Academic literature on the topic 'Hybrid Heterostructure Solar Cells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Hybrid Heterostructure Solar Cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Hybrid Heterostructure Solar Cells"

1

Shvarts M. Z., Andreeva A. V., Andronikov D. A., Emtsev K. V., Larionov V. R., Nakhimovich M. V., Pokrovskiy P. V., Sadchikov N. A., Yakovlev S. A., and Malevskiy D. A. "Hybrid concentrator-planar photovoltaic module with heterostructure solar cells." Technical Physics Letters 49, no. 2 (2023): 46. http://dx.doi.org/10.21883/tpl.2023.02.55371.19438.

Full text
Abstract:
The paper presents a promising solution for photovoltaic modules that provides overcoming the main conceptual limitation for the concentrator concept in photovoltaics --- the impossibility to convert diffused (scattered) solar radiation coming to the panel of sunlight concentrators. The design of a hybrid concentrator-planar photovoltaic module based on heterostructure solar cells: A3B5 triple-junction and Si-HJT is presented. The results of initial outdoor studies of the module output characteristics are discussed and estimates of its energy efficiency are given. Keywords: hybrid concentrator-planar photovoltaic module, multijunction solar cell, Si-HJT planar photoconverter, diffusely scattered radiation.
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Ning, Cheng Zhu, Yihua Chen, Huachao Zai, Chenyue Wang, Xi Wang, Hao Wang, et al. "An in situ cross-linked 1D/3D perovskite heterostructure improves the stability of hybrid perovskite solar cells for over 3000 h operation." Energy & Environmental Science 13, no. 11 (2020): 4344–52. http://dx.doi.org/10.1039/d0ee01736a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chonsut, Teantong, Sirapat Pratontep, Anusit Keawprajak, Pisist Kumnorkaew, and Navaphun Kayunkid. "Improvement of Efficiency of Polymer-Zinc Oxide Hybrid Solar Cells Prepared by Rapid Convective Deposition." Applied Mechanics and Materials 848 (July 2016): 7–10. http://dx.doi.org/10.4028/www.scientific.net/amm.848.7.

Full text
Abstract:
The aim of this research is to study improvement of power conversion efficiency (PCE) of organic-inorganic hybrid bulk heterostructure solar cell prepared by rapid convective deposition as a function of concentration of zinc oxide additive. The structure of hybrid solar cell used in this research is ITO/ZnO/P3HT:PC70BM:ZnO(nanoparticles)/MoO3/Au. By adding 5 mg/ml of ZnO nanoparticles in the active layer (P3HT:PC70BM), the PCE was increased from 0.46 to 1.09%. In order to reveal the origin of improving efficiency, surface morphology and optical properties of active layers were investigated by atomic force microscopy (AFM) and UV-Visible spectroscopy, respectively. The results clearly indicate that the enhancement of solar cell efficiency results from (i) the proper phase sepharation of electron donor and acceptor in the active layer and (ii) the better absorption of the active layer. This research work introduces an alternative way to improve solar cell efficiency by adding ZnO into active layer.
APA, Harvard, Vancouver, ISO, and other styles
4

Шварц, М. З., А. В. Андреева, Д. А. Андроников, К. В. Емцев, В. Р. Ларионов, М. В. Нахимович, П. В. Покровский, Н. А. Садчиков, С. А. Яковлев, and Д. А. Малевский. "Гибридный концентраторно-планарный фотоэлектрический модуль с гетероструктурными солнечными элементами." Письма в журнал технической физики 49, no. 4 (2023): 15. http://dx.doi.org/10.21883/pjtf.2023.04.54520.19438.

Full text
Abstract:
The paper presents a promising solution for photovoltaic modules that provides overcoming the main conceptual limitation for the concentrator concept in photovoltaics - the impossibility to convert diffused (scattered) solar radiation coming to the panel of sunlight concentrators. The design of a hybrid concentrator-planar photovoltaic module based on heterostructure solar cells: A3B5 triple-junction and Si-HJT is presented. The results of initial outdoor studies of the module output characteristics are discussed and estimates of its energy efficiency are given.
APA, Harvard, Vancouver, ISO, and other styles
5

Jeong, Hoon-Seok, Dongeon Kim, Seungin Jee, Min-Jae Si, Changjo Kim, Jung-Yong Lee, Yujin Jung, and Se-Woong Baek. "Colloidal Quantum Dot:Organic Ternary Ink for Efficient Solution-Processed Hybrid Solar Cells." International Journal of Energy Research 2023 (February 6, 2023): 1–14. http://dx.doi.org/10.1155/2023/4911750.

