Academic literature on the topic 'Hybrid quantum devices'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hybrid quantum devices.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hybrid quantum devices"
Wallquist, M., K. Hammerer, P. Rabl, M. Lukin, and P. Zoller. "Hybrid quantum devices and quantum engineering." Physica Scripta T137 (December 2009): 014001. http://dx.doi.org/10.1088/0031-8949/2009/t137/014001.
Full textChu, Yiwen, Jonathan D. Pritchard, Hailin Wang, and Martin Weides. "Hybrid quantum devices: Guest editorial." Applied Physics Letters 118, no. 24 (June 14, 2021): 240401. http://dx.doi.org/10.1063/5.0057740.
Full textDe Franceschi, Silvano, Leo Kouwenhoven, Christian Schönenberger, and Wolfgang Wernsdorfer. "Hybrid superconductor–quantum dot devices." Nature Nanotechnology 5, no. 10 (September 19, 2010): 703–11. http://dx.doi.org/10.1038/nnano.2010.173.
Full textPierini, S., M. D’Amato, M. Joos, Q. Glorieux, E. Giacobino, E. Lhuillier, C. Couteau, and A. Bramati. "Hybrid devices for quantum nanophotonics." Journal of Physics: Conference Series 1537 (May 2020): 012005. http://dx.doi.org/10.1088/1742-6596/1537/1/012005.
Full textKanne, Thomas, Dags Olsteins, Mikelis Marnauza, Alexandros Vekris, Juan Carlos Estrada Saldaña, Sara Loric̀, Rasmus D. Schlosser, et al. "Double Nanowires for Hybrid Quantum Devices." Advanced Functional Materials 32, no. 9 (November 21, 2021): 2107926. http://dx.doi.org/10.1002/adfm.202107926.
Full textMoumaris, Mohamed, Jean-Michel Bretagne, and Nisen Abuaf. "Nanomedical Devices and Cancer Theranostics." Open Nanomedicine and Nanotechnology Journal 6, no. 1 (April 21, 2020): 1–11. http://dx.doi.org/10.2174/2666150002006010001.
Full textTSU, RAPHAEL. "QUANTUM DEVICES WITH MULTIPOLE-ELECTRODE — HETEROJUNCTIONS HYBRID STRUCTURES." International Journal of High Speed Electronics and Systems 12, no. 04 (December 2002): 1159–71. http://dx.doi.org/10.1142/s0129156402001976.
Full textKadim, Akeel M. "Fabrication of Quantum Dots Light Emitting Device by Using CdTe Quantum Dots and Organic Polymer." Journal of Nano Research 50 (November 2017): 48–56. http://dx.doi.org/10.4028/www.scientific.net/jnanor.50.48.
Full textScherübl, Zoltán, András Pályi, and Szabolcs Csonka. "Transport signatures of an Andreev molecule in a quantum dot–superconductor–quantum dot setup." Beilstein Journal of Nanotechnology 10 (February 6, 2019): 363–78. http://dx.doi.org/10.3762/bjnano.10.36.
Full textKurizki, Gershon, Patrice Bertet, Yuimaru Kubo, Klaus Mølmer, David Petrosyan, Peter Rabl, and Jörg Schmiedmayer. "Quantum technologies with hybrid systems." Proceedings of the National Academy of Sciences 112, no. 13 (March 3, 2015): 3866–73. http://dx.doi.org/10.1073/pnas.1419326112.
Full textDissertations / Theses on the topic "Hybrid quantum devices"
Bhat, Jerome C. "Electroluminescent hybrid organic/inorganic quantum dot devices." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298766.
Full textBoonkoom, Thitikorn. "InP quantum dots for hybrid photovoltaic devices." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/17778.
Full textCoe-Sullivan, Seth (Seth Alexander). "Hybrid organic/quantum dot thin film structures and devices." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33935.
Full textIncludes bibliographical references (p. 157-169).
Organic light emitting diodes have undergone rapid advancement over the course of the past decade. Similarly, quantum dot synthesis has progressed to the point that room temperature highly efficient photoluminescence can be realized. It is the purpose of this work to utilize the beneficial properties of these two material sets in a robust light emitting device. New deposition techniques are necessary to the realization of this goal, enabling QD organic hybrids to be created in a quick and reliable manner compatible with known device fabrication methods. With these techniques, quantum dot light emitting devices are fabricated, measured, and analyzed. The devices are of high efficiency and color saturation, and provide us with a test bed for understanding the interactions between inorganic QDs and organic thin films.
by Seth Coe-Sullivan.
Ph.D.
