Dissertations / Theses on the topic 'Hybrid Halide Perovskites'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 32 dissertations / theses for your research on the topic 'Hybrid Halide Perovskites.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Lee, Michael M. "Organic-inorganic hybrid photovoltaics based on organometal halide perovskites." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:9384fc54-30de-4f0d-86fc-71c22d350102.
Full textWeber, Oliver. "Structural chemistry of hybrid halide perovskites for thin film photovoltaics." Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761012.
Full textPrice, Michael Beswick. "Transient photophysics of hybrid lead halide perovskites for optoelectronic applications." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709302.
Full textKovalsky, Anton. "PHOTOVOLTAIC AND THERMAL PROPERTIES OF HYBRID ORGANIC-INORGANIC METAL HALIDE PEROVSKITES." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1500584556606705.
Full textDeng, Zeyu. "Rational design of novel halide perovskites combining computations and experiments." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/287932.
Full textTainter, Gregory Demaray. "Spatially resolved charge transport and recombination in metal-halide perovskite films and solar cells." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/286026.
Full textZu, Fengshuo. "Electronic properties of organic-inorganic halide perovskites and their interfaces." Doctoral thesis, Humboldt-Universität zu Berlin, 2019. http://dx.doi.org/10.18452/20396.
Full textOptoelectronic devices based on halide perovskites (HaPs) and possessing remarkably high performance have been reported. To push the development of such devices even further, a comprehensive and reliable understanding of their electronic structure, including the energy level alignment (ELA) at HaPs interfaces, is essential but presently not available. In an attempt to get a deep insight into the electronic properties of HaPs and the related interfaces, the work presented in this thesis investigates i) the fundamental band structure of perovskite single crystals, in order to establish solid foundations for a better understanding the electronic properties of polycrystalline thin films and ii) the effects of surface states on the surface electronic structure and their role in controlling the ELA at HaPs interfaces. The characterization is mostly performed using photoelectron spectroscopy, together with complementary techniques including low-energy electron diffraction, UV-vis absorption spectroscopy, atomic force microscopy and Kelvin probe measurements. Firstly, the band structure of two prototypical perovskite single crystals is unraveled, featuring widely dispersing top valence bands (VB) with the global valence band maximum at R point of the Brillouin zone. The hole effective masses there are determined to be ~0.25 m0 for CH3NH3PbBr3 and ~0.50 m0 for CH3NH3PbI3. Based on these results, the energy distribution curves of polycrystalline thin films are constructed, revealing the fact that using a logarithmic intensity scale to determine the VB onset is preferable due to the low density of states at the VB maximum. Secondly, investigations on the surface electronic structure of pristine perovskite surfaces conclude that the n-type behavior is a result of surface band bending due to the presence of donor-type surface states. Furthermore, due to surface photovoltage effect, photoemission measurements on different perovskite compositions exhibit excitation-intensity dependent energy levels with a shift of up to 0.7 eV. Eventually, control over the ELA by manipulating the density of surface states is demonstrated, from which very different ELA situations (variation over 0.5 eV) at interfaces with organic electron acceptor molecules are rationalized. Our findings further help to explain the rather dissimilar reported energy levels at perovskite surfaces and interfaces, refining our understanding of the operational principles in perovskite related devices.
Ngqoloda, Siphelo. "Hybrid lead halide perovskite thin films and solar cells by chemical vapour deposition." University of the Western Cape, 2021. http://hdl.handle.net/11394/8344.
Full textThe organic-inorganic hybrid perovskites such as methyl ammonium lead iodide (MAPbI3) or mixed halide MAPbI3-xClx (x is usually very small) have emerged as an interesting class of semiconductor materials for their application in photovoltaic (PV) and other semiconducting devices. A fast rise in PCE of this material observed in just under a decade from 3.8% in 2009 to over 25.2% recently is highly unique compared to other established PV technologies such as c-Si, GaAs, and CdTe. The high efficiency of perovskites solar cells has been attributed to its excellent optical and electronic properties. Perovskites thin film solar cells are usually deposited via spin coating, vacuum thermal evaporation, and chemical vapour deposition (CVD).
Lini, Matilde. "Optoelectronic characterization of hybrid organic-inorganic halide perovskites for solar cell and X-ray detector applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23213/.
Full textPIPITONE, CANDIDA. "DESIGN, SYNTHESIS AND ATOMIC/ELECTRONIC STRUCTURAL ANALYSIS OF HYBRID HALIDE PSEUDO-PEROVSKITES: PERSPECTIVES AND OPEN ISSUES FOR NOVEL THERMOELECTRIC MATERIALS." Doctoral thesis, Università degli Studi di Palermo, 2022. http://hdl.handle.net/10447/533298.