Full text
Abstract:
The fabrication of heterostructures via solution process is one of the essential technologies for realizing efficient advanced-generation optoelectronics. Hybrid structures comprising colloidal quantum dots (CQD) and organic semiconducting molecules are garnering considerable research interest because of their complementing optical and electrical properties. However, blending both the materials and forming a stable electronic ink are a challenge owing to the solubility mismatch. Herein, a CQD:organic ternary-blended hybrid solar ink is devised, and efficient hybrid solar cells are demonstrated via single-step spin coating under ambient conditions. Specifically, the passivation of the benzoic acid ligand on the CQD surface enables the dissolution in low-polar solvent such as chlorobenzene, which yields a stable CQD:organic hybrid ink. The hybrid ink facilitates the formation of favorable thin-film morphologies and, consequently, improves the charge extraction efficiency of the solar cells. The resulting hybrid solar cells exhibit a power conversion efficiency of 15.24% that is the highest performance among all existing air-processed CQD:organic hybrid solar cells.
APA, Harvard, Vancouver, ISO, and other styles
6

Patel, Haresh S., J. R. Rathod, K. D. Patel, V. M. Pathak, and R. Srivastava. "Optical Absorption Study of Molybdenum Diselenide and Polyaniline and their Use in Hybrid Solar Cells." Advanced Materials Research 665 (February 2013): 239–53. http://dx.doi.org/10.4028/www.scientific.net/amr.665.239.

Full text
Abstract:
The optical characterization of Molybdenum diselenide (MoSe2) and polyaniline (PANI) has been carried in the wavelength range 200 nm to 2500 nm. The detailed analysis of the optical properties has been carried out only for a range 200 nm to 800 nm from which the indirect band gap around 1.42 eV for MoSe2and 1 eV and 2.5 eV for PANI was evaluated. It was interesting to note that π π* transitions lead to two distinct orders of energy gaps. The hybrid cells were fabricated using a photosensitive interface between MoSe2and PANI. Various parameters of these heterostructure hybrid cells have been evaluated and it was found that the photoconversion efficiency was around 1%. Using the solar cell characteristics, the presence of trapping centers at the n-MoSe2/ p-PANI interface has been confirmed.
APA, Harvard, Vancouver, ISO, and other styles
7

Tavakoli, Mohammad Mahdi, Hossein Aashuri, Abdolreza Simchi, and Zhiyong Fan. "Hybrid zinc oxide/graphene electrodes for depleted heterojunction colloidal quantum-dot solar cells." Physical Chemistry Chemical Physics 17, no. 37 (2015): 24412–19. http://dx.doi.org/10.1039/c5cp03571f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kaptagai, G. A., B. M. Satanova, F. U. Abuova, N. O. Koilyk, A. U. Abuova, S. A. Nurkenov, and A. P. Zharkymbekova. "OPTICAL PROPERTIES OF LOW-DIMENSIONAL SYSTEMS: METHODS OF THEORETICAL STUDY OF 2D MATERIALS." NNC RK Bulletin, no. 4 (December 31, 2022): 35–40. http://dx.doi.org/10.52676/1729-7885-2022-4-35-40.

Full text
Abstract:
Heterostructures based on graphene and two-dimensional films of nanostructured, ferromagnetic, transition metal oxides are promising for the development of new multifunctional materials for memory cells, quantum computer elements, Li-battery anodes, (photo) catalysts, supercapacitors, transistors, sensor materials, solar panels, fuel cells, electrochromic devices. A large volume of publications devoted to graphene and heterostructures based on it is and mainly their synthesis processes of hybrid structures. The methods of theoretical investigation of the optical properties of two-dimensional film materials, despite their diversity, require improvement. Consequently, the article presents methods of theoretical investigation of the optical properties of two-dimensional hybrid film structures in combination with ab-initio method.
APA, Harvard, Vancouver, ISO, and other styles
9

