Academic literature on the topic 'Hybrid Metal and Polymer Additive Manufacturing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hybrid Metal and Polymer Additive Manufacturing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Hybrid Metal and Polymer Additive Manufacturing"
Silva, Miguel Reis, Jorge Domingues, João Costa, Artur Mateus, and Cândida Malça. "Study of Metal/Polymer Interface of Parts Produced by a Hybrid Additive Manufacturing Approach." Applied Mechanics and Materials 890 (April 2019): 34–42. http://dx.doi.org/10.4028/www.scientific.net/amm.890.34.
Full textSetter, Robert, Jan Hafenecker, Richard Rothfelder, Sebastian-Paul Kopp, Stephan Roth, Michael Schmidt, Marion Merklein, and Katrin Wudy. "Innovative Process Strategies in Powder-Based Multi-Material Additive Manufacturing." Journal of Manufacturing and Materials Processing 7, no. 4 (July 24, 2023): 133. http://dx.doi.org/10.3390/jmmp7040133.
Full textFalck, R., S. M. Goushegir, J. F. dos Santos, and S. T. Amancio-Filho. "AddJoining: A novel additive manufacturing approach for layered metal-polymer hybrid structures." Materials Letters 217 (April 2018): 211–14. http://dx.doi.org/10.1016/j.matlet.2018.01.021.
Full textTosto, Claudio, Jacopo Tirillò, Fabrizio Sarasini, and Gianluca Cicala. "Hybrid Metal/Polymer Filaments for Fused Filament Fabrication (FFF) to Print Metal Parts." Applied Sciences 11, no. 4 (February 5, 2021): 1444. http://dx.doi.org/10.3390/app11041444.
Full textOzlati, A., M. Movahedi, M. Tamizi, Z. Tartifzadeh, and S. Alipour. "An alternative additive manufacturing-based joining method to make Metal/Polymer hybrid structures." Journal of Manufacturing Processes 45 (September 2019): 217–26. http://dx.doi.org/10.1016/j.jmapro.2019.07.002.
Full textSilva, M., A. Mateus, D. Oliveira, and C. Malça. "An alternative method to produce metal/plastic hybrid components for orthopedics applications." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 231, no. 1-2 (August 20, 2016): 179–86. http://dx.doi.org/10.1177/1464420716664545.
Full textChueh, Yuan-Hui, Xiaoji Zhang, Jack Chun-Ren Ke, Qian Li, Chao Wei, and Lin Li. "Additive manufacturing of hybrid metal/polymer objects via multiple-material laser powder bed fusion." Additive Manufacturing 36 (December 2020): 101465. http://dx.doi.org/10.1016/j.addma.2020.101465.
Full textSilva, M., R. Felismina, A. Mateus, P. Parreira, and C. Malça. "Application of a Hybrid Additive Manufacturing Methodology to Produce a Metal/Polymer Customized Dental Implant." Procedia Manufacturing 12 (2017): 150–55. http://dx.doi.org/10.1016/j.promfg.2017.08.019.
Full textBarakat, Ali A., Basil M. Darras, Mohammad A. Nazzal, and Aser Alaa Ahmed. "A Comprehensive Technical Review of the Friction Stir Welding of Metal-to-Polymer Hybrid Structures." Polymers 15, no. 1 (December 31, 2022): 220. http://dx.doi.org/10.3390/polym15010220.
Full textFernandez, Ellen, Mariya Edeleva, Rudinei Fiorio, Ludwig Cardon, and Dagmar R. D’hooge. "Increasing the Sustainability of the Hybrid Mold Technique through Combined Insert Polymeric Material and Additive Manufacturing Method Design." Sustainability 14, no. 2 (January 13, 2022): 877. http://dx.doi.org/10.3390/su14020877.
Full textDissertations / Theses on the topic "Hybrid Metal and Polymer Additive Manufacturing"
Gingerich, Mark Bryant. "Joining Carbon Fiber and Aluminum with Ultrasonic Additive Manufacturing." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461161262.
Full textZhu, Zicheng. "A process planning approach for hybrid manufacture of prismatic polymer components." Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648939.
Full textFalck, Rielson [Verfasser]. "A new additive manufacturing technique for layered metal-composite hybrid structures / Rielson Miler Moreira Falck." Hamburg : Universitätsbibliothek der Technischen Universität Hamburg-Harburg, 2020. http://d-nb.info/1224270835/34.
Full textChen, Tianran. "Generation of Recyclable Liquid Crystalline Polymer Reinforced Composites for Use in Conventional and Additive Manufacturing Processes." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103439.
