fact, it is shown that under certain conditions composition holds for dependent protectors also. In the second part, we specialize the aforementioned abstract model to simplified versions of the personal rapid transit system (PRT 200TM) under development at Raytheon Corporation. We examine overspeed and collision protection for a set of vehicles traveling on straight tracks, on binary merges, and on a directed graph of tracks involving binary merges and diverges. In each case, the protectors sample the state of the physical plant and take protective actions to guarantee that the physical plant does not reach hazardous states. The proofs of correctness of such protectors involve specializing the abstract protector to the physical plant at hand and proving that the suggested protector implementations are correct. This is done by defining simulations among the states of the protector implementations and their abstract counterparts.
by Carolos Livadas.
M.Eng.
Denman, William. "Automated verification of continuous and hybrid dynamical systems." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708809.
Full textSavicks, Vitaly. "Integrating formal verification and simulation of hybrid systems." Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/400280/.
Full textCarroll, Simon A. "Strategies for Improving Verification Techniques for Hybrid Systems." Case Western Reserve University School of Graduate Studies / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=case1212713593.
Full textCarter, Rebekah. "Verification of liveness properties on hybrid dynamical systems." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/verification-of-liveness-properties-on-hybrid-dynamical-systems(8817319c-a63f-4cf3-927d-a2ddf69139b4).html.
Full textBooks on the topic "Hybrid systems modeling and verification"
A, Granat Mitchell, and Hydraulics Laboratory (U.S.), eds. Verification of the hydrodynamic and sediment transport hybrid modeling system for Cumberland Sound and Kings Bay navigation channel, Georgia. Vicksburg, Miss: US Army Corps of Engineers, Hydraulics Laboratory, 1989.
Find full textInan, M. Kemal, and Robert P. Kurshan, eds. Verification of Digital and Hybrid Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59615-5.
Full textTabuada, Paulo. Verification and Control of Hybrid Systems. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0224-5.
Full textOnwubolu, Godfrey C., ed. Hybrid Self-Organizing Modeling Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01530-4.
Full textMerz, Stephan, and Nicolas Navet, eds. Modeling and Verification of Real-Time Systems. London, UK: ISTE, 2008. http://dx.doi.org/10.1002/9780470611012.
Full textservice), SpringerLink (Online, ed. Verification and Control of Hybrid Systems: A Symbolic Approach. Boston, MA: Springer-Verlag US, 2009.
Find full textGoebel, Rafal. Hybrid dynamical systems: Modeling, stability, and robustness. Princeton, N.J: Princeton University Press, 2012.
Find full textDrechsler, Rolf, and Ulrich Kühne, eds. Formal Modeling and Verification of Cyber-Physical Systems. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09994-7.
Full textSamar, Abdi, Gerstlauer Andreas 1970-, Schirner Gunar, and SpringerLink (Online service), eds. Embedded System Design: Modeling, Synthesis and Verification. Boston, MA: Springer-Verlag US, 2009.
Find full textUnited States. National Aeronautics and Space Administration., ed. Verification of thermal analysis codes for modeling sold rocket nozzles. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textBook chapters on the topic "Hybrid systems modeling and verification"
Roozbehani, Mardavij, Eric Feron, and Alexandre Megrestki. "Modeling, Optimization and Computation for Software Verification." In Hybrid Systems: Computation and Control, 606–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-31954-2_39.
Full textLee, Jaehun, Sharon Kim, Kyungmin Bae, and Peter Csaba Ölveczky. "Hybrid SynchAADL: Modeling and Formal Analysis of Virtually Synchronous CPSs in AADL." In Computer Aided Verification, 491–504. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81685-8_23.
Full textSchupp, Stefan, Erika Ábrahám, Xin Chen, Ibtissem Ben Makhlouf, Goran Frehse, Sriram Sankaranarayanan, and Stefan Kowalewski. "Current Challenges in the Verification of Hybrid Systems." In Cyber Physical Systems. Design, Modeling, and Evaluation, 8–24. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25141-7_2.
Full textSchwab, Stefan, Bernd Holzmüller, and Sören Hohmann. "Automated Verification of Switched Systems Using Hybrid Identification." In Cyber Physical Systems. Design, Modeling, and Evaluation, 87–100. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51738-4_7.
Full textPolgreen, Elizabeth, Kevin Cheang, Pranav Gaddamadugu, Adwait Godbole, Kevin Laeufer, Shaokai Lin, Yatin A. Manerkar, Federico Mora, and Sanjit A. Seshia. "UCLID5: Multi-modal Formal Modeling, Verification, and Synthesis." In Computer Aided Verification, 538–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13185-1_27.
Full textMohammed, Ammar, and Ulrich Furbach. "Multi-Agent Systems: Modeling and Verification Using Hybrid Automata." In Lecture Notes in Computer Science, 49–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14843-9_4.
Full textLynch, Nancy. "Modelling and verification of automated transit systems, using timed automata, invariants and simulations." In Hybrid Systems III, 449–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0020967.
Full textFrehse, Goran. "An Introduction to Hybrid Automata, Numerical Simulation and Reachability Analysis." In Formal Modeling and Verification of Cyber-Physical Systems, 50–81. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09994-7_3.
Full textLi, Xian, and Klaus Schneider. "An SMT-based Approach to analyze Non-Linear Relations of Parameters for Hybrid Systems." In Formal Modeling and Verification of Cyber-Physical Systems, 290–92. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-09994-7_16.