Hussain, Sajjad, Supriya A. Patil, Dhanasekaran Vikraman, Iqra Rabani, Alvira Ayoub Arbab, Sung Hoon Jeong, Hyun-Seok Kim, Hyosung Choi, and Jongwan Jung. "Enhanced electrocatalytic properties in MoS2/MoTe2 hybrid heterostructures for dye-sensitized solar cells." Applied Surface Science 504 (February 2020): 144401. http://dx.doi.org/10.1016/j.apsusc.2019.144401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Weingarten, M., T. Zweipfennig, A. Vescan, and H. Kalisch. "Low-Temperature Processed Hybrid Organic/Silicon Solar Cells with Power Conversion Efficiency up to 6.5%." MRS Proceedings 1771 (2015): 201–6. http://dx.doi.org/10.1557/opl.2015.650.

Full text
Abstract:
ABSTRACTHybrid organic/silicon heterostructures have become of great interest for photovoltaic application due to their promising features (e.g. easy fabrication in a low-temperature process) for cost-effective photovoltaics. This work is focused on solar cells with a hybrid heterojunction between the polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) and n-doped monocrystalline silicon. As semi-transparent top contact, a thin (15 nm) Au layer was employed. Devices with different P3HT thicknesses were processed by spin-casting and compared with a reference Au/n-Si Schottky diode solar cell.The current density-voltage (J-V) measurements of the hybrid devices show a significant increase in open-circuit voltage (VOC) from 0.29 V up to 0.50 V for the best performing hybrid devices compared to the Schottky diode reference, while the short-circuit current density (JSC) does not change significantly. The increased VOC indicates that P3HT effectively reduces the reverse electron current into the gold contact. The wavelength-dependent JSC measurements show a decreased JSC in the wavelength range of P3HT absorption. This is related to the reduced JSC generation in silicon not being compensated by JSC generation in P3HT. It is concluded that the charge generation in P3HT is less efficient than in silicon.After a thermal annealing of the hybrid P3HT/silicon solar cells, we achieved power conversion efficiencies (PCE) (AM1.5 illumination) up to 6.5% with VOC of 0.52 V, JSC of 18.6 mA/cm² and a fill factor (FF) of 67%. This is more than twice the efficiency of the reference Schottky diode.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Hybrid Heterostructure Solar Cells"

1

Vaynzof, Yana. "Inverted hybrid solar cells." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wong, Henry Mo Pun. "Semiconducting nanocrystals for hybrid solar cells." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Levitsky, I. A. "Carbon Nanotubes - Si Hybrid Solar Cells." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35493.

Full text
Abstract:
This short review describes recent results in the field of carbon nanotube (CNT) – Si hybrid photovolta-ics (PV) focusing on advantages of semiconducting carbon nanotubes over other organic materials used in organic- Si composite photosensing materials. Possible mechanisms of charge phogeneration at CNT- Si in-terface and chargte transport are discussed. Perspectives and future trends in research of this novel class of PV nanohybrids are presented as well. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35493
APA, Harvard, Vancouver, ISO, and other styles
4

Zhu, Mingxuan. "Silicon nanowires for hybrid solar cells." Ecole centrale de Marseille, 2013. http://tel.archives-ouvertes.fr/docs/00/94/57/87/PDF/The_manuscript-4.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Noel, Nakita K. "Advances in hybrid solar cells : from dye-sensitised to perovskite solar cells." Thesis, University of Oxford, 2014. https://ora.ox.ac.uk/objects/uuid:e0f54943-546a-49cd-8fd9-5ff07ec7bf0a.