Full textDoctor of Philosophy
The large demand for high performance and light weight composite materials in various industries (e.g., automotive, aerospace, and construction) has resulted in accumulation of composite wastes in the environment. Reuse and recycling of fiber reinforced composites are beneficial from the environmental and economical point of view. However, mechanical recycling deteriorates the quality of traditional fiber reinforced composite (e.g., glass fiber and carbon fiber). There is a need to develop novel composites with greater recyclability and high-performance. Thermotropic liquid crystalline polymers (TLCP) are attractive high performance materials because of their excellent mechanical properties and light weight. The goal of this work is to generate recyclable thermotropic liquid crystalline polymer (TLCP) reinforced composites for use in injection molding and 3D printing. In the first part of this work, a novel recyclable TLCP reinforced composite was generated using the grinding and injection molding. Recycled TLCP composites were as strong as the virgin TLCP composites, and the mechanical properties of TLCP composites were found to be competitive with the glass fiber reinforced counterparts. In the second part, a hybrid TLCP and glass fiber reinforced composite with great recyclability and excellent processability was developed. The processing conditions of injection molding were optimized by rheological tests to mitigate fiber breakage and improve the processability. Finally, a high performance and light weight TLCP reinforced composite filament was generated using the dual extrusion process which allowed the processing of two polymers with different processing temperatures. This composite filament could be directly 3D printed using a benchtop 3D printer. The mechanical properties of 3D printed TLCP composites could rival 3D printed traditional fiber composites but with the potential to have a wider range of processing shapes.
Perini, Matteo. "Additive manufacturing for repairing: from damage identification and modeling to DLD processing." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/268434.
Full textPerini, Matteo. "Additive manufacturing for repairing: from damage identification and modeling to DLD processing." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/268434.
Full textMathias, Spencer D. "Investigation of Thermoplastic Polymers and Their Blends for Use in Hybrid Rocket Combustion." DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7416.
Full textBradford-Vialva, Robyn L. "Development of a Metal-Metal Powder Formulations Approach for Direct Metal Laser Melting of High-Strength Aluminum Alloys." University of Dayton / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1620259752540201.
Full textGante, Lokesha Renukaradhya Karthikesh. "Metal Filament 3D Printing of SS316L : Focusing on the printing process." Thesis, KTH, Maskinkonstruktion (Avd.), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259686.
Full textSom en avancerad tillverkningsmetodik ger 3D-printing eller additiv tillverkning (AM) mycket mer uppmärksamhet vid tillverkning av komplex struktur, särskilt vid tillverkning av metallkomponenter. Ett antal olika AM-tekniker vid tillverkningen av olika typer av metallkomponenter har studerats och kommersialiserats.De flesta av dessa AM-tekniker är dyra och mindre tillgängliga, i jämförelse med Selective Laser Melting vid tillverkningen av en komponent i rostfritt stål 316L. Syftet med detta examensarbete är att introducera en innovativ AM-teknik som fokuserar på materialsträngsprutningsbaserad 3D-printingprocess för att skapa ekomponent i rostfritt stål 316Lkomponent med ett metallpolymerkompositfilament. Ett prov bestående av rostfritt stål skrevs ut med en FDM-baserad 3D-skrivare laddad med filament av polymer och metal, följt av industriell avdrivnings-och sintringsprocess. Provet studerades för att förstå materialegenskaperna och dess beteende under efterbehandlingsmetoden. Dessutom genomfördes också resultat från avdrivning och sintring på provet och en jämförelse av provet före och efter avdrivnlngssteget. Metallpolymertrådar för 3D-printing kan vara ett alternativt sätt att tillverka AM-metallkomponenter.
Dias, Rita de Cássia Costa. "Microescultura por laser de superfícies metálicas para manufatura de laminados híbridos metal/fibra." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/88/88131/tde-19042013-205354/.
Full textThis work aimed at manufacturing hybrid fiber-metal laminates (FML) by employing 0,5 mm-thick \'TI\'6\'AL\'4\'V\'-alloy plaques with fiber laser modified surface in order to optimize metal adhesion with poli-phenylene sulfide (PPS) thermoplastic polymer. The surface microtexture of metallic alloy strongly depended upon the laser power, inasmuch as low-power laser led to true texturization of metal surface, whereas high-power laser light drove to its ablation. Surface metal texturization under low-power laser apparently was the most appropriate condition to metal-polymer adhesion via mechanical entanglement of macromolecules, which was offset by high levels of residual stresses on metallic plaques, bringing them quite warped and useless. The use of an intermediate laser power (160 W) has been shown benign to the optimization between metal-polymer physical adhesion and the residual stress level created in the metal plates. It has been concluded that testpieces machined from the FML central position exhibited average ultimate interlaminar shear strenght considerably higher than those extracted from the FML borders. The FML manufactured under higher pressure and temperature was more compacted and better consolidated, so that it displayed the greatest average performance under interlaminar shear loading. Evidences of a correlation between the failure mechanism by interlaminar shearing of test coupon and its allowance to this type of mechanical loading were documented and discussed.
Book chapters on the topic "Hybrid Metal and Polymer Additive Manufacturing"
Wang, Hao, Yan Jin Lee, Yuchao Bai, and Jiong Zhang. "Hybrid Additive Manufacturing." In Post-Processing Techniques for Metal-Based Additive Manufacturing, 203–24. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003272601-9.
Full textAl-Obaidi, Anwer, and Candice Majewski. "Ultrasonic Welding of Polymer–Metal Hybrid Joints." In Transactions on Intelligent Welding Manufacturing, 21–38. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3651-5_2.