Garner, Brett William. "Multifunctional Organic-Inorganic Hybrid Nanophotonic Devices." Thesis, University of North Texas, 2008. https://digital.library.unt.edu/ark:/67531/metadc6108/.
Full textGünel, Haci Yusuf [Verfasser]. "Quantum transport in nanowire-based hybrid devices / Haci Yusuf Günel." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013. http://d-nb.info/1047231794/34.
Full textGünel, Hacı Yusuf [Verfasser]. "Quantum transport in nanowire-based hybrid devices / Haci Yusuf Günel." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2013. http://nbn-resolving.de/urn:nbn:de:hbz:82-opus-47434.
Full textHaverinen, H. (Hanna). "Inkjet-printed quantum dot hybrid light-emitting devices—towards display applications." Doctoral thesis, University of Oulu, 2010. http://urn.fi/urn:isbn:9789514261275.
Full textBothner, Daniel [Verfasser], and Reinhold [Akademischer Betreuer] Kleiner. "Micropatterned Superconducting Film Circuitry for Operation in Hybrid Quantum Devices / Daniel Bothner ; Betreuer: Reinhold Kleiner." Tübingen : Universitätsbibliothek Tübingen, 2014. http://d-nb.info/1162897465/34.
Full textDabbousi, Bashir O. (Bashir Osama). "Fabrication and characterization of hybrid organic/inorganic electroluminescent devices based on cadmium selenide nanocrystallites (quantum dots)." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/10434.
Full textHuang, Wei-Jie, and Wei-Jie Huang. "Towards Increased Photovoltaic Energy Generation Efficiency and Reliability: Quantum-Scale Spectral Sensitizers in Thin-Film Hybrid Devices and Microcracking in Monocrystalline Si." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/623175.
Full textBooks on the topic "Hybrid quantum devices"
Grove-Rasmussen, K. Hybrid Superconducting Devices Based on Quantum Wires. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.16.
Full textNarlikar, A. V., and Y. Y. Fu, eds. Oxford Handbook of Nanoscience and Technology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533060.001.0001.
Full textNarlikar, A. V., ed. The Oxford Handbook of Small Superconductors. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.001.0001.
Full textLaunay, Jean-Pierre, and Michel Verdaguer. The mastered electron: molecular electronics and spintronics, molecular machines. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198814597.003.0005.
Full textPfirrmann, Marco. Adding nonlinearity to an electromagnetic-magnonic quantum hybrid device. KIT Scientific Publishing, 2020.
Find full textBook chapters on the topic "Hybrid quantum devices"
Lin, Chien-Chung. "Hybrid Optoelectronic Devices with Colloidal Quantum Dots." In Lecture Notes in Nanoscale Science and Technology, 67–90. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8148-5_3.
Full textRamar, M., R. Manimozhi, C. K. Suman, R. Ahamad, and Ritu Srivastava. "Study of Schottky Barrier Contact in Hybrid CdSe Quantum Dot Organic Solar Cells." In Physics of Semiconductor Devices, 367–70. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_92.
Full textSaini, Ravi, Ashish Mani, M. S. Prasad, and Siddhartha Bhattacharyya. "Toward a framework for implementation of quantum-inspired evolutionary algorithm on noisy intermediate scale quantum devices (IBMQ) for solving knapsack problems." In Hybrid Computational Intelligent Systems, 345–61. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003381167-23.
Full textShao, Xue, and Zhiping Yu. "A Hybrid 3D Quantum Mechanical Simulation of FinFETs and Nanowire Devices." In Simulation of Semiconductor Processes and Devices 2004, 21–24. Vienna: Springer Vienna, 2004. http://dx.doi.org/10.1007/978-3-7091-0624-2_5.
Full textMehta, Aarti, Shailesh N. Sharma, Kanchan Sharma, Parth Vashishtha, and S. Chand. "Single-Pot Rapid Synthesis of Colloidal Core/Core-Shell Quantum Dots: A Novel Polymer-Nanocrystal Hybrid Material." In Physics of Semiconductor Devices, 315–18. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_79.
Full textNagan, Tristan, and Ritesh Ajoodha. "Evaluating the Performance of Hybrid Quantum-Classical Convolutional Neural Networks on NISQ Devices." In Proceedings of Sixth International Congress on Information and Communication Technology, 219–26. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2102-4_20.
Full textRosales-Alvarado, Sandra S., Oscar Montiel, Ulises Orozco-Rosas, and Juan J. Tapia. "Developing a Quantum Genetic Algorithm in MATLAB Using a Quantum Device on AWS." In New Directions on Hybrid Intelligent Systems Based on Neural Networks, Fuzzy Logic, and Optimization Algorithms, 111–27. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-53713-4_10.
