Journal articles on the topic 'Hybrid Heterostructure Solar Cells'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Hybrid Heterostructure Solar Cells.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Shvarts M. Z., Andreeva A. V., Andronikov D. A., Emtsev K. V., Larionov V. R., Nakhimovich M. V., Pokrovskiy P. V., Sadchikov N. A., Yakovlev S. A., and Malevskiy D. A. "Hybrid concentrator-planar photovoltaic module with heterostructure solar cells." Technical Physics Letters 49, no. 2 (2023): 46. http://dx.doi.org/10.21883/tpl.2023.02.55371.19438.
Full textYang, Ning, Cheng Zhu, Yihua Chen, Huachao Zai, Chenyue Wang, Xi Wang, Hao Wang, et al. "An in situ cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation." Energy & Environmental Science 13, no. 11 (2020): 4344–52. http://dx.doi.org/10.1039/d0ee01736a.
Full textChonsut, Teantong, Sirapat Pratontep, Anusit Keawprajak, Pisist Kumnorkaew, and Navaphun Kayunkid. "Improvement of Efficiency of Polymer-Zinc Oxide Hybrid Solar Cells Prepared by Rapid Convective Deposition." Applied Mechanics and Materials 848 (July 2016): 7–10. http://dx.doi.org/10.4028/www.scientific.net/amm.848.7.
Full textШварц, М. З., А. В. Андреева, Д. А. Андроников, К. В. Емцев, В. Р. Ларионов, М. В. Нахимович, П. В. Покровский, Н. А. Садчиков, С. А. Яковлев, and Д. А. Малевский. "Гибридный концентраторно-планарный фотоэлектрический модуль с гетероструктурными солнечными элементами." Письма в журнал технической физики 49, no. 4 (2023): 15. http://dx.doi.org/10.21883/pjtf.2023.04.54520.19438.
Full textJeong, Hoon-Seok, Dongeon Kim, Seungin Jee, Min-Jae Si, Changjo Kim, Jung-Yong Lee, Yujin Jung, and Se-Woong Baek. "Colloidal Quantum Dot:Organic Ternary Ink for Efficient Solution-Processed Hybrid Solar Cells." International Journal of Energy Research 2023 (February 6, 2023): 1–14. http://dx.doi.org/10.1155/2023/4911750.
Full textPatel, Haresh S., J. R. Rathod, K. D. Patel, V. M. Pathak, and R. Srivastava. "Optical Absorption Study of Molybdenum Diselenide and Polyaniline and their Use in Hybrid Solar Cells." Advanced Materials Research 665 (February 2013): 239–53. http://dx.doi.org/10.4028/www.scientific.net/amr.665.239.
Full textTavakoli, Mohammad Mahdi, Hossein Aashuri, Abdolreza Simchi, and Zhiyong Fan. "Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells." Physical Chemistry Chemical Physics 17, no. 37 (2015): 24412–19. http://dx.doi.org/10.1039/c5cp03571f.
Full textKaptagai, G. A., B. M. Satanova, F. U. Abuova, N. O. Koilyk, A. U. Abuova, S. A. Nurkenov, and A. P. Zharkymbekova. "OPTICAL PROPERTIES OF LOW-DIMENSIONAL SYSTEMS: METHODS OF THEORETICAL STUDY OF 2D MATERIALS." NNC RK Bulletin, no. 4 (December 31, 2022): 35–40. http://dx.doi.org/10.52676/1729-7885-2022-4-35-40.
Full textHussain, Sajjad, Supriya A. Patil, Dhanasekaran Vikraman, Iqra Rabani, Alvira Ayoub Arbab, Sung Hoon Jeong, Hyun-Seok Kim, Hyosung Choi, and Jongwan Jung. "Enhanced electrocatalytic properties in MoS2/MoTe2 hybrid heterostructures for dye-sensitized solar cells." Applied Surface Science 504 (February 2020): 144401. http://dx.doi.org/10.1016/j.apsusc.2019.144401.
Full textWeingarten, M., T. Zweipfennig, A. Vescan, and H. Kalisch. "Low-Temperature Processed Hybrid Organic/Silicon Solar Cells with Power Conversion Efficiency up to 6.5%." MRS Proceedings 1771 (2015): 201–6. http://dx.doi.org/10.1557/opl.2015.650.
Full textKurc, Beata, Marita Pigłowska, Łukasz Rymaniak, and Paweł Fuć. "Modern Nanocomposites and Hybrids as Electrode Materials Used in Energy Carriers." Nanomaterials 11, no. 2 (February 19, 2021): 538. http://dx.doi.org/10.3390/nano11020538.