Full textSagbas, Binnur, and Numan M. Durakbasa. "Profile and Areal Surface Characterization of Additive Manufacturing Polymer and Metal Parts." In Lecture Notes in Mechanical Engineering, 240–46. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18177-2_22.
Full textShakerin, Sajad, and Mohsen Mohammadi. "Hybrid Additive Manufacturing of MS1-H13 Steels via Direct Metal Laser Sintering." In TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, 277–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36296-6_26.
Full textDurga Prasada Rao, V., V. Navya Geethika, and P. S. Krishnaveni. "Multi-objective Optimization of Mechanical Properties of Aluminium 7075-Based Hybrid Metal Matrix Composite Using Genetic Algorithm." In Advances in 3D Printing & Additive Manufacturing Technologies, 79–93. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0812-2_7.
Full textBorg Costanzi, Christopher. "Proposed Hybrid WAAM and Thin Sheet Metal Welding." In Reinforcing and Detailing of Thin Sheet Metal Using Wire Arc Additive Manufacturing as an Application in Facades, 99–172. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-41540-2_6.
Full textRajendran, Ashokraj, Pavendhan Rajangam, and Kumaragurubaran Balasubramanian. "Microstructure and mechanical properties of Al7075 and Al7075-based hybrid metal matrix composites by additive manufacturing." In Mechanical Properties and Characterization of Additively Manufactured Materials, 141–58. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003430186-10.
Full textSuresh, Ganzi. "Advancements in Manufacturing Technology With Additive Manufacturing and Its Context With Industry 4.0." In Handbook of Research on Advancements in Manufacturing, Materials, and Mechanical Engineering, 1–24. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-4939-1.ch001.
Full textSantiago, Carolyn Carradero, Eric MacDonald, Jose Coronel, Dominic Kelly, Ryan Wicker, and David Espalin. "Ultrasonic and Thermal Metal Embedding for Polymer Additive Manufacturing." In Additive Manufacturing Processes, 456–61. ASM International, 2020. http://dx.doi.org/10.31399/asm.hb.v24.a0006558.
Full textBehera, Ajit. "Processes and Application in Additive Manufacturing." In Advances in Civil and Industrial Engineering, 25–47. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-4054-1.ch002.
Full textConference papers on the topic "Hybrid Metal and Polymer Additive Manufacturing"
Whitney, Thomas J., Thao Gibson, Khalid Lafdi, and Brian Welk. "A Hybrid Metal-to-Composite Joint Fabricated Through Additive Manufacturing Processes." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89540.
Full textAlaboudi, S. F. "The Innovation in wire arc additive manufacturing (WAAM): A review." In Advanced Topics in Mechanics of Materials, Structures and Construction. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902592-54.
Full textZhao, Ningxiner, Hongqi Guo, Leon M. Headings, and Marcelo J. Dapino. "Analytical and Computational Modeling of FRP-Metal Joints Made by Ultrasonic Additive Manufacturing." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-96827.
Full textLi, Ye, and Ragha Rapthadu. "Bending-Additive-Machining Hybrid Manufacturing of Sheet Metal Structures." In ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/msec2017-3062.
Full textLandgrebe, Dirk, Roland Müller, Rico Haase, Peter Scholz, Matthias Riemer, Andre Albert, Raik Grützner, and Frank Schieck. "Efficient Manufacturing Methods for Hybrid Metal-Polymer Components." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65621.
Full textTičkūnas, Titas, Mangirdas Malinauskas, Domas Paipulas, Yves Bellouard, and Roaldas Gadonas. "Hybrid laser 3D microprocessing in glass/polymer micromechanical sensor: towards chemical sensing applications." In 3D Printed Optics and Additive Photonic Manufacturing, edited by Georg von Freymann, Alois M. Herkommer, and Manuel Flury. SPIE, 2018. http://dx.doi.org/10.1117/12.2307533.
Full textPalumbo, Joshua, Ramgopal Varma Ramaraju, Sanjeev Chandra Matthew S. Schwenger, Madison S. Kaminskyj, Francis M. Haas, and Joseph F. Stanzione III. "Mixed-Material Feedstocks for Cold Spray Additive Manufacturing of Metal-Polymer Composites." In ITSC 2023. ASM International, 2023. http://dx.doi.org/10.31399/asm.cp.itsc2023p0186.
Full textSaleeby, Kyle S., Tom Kurfess, Tom Feldhausen, and Lonnie Love. "Production of Medium-Scale Metal Additive Geometry With Hybrid Manufacturing Technology." In ASME 2020 15th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/msec2020-8391.
Full textChen, Jibing, Guangsong Wu, Yu Xie, Zhanwen He, Nong Wan, and Yiping Wu. "Study on Performance of Metal and Polymer Composites Parts Based by Additive Manufacturing." In 2019 20th International Conference on Electronic Packaging Technology(ICEPT). IEEE, 2019. http://dx.doi.org/10.1109/icept47577.2019.245253.
Full textCarrico, James D., Nicklaus W. Traeden, Matteo Aureli, and Kam K. Leang. "Fused Filament Additive Manufacturing of Ionic Polymer-Metal Composite Soft Active 3D Structures." In ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/smasis2015-8895.
Full text