Full text
Abstract:
This thesis presents a study of hybrid solar cells, specifically looking at various methods which can be employed in order to increase the power conversion efficiency of these devices. The experiments and results contained herein also present a very accurate picture of how rapidly the field of hybrid solar cells has progressed within the past three years. Chapters 1 and 2 present the background and motivation for the investigations undertaken, as well as the relevant theory underpinning solar cell operation. Chapter 2 also gives a brief review of the literature pertinent to the main types of devices investigated in this thesis; dye-sensitised solar cells, semiconductor sensitized solar cells and perovskite solar cells. Descriptions of the synthetic procedures, as well as the details of device fabrication and any measurement techniques used are outlined in Chapter 3. The first set of experimental results is presented in Chapter 4. This chapter outlines the synthesis of mesoporous single crystals (MSCs) of anatase TiO2 as well as an investigation of its electronic properties. Having shown that this material has superior electronic properties to the conventionally used nanoparticle films, they were then integrated into low temperature processed dye-sensitised solar cells and achieved power conversion efficiencies of > 3%, exhibiting electron transport rates which were orders of magnitude higher than those obtained for the high temperature processed control films. Chapter 5 further investigates the use of MSCs in photovoltaic devices, this time utilising a more strongly absorbing inorganic sensitiser, Sb2S3. Utilising the readily tunable pore size of MSCs, these Sb2S3 devices showed an increase in voltage and fill factor which can be attributed to a decrease in recombination within these devices. This chapter also presents the use of Sb2S3 in the meso-superstructured configuration. This device architecture showed consistently higher voltages suggesting that in this architecture, charge transport occurs through the absorber and not the mesoporous scaffold. Chapters 6 and 7 focus on the use of hybrid organic-inorganic perovskites in photovoltaic devices. In Chapter 6 the mixed halide, lead-based perovskite, CH3NH3PbI3-xClx is employed in a planar heterojunction device architecture. The effects of Lewis base passivation on this material are investigated by determining the photoluminescence (PL) lifetimes and quantum efficiencies of treated and untreated films. It is found that passivating films of this material using Lewis bases causes an increase in the PLQE at low fluences as well as increasing the PL lifetime. By globally fitting these results to a model the trap densities are extracted and it is found that using these surface treatments decreases the trap density of the perovskite films. Finally, these treatments are used in complete solar cells resulting in increased power conversion efficiencies and an improvement in the stabilised power output of the devices. Chapter 7 describes the materials synthesis and characterisation of the tin-based perovskite CH3NH3SnI3 and presents the first operational, lead-free perovskite solar cell. The work presented in this thesis describes significant advances in the field of hybrid solar cells, specifically with regards to improvements made to the nanostructured electrode, and the development and implementation of more highly absorbing sensitizers. The improvements discussed here will prove to be quite important in the drive towards exploiting solar power as a clean, affordable source of energy.
APA, Harvard, Vancouver, ISO, and other styles
6

Ishwara, Thilini W. S. "Optimisation of hybrid organic/ inorganic solar cells." Thesis, Imperial College London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.510746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Böhm, Marcus. "Hybrid ligands in quantum dot solar cells." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lentz, Levi (Levi Carl). "Rational design of hybrid organic solar cells." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92219.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 113-117).
In this thesis, we will present a novel design for a nano-structured organic-inorganic hybrid photovoltaic material that will address current challenges in bulk heterojunction (BHJ) organic-based solar cell materials. Utilizing first principles Density Functional Theory (DFT), we show that layered inorganic phosphates and tradition organic dyes can be combined to form a new class of bulk heterojunction photovoltaic with high electron and hole mobilities with low exciton recombination, potentially enabling very high efficiency with existing organic-based solar-cell molecules. We will discuss the physical origin of these properties and investigate several approaches for engineering the electronic structure of these materials. By using these methods, it will be possible to engineer the transport and optical properties of these materials, with potential applications beyond photovoltaics in areas from organic electronics to photoactuators.
by Levi Lentz.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
9

Weickert, Jonas [Verfasser]. "Nanostructured Interfaces in Hybrid Solar Cells / Jonas Weickert." Konstanz : Bibliothek der Universität Konstanz, 2014. http://d-nb.info/1058326031/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cacovich, Stefania. "Electron microscopy studies of hybrid perovskite solar cells." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/276753.