Full textMustafa, Haveen A., Dler A. Jameel, Hussien I. Salim, and Sabah M. Ahmed. "The Effects Of N-GaAs Substrate Orientations on The Electrical Performance of PANI/N-GaAs Hybrid Solar Cell Devices." Science Journal of University of Zakho 8, no. 4 (December 30, 2020): 149–53. http://dx.doi.org/10.25271/sjuoz.2020.8.4.773.
Full textCui, Qi, Changwen Liu, Fan Wu, Wenjin Yue, Zeliang Qiu, Hui Zhang, Feng Gao, Wei Shen, and Mingtai Wang. "Performance Improvement in Polymer/ZnO Nanoarray Hybrid Solar Cells by Formation of ZnO/CdS-Core/Shell Heterostructures." Journal of Physical Chemistry C 117, no. 11 (March 8, 2013): 5626–37. http://dx.doi.org/10.1021/jp312728t.
Full textFeng, Hao-Lin, Wu-Qiang Wu, Hua-Shang Rao, Quan Wan, Long-Bin Li, Dai-Bin Kuang, and Cheng-Yong Su. "Three-Dimensional TiO2/ZnO Hybrid Array as a Heterostructured Anode for Efficient Quantum-Dot-Sensitized Solar Cells." ACS Applied Materials & Interfaces 7, no. 9 (February 25, 2015): 5199–205. http://dx.doi.org/10.1021/am507983y.
Full textXu, Xiaoyun, Xiong Wang, Yange Zhang, and Pinjiang Li. "Ion-exchange synthesis and improved photovoltaic performance of CdS/Ag2S heterostructures for inorganic-organic hybrid solar cells." Solid State Sciences 61 (November 2016): 195–200. http://dx.doi.org/10.1016/j.solidstatesciences.2016.10.006.
Full textKAFFAH, SILMI, LINA JAYA DIGUNA, SURIANI ABU BAKAR, MUHAMMAD DANANG BIROWOSUTO, and ARRAMEL. "ELECTRONIC AND OPTICAL MODIFICATION OF ORGANIC-HYBRID PEROVSKITES." Surface Review and Letters 28, no. 08 (July 5, 2021): 2140010. http://dx.doi.org/10.1142/s0218625x21400102.
Full textMunoz Garcia, Ana Belen. "(Invited, Digital Presentation) Charge Transfer at Heterogeneous Functional Interfaces in Energy Conversion and Storage Devices: A Quantum Chemical Perspective." ECS Meeting Abstracts MA2022-02, no. 57 (October 9, 2022): 2180. http://dx.doi.org/10.1149/ma2022-02572180mtgabs.
Full textAndreev, V. M. "Heterostructure solar cells." Semiconductors 33, no. 9 (September 1999): 942–45. http://dx.doi.org/10.1134/1.1187808.
Full textGünes, Serap, and Niyazi Serdar Sariciftci. "Hybrid solar cells." Inorganica Chimica Acta 361, no. 3 (February 2008): 581–88. http://dx.doi.org/10.1016/j.ica.2007.06.042.
Full textWang, Peng, Xiaoqiang Li, Zhijuan Xu, Zhiqian Wu, Shengjiao Zhang, Wenli Xu, Huikai Zhong, et al. "Tunable graphene/indium phosphide heterostructure solar cells." Nano Energy 13 (April 2015): 509–17. http://dx.doi.org/10.1016/j.nanoen.2015.03.023.
Full textSuraprapapich, Suwaree, Supachok Thainoi, Songphol Kanjanachuchai, and Somsak Panyakeow. "Quantum dot integration in heterostructure solar cells." Solar Energy Materials and Solar Cells 90, no. 18-19 (November 2006): 2968–74. http://dx.doi.org/10.1016/j.solmat.2006.06.011.
Full textBrus, V. V., M. A. Gluba, X. Zhang, K. Hinrichs, J. Rappich, and N. H. Nickel. "Stability of graphene-silicon heterostructure solar cells." physica status solidi (a) 211, no. 4 (January 30, 2014): 843–47. http://dx.doi.org/10.1002/pssa.201330265.
Full textNkele, A. C., S. U. Offiah, C. P. Chime, and F. I. Ezema. "Review on advanced nanomaterials for hydrogen production." IOP Conference Series: Earth and Environmental Science 1178, no. 1 (May 1, 2023): 012001. http://dx.doi.org/10.1088/1755-1315/1178/1/012001.