Full textOmondi, Celline Awino [Verfasser], Bernd [Gutachter] Rech, Roland [Gutachter] Scheer, and Thomas [Gutachter] Dittrich. "Investigation of hybrid organic-inorganic lead halide perovskites by modulated surface photovoltage spectroscopy / Celline Awino Omondi ; Gutachter: Bernd Rech, Roland Scheer, Thomas Dittrich." Berlin : Technische Universität Berlin, 2018. http://d-nb.info/1164498150/34.
Full textLiu, Tianyu. "Perovskite Solar Cells fabrication and Azobenzene Perovskite synthesis: a study in understanding organic-inorganic hybrid lead halide perovskite." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1576840261464488.
Full textPellegrino, Anna Lucia. "Synthesis of hybrid metalorganic/inorganic systems and doped halide thin films for photovoltaics." Doctoral thesis, Università di Catania, 2019. http://hdl.handle.net/10761/4141.
Full textRathod, Siddharth Narendrakumar. "Structure Stability and Optical Response of Lead Halide Hybrid Perovskite Photovoltaic Materials: A First-Principles Simulation Study." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1496189488934021.
Full textBandara, Nilantha. "Guest intercalation into metal halide inorganic-organic layered perovskite hybrid solids and hydrothermal synthesis of tin oxide spheres." Master's thesis, Mississippi State : Mississippi State University, 2008. http://library.msstate.edu/etd/show.asp?etd=etd-10312008-212759.
Full textKiermasch, David [Verfasser], Vladimir [Gutachter] Dyakonov, and Christian [Gutachter] Schneider. "Charge Carrier Recombination Dynamics in Hybrid Metal Halide Perovskite Solar Cells / David Kiermasch ; Gutachter: Vladimir Dyakonov, Christian Schneider." Würzburg : Universität Würzburg, 2020. http://d-nb.info/1214594123/34.
Full textYu, Yue. "Thin Film Solar Cells with Earth Abundant Elements: from Copper Zinc Tin Sulfide to Organic-Inorganic Hybrid Halide Perovskite." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1513289830601094.
Full textPuscher, Bianka [Verfasser], Dirk [Akademischer Betreuer] Guldi, and Dirk [Gutachter] Guldi. "Charge Carrier Diffusion and Transfer Mechanism in Hybrid Lead Halide Perovskite Materials / Bianka Puscher ; Gutachter: Dirk Guldi ; Betreuer: Dirk Guldi." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2020. http://d-nb.info/1203375379/34.
Full textBaronnier, Justine. "Encapsulation de nanocristaux II-VI dans une matrice semiconductrice de pérovskite hybride d’halogénure de plomb en vue de la création d’un dispositif de contrôle du clignotement." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1297.
Full textTo construct a device for controlling the blinking of nanocrystals, it was necessary to create a solid-state active material that can be integrated in such an apparatus. To this end, we have encapsulated cadmium-based quantum dots (QDs) in a crystalline matrix of a hybrid lead-bromide perovskite. This manuscript describes all the steps that have been undertaken to achieve the creation of this new composite. We have developed a synthesis of QDs that are resistant to encapsulation in an ionic matrix by means of an organic-inorganic ligand exchange that allowed us to integrate nanocrystals into the matrix while conserving their luminescence properties. We were thus able to document efficient encapsulation and a coupling between the QDs and the matrix. These two characteristics are favorable for using this composite in a control device which ultimately aims at optically following the luminescence of the BQs and applying an electric field to extract and evacuate the excess charges responsible for the nonemissive state. The successful completion of this step will enable us in the future to study the phenomenon of blinking and, more importantly, to construct a stable on-demand single-photon source
Sharada, G. "Structure, Dynamics and Optical Properties of Organic-Inorganic Hybrid Perovskites." Thesis, 2017. http://etd.iisc.ac.in/handle/2005/4129.
Full text(6318551), Jordan M. Snaider. "CARRIER TRANSPORT IN HYBRID LEAD HALIDE PEROVSKITES STUDIED BY ULTRAFAST PUMP-PROBE MICROSCOPY." Thesis, 2019.
Find full textGałkowski, Krzysztof. "Magneto-optical and microscopic properties of organo lead halide perovskites." Doctoral thesis, 2016.