Full text
Abstract:
Over the last five years hybrid organic-inorganic metal halide perovskites have attracted strong interest in the solar cell community as a result of their high power conversion efficiency and the solid opportunity to realise a low-cost as well as industry-scalable technology. Nevertheless, several aspects of this novel class of materials still need to be explored and the level of our understanding is rapidly and constantly evolving, from month to month. This dissertation reports investigations of perovskite solar cells with a particular focus on their local chemical composition. The analytical characterisation of such devices is very challenging due to the intrinsic instability of the organic component in the nanostructured compounds building up the cell. STEM-EDX (Scanning Transmission Electron Microscopy - Energy Dispersive X-ray spectroscopy) was employed to resolve at the nanoscale the morphology and the elemental composition of the devices. Firstly, a powerful procedure, involving FIB (Focus Ion Beam) sample preparation, the acquisition of STEM-EDX maps and the application of cutting edge post-processing data techniques based on multivariate analysis was developed and tested. The application of this method has drastically improved the quality of the signal that can be extracted from perovskite thin films before the onset of beam-induced transformations. Morphology, composition and interfaces in devices deposited by using different methodologies and external conditions were then explored in detail by combining multiple complementary advanced characterisation tools. The observed variations in the nanostructure of the cells were related to different photovoltaic performance, providing instructive indications for the synthesis and fabrication routes of the devices. Finally, the main degradation processes that affect perovskite solar cells were probed. STEM-EDX was used in conjunction with the application of in situ heating, leading to the direct observation of elemental species migration within the device, reported here for the first time with nanometric spatial resolution. Further analyses, involving a set of experiments aimed to study the effects of air exposure and light soaking on the cells, were designed and performed, providing evidence of the main pathways leading to the drastic drop in the device performance.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Hybrid Heterostructure Solar Cells"

1

Huang, Hui, and Jinsong Huang, eds. Organic and Hybrid Solar Cells. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10855-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

van Sark, Wilfried G. J. H. M., Lars Korte, and Francesco Roca, eds. Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22275-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wilfried G. J. H. M. Sark. Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lin, Ching-Fuh. Organic, inorganic, and hybrid solar cells: Principles and practice. Hoboken, NJ: Wiley, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fujiwara, Hiroyuki, ed. Hybrid Perovskite Solar Cells. Wiley, 2021. http://dx.doi.org/10.1002/9783527825851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schmidt-Mende, Lukas, Stefan Kraner, and Azhar Fakharuddin. Organic and Hybrid Solar Cells. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110736939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Huang, Hui, and Jinsong Huang. Organic and Hybrid Solar Cells. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schmidt-Mende, Lukas, Stefan Kraner, and Azhar Fakharuddin. Organic and Hybrid Solar Cells. de Gruyter GmbH, Walter, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schmidt-Mende, Lukas, Stefan Kraner, and Azhar Fakharuddin. Organic and Hybrid Solar Cells. de Gruyter GmbH, Walter, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Hui, and Jinsong Huang. Organic and Hybrid Solar Cells. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Hybrid Heterostructure Solar Cells"

1

Lloyd, Matthew T. "Hybrid Solar Cells." In Encyclopedia of Nanotechnology, 1494–500. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Webb, Benjamin L. J., David Holmes, Chun Li, Jin Z. Zhang, and Matthew T. Lloyd. "Hybrid Solar Cells." In Encyclopedia of Nanotechnology, 1042–48. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Conradt, Jonas. "Hybrid Solar Cells." In Biophotonics: Spectroscopy, Imaging, Sensing, and Manipulation, 375. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9977-8_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Shih-Hsiu, Tsung-Yen Wu, and Chia-Yun Chen. "Low-Dimensional Heterostructure-Based Solar Cells." In Energy Storage and Conversion Materials, 223–35. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003367215-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schmidt-Mende, Lukas. "Nanostructured Hybrid Solar Cells." In Functional Supramolecular Architectures, 801–26. Weinheim, Germany: WILEY-VCH Verlag & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527689897.ch26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Soosaimanickam, Ananthakumar, Saravanan Krishna Sundaram, and Moorthy Babu Sridharan. "Hybrid Perovskite Solar Cells." In Nanotechnology, 315–48. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003220350-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Günş, Serap, and Niyazi Serdar Sariciftci. "Organic and Inorganic Hybrid Solar Cells." In Printable Solar Cells, 1–35. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119283720.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zeman, Miro, and Dong Zhang. "Heterojunction Silicon Based Solar Cells." In Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, 13–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-22275-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tai, Qidong, and Feng Yan. "Hybrid Solar Cells with Polymer and Inorganic Nanocrystals." In Organic Solar Cells, 243–65. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4823-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hahn, Yoon-Bong, Tahmineh Mahmoudi, and Yousheng Wang. "Organic—Inorganic Hybrid Solar Cells." In Next-Generation Solar Cells, 129–49. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003372387-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Hybrid Heterostructure Solar Cells"