Full textLin, Shisheng, Peng Wang, Xiaoqiang Li, Zhiqian Wu, Zhijuan Xu, Shengjiao Zhang, and Wenli Xu. "Gate tunable monolayer MoS2/InP heterostructure solar cells." Applied Physics Letters 107, no. 15 (October 12, 2015): 153904. http://dx.doi.org/10.1063/1.4933294.
Full textMapel, J. K., M. Singh, M. A. Baldo, and K. Celebi. "Plasmonic excitation of organic double heterostructure solar cells." Applied Physics Letters 90, no. 12 (March 19, 2007): 121102. http://dx.doi.org/10.1063/1.2714193.
Full textSingh, Yogesh, Sanju Rani, Shashi, Rahul Parmar, Raman Kumari, Manoj Kumar, A. Bala Sairam, Mamta, and V. N. Singh. "Sb2Se3 heterostructure solar cells: Techniques to improve efficiency." Solar Energy 249 (January 2023): 174–82. http://dx.doi.org/10.1016/j.solener.2022.11.033.
Full textBobkov, A. A., A. I. Maximov, V. A. Moshnikov, P. A. Somov, and E. I. Terukov. "Zinc-oxide-based nanostructured materials for heterostructure solar cells." Semiconductors 49, no. 10 (October 2015): 1357–60. http://dx.doi.org/10.1134/s1063782615100048.
Full textRabinovich, O., D. Saranin, M. Orlova, S. Yurchuk, A. Panichkin, M. Konovalov, Y. Osipov, S. Didenko, and P. Gostischev. "Heterostructure Improvements of the Solar Cells based on Perovskite." Procedia Manufacturing 37 (2019): 221–26. http://dx.doi.org/10.1016/j.promfg.2019.12.039.
Full textThilagam, A. "Transition-metal dichalcogenide heterostructure solar cells: a numerical study." Journal of Mathematical Chemistry 55, no. 1 (July 22, 2016): 50–64. http://dx.doi.org/10.1007/s10910-016-0669-9.
Full textTucci, M., L. Serenelli, E. Salza, S. De Iuliis, L. J. Geerligs, D. Caputo, M. Ceccarelli, and G. de Cesare. "Back contacted a-Si:H/c-Si heterostructure solar cells." Journal of Non-Crystalline Solids 354, no. 19-25 (May 2008): 2386–91. http://dx.doi.org/10.1016/j.jnoncrysol.2007.09.023.
Full textWeiser, G., S. Kazitsyna-Baranovski, and R. Stangl. "Band-edge electroluminescence of crystalline silicon heterostructure solar cells." Journal of Materials Science: Materials in Electronics 18, S1 (March 13, 2007): 93–96. http://dx.doi.org/10.1007/s10854-007-9162-3.
Full textKwok, H. L. "Field-enhanced charge flow in nanorod heterostructure solar cells." Applied Physics B 103, no. 2 (November 25, 2010): 377–79. http://dx.doi.org/10.1007/s00340-010-4294-1.
Full textMilliron, Delia J., Ilan Gur, and A. Paul Alivisatos. "Hybrid Organic–Nanocrystal Solar Cells." MRS Bulletin 30, no. 1 (January 2005): 41–44. http://dx.doi.org/10.1557/mrs2005.8.
Full textNamkoong, Gon, Gu Diefeng, Kurniawan Foe, S. Y. Bae, D. H. Kim, D. J. Seo, D. S. Lee, S. R. Jeon, and Helmut Baumgart. "Hybrid Nitride-ZnO Solar Cells." ECS Transactions 41, no. 4 (December 16, 2019): 185–89. http://dx.doi.org/10.1149/1.3628624.
Full textHuynh, W. U. "Hybrid Nanorod-Polymer Solar Cells." Science 295, no. 5564 (March 29, 2002): 2425–27. http://dx.doi.org/10.1126/science.1069156.
Full textMao, Yuliang, Congsheng Xu, Jianmei Yuan, and Hongquan Zhao. "A two-dimensional GeSe/SnSe heterostructure for high performance thin-film solar cells." Journal of Materials Chemistry A 7, no. 18 (2019): 11265–71. http://dx.doi.org/10.1039/c9ta01219b.
Full textHa, Su Ryong, Woo Hyeon Jeong, Yanliang Liu, Jae Teak Oh, Sung Yong Bae, Seungjin Lee, Jae Won Kim, et al. "Molecular aggregation method for perovskite–fullerene bulk heterostructure solar cells." Journal of Materials Chemistry A 8, no. 3 (2020): 1326–34. http://dx.doi.org/10.1039/c9ta11854c.