Find full textThe hybrid organo-lead halide perovskites are an emerging class of materials, proposed for use as light absorbers in a new generation of photovoltaic solar cells. The chemical formula for these materials is APbX3, where A is an organic cation and X represents halide anions (most commonly Br-, Cl- or I-, or alloyed combination of these). The hybrid perovskites combine excellent absorption properties with large diffusion lengths and long lifetime of the carriers, resulting in photon conversion efficiencies as high as 22%. Another advantage is the inexpensiveness of the fabrication process. Therefore, with the rapid development of this class of materials, the perovskite photovoltaics has perspectives to outperform the well-established silicon technology. Here, we use optical methods to investigate the basic electronic properties and morphology in the thin films of several representatives of the hybrid perovskites. We study the compounds based on Methylammonium and Formamidinium organic cations; the iodides and wide band-gap bromides, showing how the chemical composition influences the investigated parameters. Using magneto-transmission, we directly determine the values of exciton binding energy and reduced mass. We find that the exciton binding energies at T = 2 K, varying from 14 to 25 meV, are smaller or comparable to the average thermal energy at room temperature (≈25 meV). Moreover, these values fall further at T = 160 K, to 10–24 meV. Based on that we conclude that the carriers photocreated in a perovskite material can be considered to be thermally ionized at room temperature. The measured reduced masses are in the range of 0.09-0.13 of the electron rest mass. We also show that both exciton binding energy and reduced mass depend linearly on the band gap energy. Therefore, the values of these parameters can be easily estimated for the synthesis of new perovskite compounds. Using spatially resolved photoluminescence, we probe the morphology of perovskite films with micrometer resolution, which enables us to observe single crystalline grains. The resulting maps show that all investigated thin films are composed from the dark and bright crystalline grains. We demonstrate that the low temperature phase transition from tetragonal to orthorhombic phase is incomplete in all studied materials, as the remains of the tetragonal phase are found even at T = 4 K. By investigating structurally damaged and photo annealed regions, where the occurrence of the tetragonal phase at low temperatures is enhanced, we attribute its presence to the depleted halide content.
Tang, Ming-Chun. "Hybrid Lead Halide Perovskite and Bismuth-Based Perovskite-Inspired Photovoltaics: An In Situ Investigation." Diss., 2019. http://hdl.handle.net/10754/659517.
Full textDas, Ranjan. "Optoelectronic and Magnetic Properties of 2D Layered Organic-Inorganic Hybrids and Selected Transition Metal Oxides." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/6164.
Full textKiermasch, David. "Charge Carrier Recombination Dynamics in Hybrid Metal Halide Perovskite Solar Cells." Doctoral thesis, 2020. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-208629.
Full textUm künftig den menschlichen Energiebedarf in Zukunft mit erneuerbaren Energiequellen zu decken sind neue Konzepte und Ideen für die Stromerzeugung erforderlich. Solarzellen auf der Basis von hybriden Perowskit-Halbleitern stellen einen vielversprechenden Ansatz dar, um dieser Anforderung – beispielsweise in Tandem-Konfigurationen zusammen mit Silizium– gerecht zu werden. Trotz intensiver Forschung sind viele physikalische Eigenschaften und das Funktionsprinzip dieser neuartigen Solarzellen immer noch nicht vollständig verstanden. Insbesondere wurden die Rekombinationsverluste bisher meist nur an reinen Schichten untersucht, welche nicht in einen kompletten Solarzellenaufbau integriert waren. Die vorliegende Arbeit zielte auf die Identifizierung und Quantifizierung der Ladungsträger-Rekombinationsdynamik in voll funktionsfähigen Solarzellen unter Bedingungen, die denen im realen Betrieb entsprechen, ab. Um verschiedene PV-Systeme zu untersuchen wurden transiente elektrische Methoden, genauer gesagt OCVD, TPV und CE, angewandt. Während OCVD und TPV Informationen über die Rekombinationslebensdauer liefern, erlaubt CE die Berechnung der Ladungsträgerdichte. Die Kombination dieser Methoden hat den Vorteil, dass die erhaltenen Größen miteinander in Verbindung gesetzt werden können und somit umfangreiche Rückschlüsse auf die zugrundeliegende Rekombinationmechanismen ermöglichen. Das Ziel dieser Arbeit ist es, zu einem besseren Verständnis der Rekombinationsverluste in voll funktionsfähigen Perowskit-Solarzellen und der experimentellen Techniken, die zur Bestimmung dieser Verluste angewandt werden, beizutragen
Reichert, Sebastian. "Ionic Defects in Metal Halide Perovskite Solar Cells." 2021. https://monarch.qucosa.de/id/qucosa%3A74870.