Full textTSU, RAPHAEL. "QUANTUM DEVICES WITH MULTIPOLE-ELECTRODE — HETEROJUNCTIONS HYBRID STRUCTURES." In Advanced Semiconductor Heterostructures, 221–33. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812775542_0011.
Full textKachurova, Monika, Tomislav Shuminoski, and Mitko Bogdanoski. "Lattice-Based Cryptography: A Quantum Approach to Secure the IoT Technology." In Building Cyber Resilience against Hybrid Threats. IOS Press, 2022. http://dx.doi.org/10.3233/nicsp220023.
Full textHayati Raad, Shiva. "Optical Waveguides for Quantum Computation." In Optical Waveguides and Related Technology [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.114996.
Full textConference papers on the topic "Hybrid quantum devices"
Bouscher, Shlomi, Sima Buchbinder, Dmitry Panna, Krishna Balasubramanian, Ronen Jacovi, Ankit Kumar, Christian Schneider, Sven Höfling, and Alex Hayat. "Two-Photon Emission and Correlations in Hybrid Superconductor-Semiconductor Devices." In Quantum 2.0, QM3B.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qm3b.6.
Full textRickert, Lucas, Daniel Vajner, Martin v. Helversen, Johannes Schall, Sven Rodt, Stephan Reitzenstein, Kinga Zolnac, et al. "Fiber-pigtailed Quantum Dot Hybrid Circular Bragg Gratings." In Quantum 2.0, QM5B.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qm5b.3.
Full textLazzari, Lorenzo, Jérémie Schuhmann, Aristide Lemaître, Maria I. Amanti, Frédéric Boeuf, Fabrice Raineri, Florent Baboux, and Sara Ducci. "Hybrid III-V/Silicon photonic circuits embedding generation and routing of entangled photon pairs." In Quantum 2.0, QW2A.3. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qw2a.3.
Full textJöns, Klaus D., Ali W. Elshaari, Iman Esmaeil Zadeh, Andreas Fognini, Michael E. Reimer, Dan Dalacu, Philip J. Poole, and Val Zwiller. "On-chip hybrid quantum circuits (Conference Presentation)." In Quantum Photonic Devices, edited by Mario Agio, Kartik Srinivasan, and Cesare Soci. SPIE, 2017. http://dx.doi.org/10.1117/12.2271680.
Full textMunro, William J., Andreas Angerer, Thomas Astner, Stefan Putz, Jorg Schmiedmayer, Johannes Majer, and Kae Nemoto. "Hybrid quantum systems in the microwave regime (Conference Presentation)." In Quantum Photonic Devices 2018, edited by Mario Agio, Kartik Srinivasan, and Cesare Soci. SPIE, 2018. http://dx.doi.org/10.1117/12.2320217.
Full textAlén, Benito, David Fuster, Yolanda González, and Luisa González. "Quantum light emitting device with hybrid pumping (Conference Presentation)." In Quantum Photonic Devices 2018, edited by Mario Agio, Kartik Srinivasan, and Cesare Soci. SPIE, 2018. http://dx.doi.org/10.1117/12.2323608.
Full textDavanco, Marcelo I. "Hybrid integration for quantum photonics with single emitters (Conference Presentation)." In Quantum Photonic Devices 2018, edited by Mario Agio, Kartik Srinivasan, and Cesare Soci. SPIE, 2018. http://dx.doi.org/10.1117/12.2323846.
Full textNayfeh, Osama M., Patrick C. Sims, Brad Liu, Saurabh Sharma, Carlos M. Torres, Lance Lerum, Mohammed Fahem, et al. "Integration of optically active neodymium ions in niobium devices (Nd:Nb): quantum memory for hybrid quantum entangled systems." In Quantum Photonic Devices, edited by Mario Agio, Kartik Srinivasan, and Cesare Soci. SPIE, 2017. http://dx.doi.org/10.1117/12.2273012.
Full textLi, Y., J. C. Qian, Z. H. Jiang, T. H. Lo, D. Ding, T. Draher, T. Polakovic, et al. "Hybrid-Magnon Quantum Devices: Strategies and Approaches." In 2022 IEEE International Electron Devices Meeting (IEDM). IEEE, 2022. http://dx.doi.org/10.1109/iedm45625.2022.10019460.
Full textDou, Letian. "Organic-perovskite hybrid quantum wells for lighting-emitting devices." In Organic and Hybrid Light Emitting Materials and Devices XXV, edited by Tae-Woo Lee, Franky So, and Chihaya Adachi. SPIE, 2021. http://dx.doi.org/10.1117/12.2593780.
Full text