Full textFuhs, W., A. Laades, K. v. Maydell, R. Stangl, O. B. Gusev, E. I. Terukov, S. Kazitsyna-Baranovski, and G. Weiser. "Band-edge electroluminescence from amorphous/crystalline silicon heterostructure solar cells." Journal of Non-Crystalline Solids 352, no. 9-20 (June 2006): 1884–87. http://dx.doi.org/10.1016/j.jnoncrysol.2005.10.051.
Full textZhang, Chun-Fang, Chuan-Lu Yang, Mei-Shan Wang, and Xiao-Guang Ma. "Z-Scheme photocatalytic solar-energy-to-hydrogen conversion driven by the HfS2/SiSe heterostructure." Journal of Materials Chemistry C 10, no. 14 (2022): 5474–81. http://dx.doi.org/10.1039/d1tc05781b.
Full textWang, Ryan T., and Gu Xu. "Organic Inorganic Hybrid Perovskite Solar Cells." Crystals 11, no. 10 (September 27, 2021): 1171. http://dx.doi.org/10.3390/cryst11101171.
Full textMcGehee, Michael D. "Nanostructured Organic–Inorganic Hybrid Solar Cells." MRS Bulletin 34, no. 2 (February 2009): 95–100. http://dx.doi.org/10.1557/mrs2009.27.
Full textLi, Shao-Sian, and Chun-Wei Chen. "Polymer–metal-oxide hybrid solar cells." Journal of Materials Chemistry A 1, no. 36 (2013): 10574. http://dx.doi.org/10.1039/c3ta11998j.
Full textHu, Yinghong, Johannes Schlipf, Michael Wussler, Michiel L. Petrus, Wolfram Jaegermann, Thomas Bein, Peter Müller-Buschbaum, and Pablo Docampo. "Hybrid Perovskite/Perovskite Heterojunction Solar Cells." ACS Nano 10, no. 6 (June 3, 2016): 5999–6007. http://dx.doi.org/10.1021/acsnano.6b01535.
Full textGünes, Serap, Karolina P. Fritz, Helmut Neugebauer, Niyazi Serdar Sariciftci, Sandeep Kumar, and Gregory D. Scholes. "Hybrid solar cells using PbS nanoparticles." Solar Energy Materials and Solar Cells 91, no. 5 (March 2007): 420–23. http://dx.doi.org/10.1016/j.solmat.2006.10.016.
Full textYoshida, Tsukasa, Matthew S. White, Gregor Trimmel, and Philipp Stadler. "Solution-based emerging hybrid solar cells." Monatshefte für Chemie - Chemical Monthly 148, no. 5 (April 1, 2017): 793–94. http://dx.doi.org/10.1007/s00706-017-1974-0.
Full textJotterand, Stéphane A., and Marc Jobin. "Characterization of P3HT:PCBM:CdSe Hybrid Solar Cells." Energy Procedia 31 (2012): 117–23. http://dx.doi.org/10.1016/j.egypro.2012.11.173.
Full textJeong, Sangmoo, Erik C. Garnett, Shuang Wang, Zongfu Yu, Shanhui Fan, Mark L. Brongersma, Michael D. McGehee, and Yi Cui. "Hybrid Silicon Nanocone–Polymer Solar Cells." Nano Letters 12, no. 6 (May 3, 2012): 2971–76. http://dx.doi.org/10.1021/nl300713x.
Full textLi, Shuxin, Zhibin Pei, Fei Zhou, Ying Liu, Haibo Hu, Shulin Ji, and Changhui Ye. "Flexible Si/PEDOT:PSS hybrid solar cells." Nano Research 8, no. 10 (August 6, 2015): 3141–49. http://dx.doi.org/10.1007/s12274-015-0814-y.
Full textWeickert, Jonas, Ricky B. Dunbar, Holger C. Hesse, Wolfgang Wiedemann, and Lukas Schmidt-Mende. "Nanostructured Organic and Hybrid Solar Cells." Advanced Materials 23, no. 16 (February 15, 2011): 1810–28. http://dx.doi.org/10.1002/adma.201003991.
Full textМалевская, А. В., Ю. М. Задиранов, А. А. Блохин, and В. М. Андреев. "Исследование формирования антиотражающего покрытия каскадных солнечных элементов." Письма в журнал технической физики 45, no. 20 (2019): 15. http://dx.doi.org/10.21883/pjtf.2019.20.48386.17916.
Full text