Full textSolar cells made of organic–inorganic hybrid perovskite semiconductors are considered as a possible key technology for the conversion of cheap and environmentally friendly electrical energy and thus as a milestone for the turnaround in energy policy. In order to meet the steadily growing global demand for electrical energy, solar cell tech- nologies are required that are both highly efficient, i.e. close to the Shockley–Queisser limit, and sufficiently stable. While the efficiency of solar cells based on perovskite semi- conductors has undergone a remarkable development in the last decade, the essential physical mechanisms of this technology cannot yet be fully explained. The electronic- ionic mixed conductivity is one of these properties, which influences the efficiency and especially the stability of the perovskite solar cell. The central topic of this thesis is therefore the investigation of mobile ionic defects and their influence on solar cell parameters. It is shown that the migration rates of ionic defects in perovskites are attributed to wide distributions. By application of a newly developed regularisation algorithm for inverse Laplace transform and different measurement modes for deep-level transient spectroscopy, it can thus be clarified why reported ionic defect parameters from the literature for the same defects can differ significantly. This basic understanding can be used to study the influence of small stoichiometric variations on the defect landscape and to better understand the interaction between electronic and ionic properties. Us- ing the Meyer–Neldel rule also allows the characterisation of ionic defects in perovskite semiconductors. The last part of this thesis shows that electrical and optical methods such as intensity-modulated spectroscopy are suitable for obtaining information about mobile ions in hybrid perovskites. In addition, the electronic recombination behaviour is examined more closely.
Chen, You-Cheng, and 陳佑承. "Fabrication of Lead Halide Perovskite Organic/Inorganic Hybrid Solar Cells with Thick Photoactive Layer." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/gmznxn.
Full text國立清華大學
光電工程研究所
102
This paper proposed a low temperature, solution process, simple process, a large area of the lead halide perovskite organic/inorganic hybrid solar cell. In this paper, in which the use of lead halide perovskite as the photoactive layer. With the high solubility PbCl2 in DMSO to increase the concentration of the precursor solution, and construct organic / inorganic hybrid solar cell. Our device configuration:Glass/ITO/PEDOT:PSS/Perovskite/PCBM/Al belong to normal structure. Suitably selected the hole and the electron transport layer by spin coating and dried to optimize conditions for the performance of the solar cell of the present paper is better. In this paper, Construction of the solar cell efficiency of up to 7.0 %, short-circuit current of 18.1 mA/cm2 has excellent performance. Lead halide perovskite organic / inorganic hybrid solar cell laden with good efficiency and performance advantages of a large area can be to facilitate the production of large-area components toward future development.
Wang, Chia-Lin, and 王家麟. "Synthesis of Lead Halide Perovskite and the Fabrication of Related Organic/Inorganic Hybrid Solar Cells." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/rzyp8v.
Full text方建瑋. "Fabrication of inverted lead halide perovskite hybrid organic solar cells with chemical bath deposited Zinc Oxide." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/7rex9q.
Full textLee, Yi-Lin, and 李億霖. "Effect of atomic layer deposited metal oxides on organic-inorganic hybrid lead halide perovskite solar cells." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/2gtjx2.
Full text國立臺灣大學
材料科學與工程學研究所
106
Organic-inorganic hybrid lead halide perovskite solar cells have been developed rapidly because its excellent performance. However, the active material is unstable in ambient air, which limits its practical application. Thermal instability of devices states a more fundamental problem. In this thesis, atomic layer deposited inorganic metal oxides was applied to perovskite solar cells devices in order to solve the problem. We first investigated compatibility of perovskite with a variety of metallic precursors and with oxidants, respectively. We concluded criteria of selecting condition of ALD process and choice of precursors that would not damage perovskite. With optimal parameters, devices with ultra-thin atomic layer deposited Al2O3 or TiO2 direct on top of perovskite showed good performance. However, thermal instability of devices still did not improve due to imperfect coverage of oxides layer resulted from lack of nucleation cite on perovskite surface. To solve this problem, we deposited ALD AZO on organic charge transport layer instead. Device of this architecture reached efficiency of 14.6%, and only dropped to 80% of initial value after 1-day storage in glove box at 85℃. The thermal instability was much improved as efficiency of control devices dropped to less than 50% of initial value.
Pariari, Debasmita. "Opto-electronic Properties of a Few Dimensionally Controlled Hybrid Halides and Related Systems." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/6183.
Full textBarrit, Dounya. "In situ Investigation of the Effect of Solvation State of Lead Iodide and the Influence of Different Cations and Halides on the Two-Step Hybrid Perovskite Solar Cells Formation." Diss., 2019. http://hdl.handle.net/10754/660254.
Full text