Full textZhan, Naijun, Shuling Wang, and Hengjun Zhao. "Formal Modelling, Analysis and Verification of Hybrid Systems." In Lecture Notes in Computer Science, 207–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39721-9_5.
Full textConference papers on the topic "Hybrid systems modeling and verification"
Nickovic, Dejan. "Session details: Modeling and Verification." In HSCC '18: 21st International Conference on Hybrid Systems: Computation and Control. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3258032.
Full textKoutroumpas, Konstantinos, and John Lygeros. "Modeling and verification of stochastic hybrid systems using HIOA." In the 13th ACM international conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1755952.1755989.
Full textXiaobin Zhang and Hai Lin. "Stochastic hybrid systems modeling and performance verification of behavior-based robots." In 2015 American Control Conference (ACC). IEEE, 2015. http://dx.doi.org/10.1109/acc.2015.7170829.
Full text"Modeling Multi-agent Logistic Process System using Hybrid Automata." In The 6th International Workshop on Modelling, Simulation,Verification and Validation of Enterprise Information Systems. SciTePress - Science and and Technology Publications, 2008. http://dx.doi.org/10.5220/0001729501410149.
Full textKumar, N. Suresh, and G. Santhosh Kumar. "Modeling and verification of timed automaton based hybrid systems using spin model checker." In 2016 IEEE Annual India Conference (INDICON). IEEE, 2016. http://dx.doi.org/10.1109/indicon.2016.7839011.
Full textYATCHEV, Ivan, Iosko BALABOZOV, Hartmut BRAUER, and Vultchan GUEORGIEV. "Computer Modeling and Experimental Verification of a Hybrid Electromagnetic System with Magnetic Flux Modulation." In 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA). IEEE, 2019. http://dx.doi.org/10.1109/elma.2019.8771639.
Full textCapiluppi, Marta, Luzie Schreiter, Paolo Fiorini, Joerg Raczkowsky, and Heinz Woern. "Modeling and verification of a robotic surgical system using Hybrid Input/Output Automata." In 2013 European Control Conference (ECC). IEEE, 2013. http://dx.doi.org/10.23919/ecc.2013.6669654.
Full textGhigliazza, Francesco, Alberto Traverso, Matteo Pascenti, and Aristide F. Massardo. "Micro Gas Turbine Real-Time Modeling: Test Rig Verification." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59124.
Full textJanjua, Faisal, M. Younis Javed, and Naveed Sarfraz. "Chapter 19: Hybrid Fingerprint Verification System Based on Fusion of Feature Extraction and Minutiae Detection Strategy." In 2008 3rd International Conference on Geometric Modeling and Imaging GMAI. IEEE, 2008. http://dx.doi.org/10.1109/gmai.2008.19.
Full textGhigliazza, Francesco, Alberto Traverso, Mario L. Ferrari, and John Wingate. "Multi-Purpose Model of SOFC Hybrid Systems." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50562.
Full textReports on the topic "Hybrid systems modeling and verification"
Hamill, Daniel D., Jeremy J. Giovando, Chandler S. Engel, Travis A. Dahl, and Michael D. Bartles. Application of a Radiation-Derived Temperature Index Model to the Willow Creek Watershed in Idaho, USA. U.S. Army Engineer Research and Development Center, August 2021. http://dx.doi.org/10.21079/11681/41360.
Full textKohn, W., J. B. Remmel, and A. Nerode. Automation Comparison Procedure for Verification of Hybrid Systems. Fort Belvoir, VA: Defense Technical Information Center, November 1997. http://dx.doi.org/10.21236/ada344450.
Full textWongpiromsarn, Tichakorn, Sayan Mitra, Richard M. Murray, and Andrew Lamperski. Verification of Periodically Controlled Hybrid Systems: Application to An Autonomous Vehicle. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada522591.
Full textCetiner, Sacit M., Michael Scott Greenwood, Thomas J. Harrison, A. L. Qualls, Askin Guler Yigitoglu, and David W. Fugate. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL. Office of Scientific and Technical Information (OSTI), September 2016. http://dx.doi.org/10.2172/1338537.
Full textRabiti, Cristian, Humberto E. Garcia, Rob Hovsapian, Robert Kinoshita, George L. Mesina, Shannon M. Bragg-Sitton, and Richard D. Boardman. Strategy and gaps for modeling, simulation, and control of hybrid systems. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1213628.
Full textHales, Jason, and Veena Tikare. Verification and Validation Strategy for Implementation of Hybrid Potts-Phase Field Hydride Modeling Capability in MBM. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1149015.
Full textGreenwood, Michael Scott, Sacit M. Cetiner, Thomas J. Harrison, and David Fugate. A Templated Approach for Multi-Physics Modeling of Hybrid Energy Systems in Modelica. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1427611.
Full textHo, T. Q., T. J. Hilsabeck, C. A. Hewett, D. A. Zolnick, M. Kragalott, D. J. Taylor, M. C. Baugher, T. Itoh, and A. K. Agrawal. Verification and Validation Report: Microwave Office(Trademark) 2002 Modeling and Simulation for Electronic Systems. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada487020.
Full textCheney, Douglas C., and Bryan R. Fischer. Measuring the PMI Modeling Capability in CAD Systems: Report 1 - Combined Test Case Verification. National Institute of Standards and Technology, November 2015. http://dx.doi.org/10.6028/nist.gcr.15-997.
Full textVargas, J. V. Modeling and Optimization of Renewable and Hybrid Fuel Cell Systems for Space Power and Propulsion. Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ada563592.
Full text