1

Wang, Zhiping, Qianqian Lin, Francis Chmiel, Nobuya Sakai, Laura Herz, and Henry Snaith. "Self-assembled 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites for stable and efficient solar cells." In 2nd Asia-Pacific Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2017. http://dx.doi.org/10.29363/nanoge.ap-hopv.2018.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shigekawa, Naoteru, Li Chai, Masashi Morimoto, Jianbo Liang, Ryusuke Onitsuka, Takaaki Agui, Hiroyuki Juso, and Tatsuya Takamoto. "Hybrid triple-junction solar cells by surface activate bonding of III–V double-junction-cell heterostructures to ion-implantation-based Si cells." In 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC). IEEE, 2014. http://dx.doi.org/10.1109/pvsc.2014.6924976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mueller, Thomas, Marco Furchi, Armin Zechmeister, Simone Schuler, and Andreas Pospischil. "Atomically-thin van der Waals Heterostructure Solar Cells." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_qels.2015.fth3e.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, M. M., J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith. "Hybrid Perovskite Solar Cells." In 2013 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2013. http://dx.doi.org/10.7567/ssdm.2013.n-4-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ho-Baillie, Anita. "Perovskite Solar Cells." In Organic, Hybrid, and Perovskite Photovoltaics XXII, edited by Zakya H. Kafafi, Paul A. Lane, Gang Li, Ana Flávia Nogueira, and Ellen Moons. SPIE, 2021. http://dx.doi.org/10.1117/12.2602805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gale, R. P., R. W. McClelland, B. D. King, and J. V. Gormley. "High-efficiency thin-film AlGaAs-GaAs double heterostructure solar cells." In Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference. IEEE, 1988. http://dx.doi.org/10.1109/pvsc.1988.105741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yuan Zhao and Yong-Hang Zhang. "Simulated performance of monocrystalline CdTe/MgCdTe double heterostructure solar cells." In 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7355772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boumaour, M., A. Bahfir, S. Sali, S. Kermadi, L. Zougar, and N. Ouarab. "Innovative emitter design for low-cost silicon based heterostructure solar cells." In 2014 North African Workshop on Dielectric Materials for Photovoltaic Systems (NAWDMPV). IEEE, 2014. http://dx.doi.org/10.1109/nawdmpv.2014.6997604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Campbell, Calli M., Yuan Zhao, Ernesto Suarez, Mathieu Boccard, Xin-Hao Zhao, Zhao-Yu He, Preston T. Webster, et al. "1.7 eV MgCdTe double-heterostructure solar cells for tandem device applications." In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE, 2016. http://dx.doi.org/10.1109/pvsc.2016.7749622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Hwan Kyu. "Dye-sensitized Solar Cells Strike Back to Practically Useful Next Generation Solar Cells." In 13th Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.hopv.2021.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Hybrid Heterostructure Solar Cells"

1

Ager, Joel W. CRADA Final Report: Process development for hybrid solar cells. Office of Scientific and Technical Information (OSTI), February 2011. http://dx.doi.org/10.2172/1007196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hsu, Julia, W. P. Development of nanostructured and surface modified semiconductors for hybrid organic-inorganic solar cells. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/942056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Summers, C. J., A. Rohatgi, A. Torabi, and H. M. Harris. New concepts for high efficiency energy conversion: The avalanche heterostructure and superlattice solar cells. Subcontract report, 1 June 1987--31 January 1990. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/10129163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Summers, C. J., A. Rohatgi, A. Torabi, and H. M. Harris. New Concepts for High Efficiency Energy Conversion: The Avalanch Heterostructure and Superlattice Solar Cells, A Subcontract Report, 1 June 1987 - 31 January 1990. Office of Scientific and Technical Information (OSTI), January 1993. http://dx.doi.org/10.2172/6744456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography