Academic literature on the topic 'Humidity Generator'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Humidity Generator.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Humidity Generator"

1

Berg, Robert F., Nicola Chiodo, and Eric Georgin. "Silicone tube humidity generator." Atmospheric Measurement Techniques 15, no. 3 (February 16, 2022): 819–32. http://dx.doi.org/10.5194/amt-15-819-2022.

Full text
Abstract:
Abstract. We describe the model and construction of a two-flow (or divided-flow) humidity generator, developed at LNE-Cnam, that uses mass flow controllers to mix a stream of dry gas with a stream of humid gas saturated at 28 ∘C. It can generate a wide range of humidity, with mole fractions in the range of 0.7×10-6<x<9000×10-6, without using low temperature or high pressure. This range is suitable for calibrating balloon-borne instruments that measure humidity in the stratosphere, where x∼5×10-6. The generator's novel feature is a saturator that comprises 5 m of silicone tubing immersed in water. Water enters the humid gas stream by diffusing through the wall of the tubing until the gas stream flowing through the tubing is saturated. This design provides a simple, low-cost humidity generator with an accuracy that is acceptable for many applications. The key requirement is that the tubing be long enough to ensure saturation so that the saturator's output is independent of the dimensions and permeability of the tube. A length of only a few meters was sufficient because the tube was made of silicone; other common polymers have permeabilities that are 1000 times smaller. We verified the model of the transition from unsaturated flow to saturated flow by measuring the humidity while using three tube lengths, two of which were too short for saturation. As a more complete test, we used the generator as a primary device after correcting the calibrations of the mass flow controllers that determined the mixing ratio. At mole fractions of 50×10-6<x<5000×10-6, the generator's output mole fraction xgen agreed to within 1 % with the value xcm measured by a calibrated chilled-mirror hygrometer; in other words, their ratio fell in the range xgen/xcm=1.00±0.01. At smaller mole fractions, their differences fell in the range of xgen-xcm=±1×10-6.
APA, Harvard, Vancouver, ISO, and other styles
2

Liedberg, H. G., M. R. Mnguni, and D. Jonker. "A Simple Humidity Generator for Relative Humidity Calibrations." International Journal of Thermophysics 29, no. 5 (May 21, 2008): 1660–67. http://dx.doi.org/10.1007/s10765-008-0423-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abd El-Galil, Doaa Mohamed, and Essam Mahmoud. "NIS two-pressure humidity generator." International Journal of Metrology and Quality Engineering 7, no. 3 (2016): 303. http://dx.doi.org/10.1051/ijmqe/2016012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Abe, Hisashi, and Hiroshi Kitano. "Development of humidity standard in trace-moisture region: Characteristics of humidity generation of diffusion tube humidity generator." Sensors and Actuators A: Physical 128, no. 1 (March 2006): 202–8. http://dx.doi.org/10.1016/j.sna.2005.12.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Morris, Edwin C. "A simple frost-point humidity generator." Measurement Science and Technology 8, no. 5 (May 1, 1997): 473–78. http://dx.doi.org/10.1088/0957-0233/8/5/002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zeeshan, Afaque Manzoor Soomro, and Sungbo Cho. "Design and Fabrication of a Robust Chitosan/Polyvinyl Alcohol-Based Humidity Sensor energized by a Piezoelectric Generator." Energies 15, no. 20 (October 15, 2022): 7609. http://dx.doi.org/10.3390/en15207609.

Full text
Abstract:
Due to their rapid growth in industrial and environmental applications, there is a need to develop self-powered humidity sensor systems with improved sensitivity, a wide detection range, and an eco-friendly nature. In this study, an aqueous solution of chitosan (CS) and polyvinyl alcohol (PVA) was blended to yield a composite film material with enhanced humidity detection properties. Meanwhile, a polyvinylidene difluoride (PVDF)-loaded chitosan composite film was developed and employed as a piezoelectric generator. Moreover, the developed composite materials for both devices (the piezoelectric generator and the humidity sensor) were optimized based on output performance. The piezoelectric generator generates a maximum of 16.2 V when a force of 10 N is applied and works as a power source for the humidity-sensing film. The sensing film swells in response to changes in relative humidity, which affects film resistance. This change in resistance causes a change in voltage through the piezoelectric generator and allows the precise measurement of relative humidity (RH). The fabricated sensor showed a linear response (R2 = 0.981) with a reasonable sensitivity (0.23 V/% RH) in an environment with an RH range of 21–89%. In addition, the device requires no external power, and therefore, it has numerous sensing applications in various fields.
APA, Harvard, Vancouver, ISO, and other styles
7

SASHIDA, Takao, and Kenji MOTOSUGI. "Accurate Humidity Generator Using Divided-Flow Method." Transactions of the Society of Instrument and Control Engineers 25, no. 7 (1989): 744–50. http://dx.doi.org/10.9746/sicetr1965.25.744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mitter, Helmut. "Miniaturized Two-Pressure Generator for Relative Humidity." International Journal of Thermophysics 29, no. 5 (April 23, 2008): 1632–43. http://dx.doi.org/10.1007/s10765-008-0432-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liu, Yonghao, Xiang-Chao Sun, Chao Lv, and Hong Xia. "Green nanoarchitectonics with PEDOT:PSS–gelatin composite for moisture-responsive actuator and generator." Smart Materials and Structures 30, no. 12 (November 3, 2021): 125014. http://dx.doi.org/10.1088/1361-665x/ac31c6.

Full text
Abstract:
Abstract With improvements in energy conversion efficiency and diversification of conversion manner, devices through natural evaporation from water reservoirs have potential to become an avenue to harvest energy. Using green, sustainable and biocompatible components is ever greater interesting for construction of humidity-induced actuator and generator. Here we demonstrate that green nanoarchitectonics with the bio-friendly poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)–gelatin have good mechanical and humidity responsive properties which can use to construct moisture-responsive actuator and generator. The PEDOT:PSS–gelatin film actuator is fabricated by simple spin-coating, in which PEDOT:PSS is introduced into natural gelatin to increase the mechanical intensity due to hydrogen bond and interpenetrated network between rigid PEDOT:PSS chains and protein molecules. The PEDOT:PSS–gelatin film combined with piezoelectric poly(vinylidene fluoride) (PVDF) film can be driven into the movement by humidity. The PEDOT:PSS–gelatin film and the driven PVDF film as actuator and generator generates piezoelectric signal. The bio-friendly evaporation-driven generator may have applications in self-powering biomedicine robotic system and sensors.
APA, Harvard, Vancouver, ISO, and other styles
10

S.K. BAL, B. U. CHOUDHURY, ANIL SOOD, S.K. JALOTA, and H. SINGH. "Evaluation of climgen model to generate weather parameters under different climatic situations in Punjab." Journal of Agrometeorology 10, no. 1 (June 1, 2008): 39–45. http://dx.doi.org/10.54386/jam.v10i1.1168.

Full text
Abstract:
In the present study, ClimGen (weather generator) generated data was compared to the observed weather data of Ballowal, Ludhiana and Bathinda weather stations representing different type of climatic situations in Punjab. Several years of daily data of solar radiation, maximum and minimum temperature, morning and evening relative humidity, rainfall and wind speed were used as input and five years data were used for validation purpose. Evaluation was done on the basis of coefficient of determination (R2), Residual Mean Square Error (RMSE), General Standard Deviation (GSD) and Wilmott’s index (d) of agreement between generated and observed data. The ClimGen generated data for maximum and minimum temperature showed good performance (GSD d” 0.10 and d e” 0.95) and the data generated for morning relative humidity was acceptable (GSD > 0.10 but d” 0.20 and d < 0.95 but e” 0.90) while evening relative humidity and wind speed were poor except for Ludhiana station. However, the generated rainfall data was poor for all the stations and hence, cannot be accepted. Overall, results indicated ClimGen a good performer as a weather generator for certain parameters.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Humidity Generator"

1

Li, Xihao. "Characterization of Perphenazine and Scopolamine Aerosols Generated Using the Capillary Aerosol Generator." VCU Scholars Compass, 2006. http://scholarscompass.vcu.edu/etd/901.

Full text
Abstract:
The characterization of perphenazine and scopolamine aerosols generated using the capillary aerosol generator (CAG) was reported. Variables including steady state power, the formulation vehicle, the drug concentration and the formulation flow rate were studied for their effects on the chemical stability and particle size of these drug aerosols.Stability-indicating HPLC and LC-MS assays were developed and validated for perphenazine and scopolamine, respectively. The chemical stability of each compound was investigated under a variety of stress conditions and the structure of degradation products was proposed.Perphenazine aerosols were generated from propylene glycol (PG) formulations with concentrations of 9, 48 and 90mM at formulation flow rates of 2.5 and 5.0µL/s at a series of steady state powers. At higher aerosolization powers, the low concentration formulation (9mM) degraded with dehalogenation being the major pathway. The size of perphenazine aerosols was between 0.4 to 0.6µm. Changing the solute concentration produced only small changes (~0.2µm) in perphenazine aerosol particle size. The formulation flow rate did not significantly affect the aerosol size.Scopolamine degraded significantly when aerosolized in PG formulations. It was possible to generate chemically stable scopolamine aerosols from ethanol formulations. Significant amounts of degradation products were formed only at or above 4.6W at 5.0µL/s. Hydrolysis and dehydration appeared to be the major degradation pathways at higher powers and low formulation flow rate. The MMAD of scopolamine aerosols was between 0.5 and 2.0µm from 8, 20 and 40mM formulations at 5.0 and 10.0µL/s. The size of scopolamine aerosols increased as a function of increasing the solute concentration. Increasing the formulation flow rate increased the linear velocity of the spray, thus the Reynolds number was increased and smaller particles were generated.
APA, Harvard, Vancouver, ISO, and other styles
2

Коробко, Олександр Анатолійович. "Удосконалення резонансного діелькометричного методу контролю та визначення вологості рідких неполярних діелектриків." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40781.

Full text
Abstract:
Дисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) за спеціальністю 05.11.13 "Прилади і методи контролю та визначення складу речовин" (15 – Автоматизація та приладобудування) – Національний технічний університет "Харківський політехнічний інститут". Мета роботи: удосконалення резонансного діелькометричного методу контролю та визначення вологості рідких неполярних діелектриків задля підвищення його чутливості до рівня 10⁻⁵ з одночасною мінімізацією впливу "сортової невизначеності". Запропоновані та досліджені: спрощена математична модель емульсії на основі моделі штучного діелектрика Кока; нові багаточастотні різновиди резонансного діелькометричного методу; новий тип розподіленого вимірювального перетворювача. Розроблено, теоретично та експериментально досліджено вологоміри середньочастотного та дуже високочастотного діапазонів. Експериментальним шляхом підтверджено досягнення мети роботи.
Thesis for a candidate degree (PhD) in specialty 05.11.13 "Instruments and methods of control and determination of substances" (15 – Automation and Instrumentation) − National Technical University "Kharkiv Polytechnic Institute". The thesis is devoted to the improvement of the resonant dielectric method of monitoring and determining the humidity of emulsions such as liquid non-polar dielectric - water in order to increase its sensitivity to level 10⁻⁵ while simultaneously minimizing the type and grade of non-polar dielectric ("varietal uncertainty") on the measurement results. An analytical review and analysis of the existing methods and means of implementation of the dielectric method in general and its resonant variety has been carried out. The main research areas have been identified: development of a simplified emulsion model; development of new varieties of the resonant dielectric method with minimization of the effect of "varietal uncertainty" for measuring humidity at a level of 10⁻⁵; development of a new type of distributed transducer. A simplified emulsion model was chosen based on the Kok artificial dielectric model, its applications were determined by frequency, humidity, and the values of its systematic errors were determined. New multifrequency varieties of the resonant dielectric method have been developed based on the proposed mathematical model of the emulsion, taking into account the parasitic capacitances of the measuring generator and the measuring converter. Metrological characteristics of the generalized four-frequency method and its simplified three-and two-frequency varieties are obtained. The areas of applicability of multifrequency methods are analyzed and their systematic errors are determined. The most sensitive method, the two-frequency method, was determined, the effect of dielectric losses in water was analyzed for it, and the generation frequency of the measuring generator, which corresponds to its maximum sensitivity, 100 MHz, was determined. A new type of distributed-type measuring transducer is proposed for the practical implementation of the two-frequency method — a stepwise heterogeneous coaxial resonator; its theoretical and experimental studies are carried out; its advantages in relation to the known transducers are determined. A hygrometer of the mid-frequency range based on a concentrated-type capacitive transducer and a hydrometer of a very high-frequency range based on a stepped heterogeneous coaxial resonator have been developed. The circuit solutions of the measuring transducer and the measuring generator of the hygrometer of the midfrequency range, which provided the minimum values of their parasitic capacitances, were developed and implemented. The circuit solutions of the measuring transducer and the measuring generator of a hygrometer of a very high frequency range have been developed and implemented, which provided almost zero effect of their parasitic capacitances. A methodology has been developed for conducting experimental research on the implementation of four- and three-frequency methods using a mid-range moisture meter and implementing a two-frequency method and a simplified version of it using a very high-frequency moisture meter. Experimental studies on manufactured test emulsions, as well as analysis and processing of their results, were carried out. For all developed multi-frequency methods and moisture values of test emulsions in the range of 10⁻⁴ – 10⁻², the value of the relative extended uncertainty of moisture measurement did not exceed 5.28 %. For the humidity of the test emulsion 10⁻⁵, the value of this uncertainty did not exceed 10.39 % (due to the lack of stability of the frequency of the reference generator frequency Ch 3 - 34, which was used in the research). The developed improved multi-frequency resonance dielectric methods for determining humidity have increased the sensitivity to a level of 10⁻⁵ while minimizing "varietal uncertainty".
APA, Harvard, Vancouver, ISO, and other styles
3

Коробко, Олександр Анатолійович. "Удосконалення резонансного діелькометричного методу контролю та визначення вологості рідких неполярних діелектриків." Thesis, Національний технічний університет "Харківський політехнічний інститут", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40783.

Full text
Abstract:
Дисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) за спеціальністю 05.11.13 "Прилади і методи контролю та визначення складу речовин" (15 – Автоматизація та приладобудування) – Національний технічний університет "Харківський політехнічний інститут". Мета роботи: удосконалення резонансного діелькометричного методу контролю та визначення вологості рідких неполярних діелектриків задля підвищення його чутливості до рівня 10⁻⁵ з одночасною мінімізацією впливу "сортової невизначеності". Запропоновані та досліджені: спрощена математична модель емульсії на основі моделі штучного діелектрика Кока; нові багаточастотні різновиди резонансного діелькометричного методу; новий тип розподіленого вимірювального перетворювача. Розроблено, теоретично та експериментально досліджено вологоміри середньочастотного та дуже високочастотного діапазонів. Експериментальним шляхом підтверджено досягнення мети роботи.
Thesis for a candidate degree (PhD) in specialty 05.11.13 "Instruments and methods of control and determination of substances" (15 – Automation and Instrumentation) − National Technical University "Kharkiv Polytechnic Institute". The thesis is devoted to the improvement of the resonant dielectric method of monitoring and determining the humidity of emulsions such as liquid non-polar dielectric - water in order to increase its sensitivity to level 10⁻⁵ while simultaneously minimizing the type and grade of non-polar dielectric ("varietal uncertainty") on the measurement results. An analytical review and analysis of the existing methods and means of implementation of the dielectric method in general and its resonant variety has been carried out. The main research areas have been identified: development of a simplified emulsion model; development of new varieties of the resonant dielectric method with minimization of the effect of "varietal uncertainty" for measuring humidity at a level of 10⁻⁵; development of a new type of distributed transducer. A simplified emulsion model was chosen based on the Kok artificial dielectric model, its applications were determined by frequency, humidity, and the values of its systematic errors were determined. New multifrequency varieties of the resonant dielectric method have been developed based on the proposed mathematical model of the emulsion, taking into account the parasitic capacitances of the measuring generator and the measuring converter. Metrological characteristics of the generalized four-frequency method and its simplified three-and two-frequency varieties are obtained. The areas of applicability of multifrequency methods are analyzed and their systematic errors are determined. The most sensitive method, the two-frequency method, was determined, the effect of dielectric losses in water was analyzed for it, and the generation frequency of the measuring generator, which corresponds to its maximum sensitivity, 100 MHz, was determined. A new type of distributed-type measuring transducer is proposed for the practical implementation of the two-frequency method — a stepwise heterogeneous coaxial resonator; its theoretical and experimental studies are carried out; its advantages in relation to the known transducers are determined. A hygrometer of the mid-frequency range based on a concentrated-type capacitive transducer and a hydrometer of a very high-frequency range based on a stepped heterogeneous coaxial resonator have been developed. The circuit solutions of the measuring transducer and the measuring generator of the hygrometer of the midfrequency range, which provided the minimum values of their parasitic capacitances, were developed and implemented. The circuit solutions of the measuring transducer and the measuring generator of a hygrometer of a very high frequency range have been developed and implemented, which provided almost zero effect of their parasitic capacitances. A methodology has been developed for conducting experimental research on the implementation of four- and three-frequency methods using a mid-range moisture meter and implementing a two-frequency method and a simplified version of it using a very high-frequency moisture meter. Experimental studies on manufactured test emulsions, as well as analysis and processing of their results, were carried out. For all developed multi-frequency methods and moisture values of test emulsions in the range of 10⁻⁴ – 10⁻², the value of the relative extended uncertainty of moisture measurement did not exceed 5.28 %. For the humidity of the test emulsion 10⁻⁵, the value of this uncertainty did not exceed 10.39 % (due to the lack of stability of the frequency of the reference generator frequency Ch 3 - 34, which was used in the research). The developed improved multi-frequency resonance dielectric methods for determining humidity have increased the sensitivity to a level of 10⁻⁵ while minimizing "varietal uncertainty".
APA, Harvard, Vancouver, ISO, and other styles
4

Giffin, Amanda. "Investigation of Operating Parameters Influencing Electrostatic Charge Generation in Gas-Solid Fluidized Beds." Thesis, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/19728.

Full text
Abstract:
Electrostatic charge generation in gas-solid fluidized beds is a significant industrial problem. Associated problems include particle agglomeration and particle wall fouling. In the polymerization industry this may result in "sheets" of fused polymer, due to exothermic reaction causing the melting of the polymer, which can fall off and block the distributor plate disrupting fluidizing gas flow. Additionally, blockage of the catalyst feed or the polymer removal system can take place or the product can become non-uniform. All of these problems require shut-down of the reactor which results in lost production time. While this phenomena has been identified for many years, the mechanisms involved are not well understood, especially wall fouling and the distribution of charge within the bed. Isolation of individual parameters such as hydrodynamics, operating conditions, and material involved is necessary to evaluate how each parameter impacts charge generation during fluidization. In this thesis, the fluidization system consisted of a stainless steel column, two online Faraday cups, and a retractable distributor plate. This system allowed for the simultaneous measurement of charge within different regions of the bed: the entrained fine particles, the particles adhered to the column wall, and the bulk of the bed. Additionally, mass and particle size distributions were measured and images of the layer of particles adhered to the column wall were taken for comparison. This allowed for a charge distribution comparison and evaluation of wall fouling. Three different parameters were investigated: duration of fluidization, column wall material, and relative humidity of fluidizing gas. Fluidization time was studied for 15, 30, 60, 120, 180, and 360 min; relative humidity was investigated for 0%, 20%, 40%, 60%, and 80% relative humidity. Both fluidization time and relative humidity were evaluated at four different fluidization gas velocities, two each in the bubbling and slugging flow regimes. Column wall material was evaluated for a stainless steel and carbon steel column at two gas velocities, one each in the bubbling and slugging flow regimes. Fluidization time was found to influence wall fouling in the bubbling flow regime as the particle layer continued to build as fluidization progressed. In the slugging flow regime, the particle layer developed within 15 minutes of the onset of fluidization. The bubbling flow regime was shown to have a greater capacity for charge generation than the slugging flow regime. This was due to the vigorous mixing in the bubbling flow regime resulting in more particle-particle interactions. Column wall material was shown to influence wall fouling in the slugging flow regime due to the differences in surface roughness of the columns. This was due to the particle-wall contacts resulting in frictional charging which is the predominant charging mechanism in this flow regime. Charge was also impacted in the bubbling flow regime in those particles that were adhered to the column wall. Relative humidity was found to influence wall fouling at the lowest gas velocity tested. However, variations in generation of charge occurred at all fluidization gas velocities tested; the charge-to-mass ratios for the particles adhered to the column wall in the slugging flow regime decreased with high relative humidities. This was due to either the formation of a water film layer on the column wall or instantaneous surface water films on the particles throughout fluidization.
APA, Harvard, Vancouver, ISO, and other styles
5

Brunke, Michael. "Assessing and Improving the Representation of Hydrologic Processes in Atmospheric, Ocean, and Land Modeling and Dataset Generation." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/560855.

Full text
Abstract:
Water is essential to life on Earth. Since water exists in all three phases (solid, liquid, and gas) on Earth, it exists in various reservoirs throughout the planet that compose the hydrologic cycle, and its movement through these reservoirs requires energy. Thus, water is a key component of the energy balance of the Earth. Despite its importance, its representation in modeling and dataset generation is problematic. Here, the depiction of three phenomena, ocean surface turbulent fluxes, humidity inversions, and groundwater, are assessed, and suggestions for improvements of their representations are made. First, ocean surface turbulent fluxes, including those of moisture (latent heat flux), heat (sensible heat flux), and momentum (wind stress), from reanalysis, satellite-derived, and combined products which are commonly used to produce climatologies and to evaluate global climate models are compared to in situ observations from ship cruises to ascertain which products are the least problematic. The National Aeronautics and Space Administration’s reanalysis, the Modern Era Retrospective Analysis for Research and Applications, is the least problematic for all three fluxes, while a couple of others are the least problematic for only one of the three fluxes. Also, the product biases are disaggregated into uncertainties from the grid cell mean quantities, or bulk variables, used plus the residual uncertainties which includes the algorithm uncertainties due to the parameterization used to relate the small-scale turbulent processes to the large-scale bulk variables. The latter contribute the most to the majority of product latent heat fluxes, while both uncertainties can contribute the most to product sensible heat fluxes and wind stress. Thus, both algorithms and bulk variables need to be improved in ocean surface flux datasets. Second, humidity inversion climatologies in five reanalyses are evaluated. Humidity inversions, similar to its thermal counterpart, are layers in which specific humidity increases with height rather than the usual decrease with height. These are especially persistent in the polar regions in autumn and winter. However, Arctic inversions are the strongest in summer corresponding to the time of year that low cloud cover is the highest. Comparing the reanalysis inversions to radiosonde observations reveals some problems with the realization of humidity inversions in reanalyses including the misrepresentation of the diurnal cycle and of the overproduction of inversions in areas outside the polar regions. Finally, the simulation of groundwater in the Community Land Model (CLM) as used in the Community Earth System Model is made more realistic by including variable soil thickness. Because the bottom of the model soil column is placed at effectively bedrock, the unconfined aquifer model currently used in CLM is removed and a zero bottom water flux is put in place. The removal of the unconfined aquifer allows the simulation of groundwater to not be treated separately from soil moisture. The model is most affected where the number of soil layers is reduced from the original constant 10 layers and largely unaffected where the number of soil layers is increased except for baseflow where the mean annual range in rainfall is large.
APA, Harvard, Vancouver, ISO, and other styles
6

Singla, Saranshu. "Consequences of Interfacial Interactions on Adsorption and Adhesion." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1541714540493631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Boucard, Hélène. "Contributions to the understanding of hydrothermal processes : application to black liquor." Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2014. http://www.theses.fr/2014EMAC0018/document.

Full text
Abstract:
La liqueur noire, sous-produit de l’industrie papetière, est convertie par un processus hydrothermal. Elle a été choisie pour son contenu élevé en eau (80 wt%), matière organique (14 wt%) et minéraux (6 wt%) qui font d'elle une biomasse à haute valeur ajoutée bien qu'encore peu exploitée. L'étude en batch, balayant une large gamme de température (350°C-600°C), permet d'identifier deux flux sortant : une proportion d'hydrogène élevée dans la phase gazeuse (600°C), ainsi qu'une phase solide, appelée coke, générée quelques soient les conditions opératoires utilisées. La génération de solide modifie la composition du milieu réactionnel en procédé batch et peut poser problème en cas de transposition en réacteur continu. Il est donc important de comprendre sa formation pour pallier ces verrous. L'analyse du résidu montre qu'à 350°C, pour des temps de réaction courts (<2h), de microparticules carbonées se forment. Leur taille est influencée par les vitesses de montée et descente en température. Pour des températures plus hautes, le solide ne présente pas d'intérêt morphologique et sa proportion massique augmente avec la température. Ainsi, une production d'hydrogène significative s'accompagnera d'un dépôt solide dans le réacteur. Une étude catalytique a donc été menée en vue d'augmenter la quantité d'hydrogène et de diminuer la formation de coke tout en travaillant à plus basse température. Cette étude, menée à 350°C et 450°C, montre que les réactions d'hydrogénation et d'oxydation mises en jeu par le catalyseur conduisent aux résultats escomptés. La conversion de molécules modèles de la liqueur noire, menée dans les mêmes conditions d'expériences, a permis d'appréhender les mécanismes majeurs mises en jeu lors de la conversion hydrothermale. Les microparticules à 350°C peuvent être valorisées. Cependant, le changement de taille et de morphologie au cours du temps interroge sur la possibilité de passer en réacteur continu. La formation de solide peut être évitée à partir de 450°C en présence de catalyseur, favorisant en parallèle la production d'hydrogène. De ce fait, ce travail de thèse aborde les verrous scientifiques, techniques et technologiques liés à la conversion hydrothermale de la liqueur noire et notamment de la formation du solide, en présence ou non de catalyseur
Black liquor, a by-product of paper industry, is converted by hydrothermal process. It was chosen for its high water content (80 wt%), organic material (14 wt%) and minerals (6 wt%) that make it a high-value biomass while still untapped. The study in batch, screening a wide temperature range (350°C-600°C), used to identify two outgoing flows: a high proportion of hydrogen in the gas phase (600°C) and a solid phase, called coke, generated regardless the operating conditions used. The generation of solid changes the composition of the reaction medium in batch process and can be problematic in case of transposition in continuous reactor. Thus it is important to understand its formation to overcome these obstacles. Analysis of the residue shows that at 350°C, for short reaction times (< 2h), carbonaceous micro-particles are formed. Their size is influenced by the temperature rates of rise and fall. For higher temperatures, the solid is of no morphological interest and its weight proportion increased with temperature. Thus, a significant production of hydrogen will be associated with a solid deposit in the reactor. A catalytic study was conducted to increase the amount of hydrogen and reduce the formation of coke while working at lower temperature. This study, conducted at 350°C and 450°C, shows that hydrogenation and oxidation reactions involved with the catalyst, lead to the expected results. Converting models molecules of black liquor, conducted with the same experimental conditions, helped to understand the major mechanisms involved during the hydrothermal conversion. The micro-particles at 350°C can be valorized. However, the change in size and morphology over time wondered about the possibility of implement in continuous reactor. The solid formation can be prevented from 450°C in the presence of catalyst, favoring in parallel hydrogen production. Therefore, this thesis deals with scientific, technical and technological locks related to hydrothermal conversion of black liquor and especially the solid formation, with or without catalyst
APA, Harvard, Vancouver, ISO, and other styles
8

Leroy-Dos, Santos Christophe. "Variabilité du cycle hydrologique atmosphérique en régions polaires à partir de mesures des isotopes stables de l'eau dans la vapeur, les précipitations et les carottes de névé." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASJ006.

Full text
Abstract:
Dans un contexte de réchauffement climatique, appréhender l'évolution de la hausse du niveau des mers est un enjeu majeur. Pour cela un des éléments clefs est de comprendre l'évolution du cycle hydrologique atmosphérique dans les régions polaires qui influence directement le bilan de masse de surface des calottes Arctique et Antarctique (les deux plus gros réservoirs d'eau douce de la planète). Des enregistrements existent grâce aux données satellites depuis 50 ans et quelques rares données météo depuis 70 ans en Antarctique mais ces enregistrements sont trop courts pour étudier les modes de variabilité pluri-annuels ainsi que la différence entre signal anthropique et signal naturel. Pour avoir accès à des enregistrements plus longs, une des meilleures solutions est d'utiliser les traceurs climatiques dans les carottes de névé. La composition isotopique de l'eau dans ces carottes est largement utilisée pour reconstruire les variations de température passée. Cela dit, le lien entre température et composition isotopique n'est pas très bien contraint car de nombreux autres paramètres influencent la composition isotopique de la neige au moment de sa formation (i.e. température, altitude, humidité, origine de la masse d'air) ou après le dépôt de neige en surface (i.e. échange atmosphère-neige, diffusion du signal, sublimation de la neige de surface).L'objectif de cette thèse est de mieux comprendre le cycle hydrologique atmosphérique et son influence sur la composition isotopique de la vapeur et de la précipitation dans les régions polaires avec en tête l'idée d'améliorer l'interprétation des carottes de névé dans ces régions. Ce travail se décompose en 3 parties.Dans un premier temps, nous avons développé une solution technique qui répondait au défi de la mesure de la composition isotopique de la vapeur toute l'année en région polaire. En effet, l'hiver étant très sec dans ces régions (jusqu'à 10 ppmv à Dome C, l'hiver), l'utilisation d'un analyseur laser Picarro était limité car il est très sensible aux variations d'humidité en dessous de 2000 ppmv. L'hiver est une saison clé dans les régions polaires car elle est synonyme d'une importante variabilité climatique du fait de nombreux évènements synoptiques. Durant cette thèse, la fabrication de 2 prototypes de générateur de très basse humidité (LHLG) a permis de calibrer les analyseurs Picarro sur une gamme de 200 à 2500 ppmv.Ensuite, j'ai analysé la plus longue série de mesures de la composition de la vapeur et de la précipitation jamais effectuée en région polaire: 4,5 années en continu, à 78°N au Svalbard. J'ai montréque le site de mesure était très peu influencé par des processus locaux agissant sur la composition isotopique de la vapeur d’eau. Grâce à cela, j'ai pu attribuer les variations observées, l'hiver, à des évènements synoptique et ainsi attribuer une signature isotopique différente aux masses d'air en fonction de leur origine (Nord Atlantique ou Arctique).Enfin, j'ai installé le nouvel instrument de calibration fabriqué au début de mon doctorat à Dumont D'Urville (DDU), sur la côte en Terre Adélie. Grâce à cela, la première campagne de mesure continue de la composition isotopique de la vapeur à DDU initiée en janvier 2019 est toujours en cours. Je présente ici les 22 premiers mois de ce nouvel enregistrement. Cette série unique permet de documenter la signature isotopique du cycle hydrologique atmosphérique en Terre Adélie toute l'année. J'ai étudié l'influence des vents catabatiques, de la glace de mer et des rivières atmosphériques sur le signal enregistré dans la vapeur. Ces résultats préliminaires ouvrent des perspectives pour l'interprétation des carottes de névé récemment forées dans le cadre du programme ASUMA
In a global warming context, understanding the evolution of sea level rise is a major challenge. It is key to estimate the evolution of the atmospheric hydrological cycle in the polar regions, which directly influences the surface mass balance of the Arctic and Antarctic ice caps (the two largest freshwater reservoirs on the planet). Records are available from satellite data for the last 50 years and a few rare weather data since the 50's in Antarctica, but these records are too short to study the patterns of interannual variability and the difference between anthropogenic and natural signals. One of the best ways to access longer records is to use climate proxies in snow cores. The water isotopic composition in these cores is widely used to reconstruct past temperature variations. However, the link between temperature and isotopic composition is not very well constrained because many other parameters influence the isotopic composition of snow at the time of its formation (i.e. temperature, altitude, humidity, origin of the air mass) or after snow deposition on the surface (i.e. atmosphere-snow exchange, signal scattering, sublimation of surface snow).The objective of this thesis is to better understand the atmospheric hydrological cycle and its influence on the isotopic composition of vapour and precipitation in polar regions with the idea of improving the interpretation of snow core records in these regions. This work is divided into 3 parts.Firstly, we developed a technical solution to meet the challenge of measuring the vapor isotopic composition all year round in polar regions. Indeed, winter being very dry in these regions (down to 10 ppmv at Dome C in winter), the use of a Picarro laser analyzer is limited because it is very sensitive to humidity variations below 2000 ppmv. Winter is a key season in the polar regions as it is associated with significant climate variability due to numerous synoptic events. During this thesis, the fabrication of 2 prototypes of low humidity level generator (LHLG) allowed the calibration of the Picarro analyzers over a range of 200 to 2500 ppmv.Then, I analyzed the longest series of vapor and precipitation isotopic composition measurements ever performed in a polar region: 4.5 years continuously at 78°N in Svalbard. I showed that the water isotopic composition at this measurement site was unsignificantly influenced by local processes. Thanks to this, I was able to attribute the observed winter variability to synoptic events and thus assign a different isotopic signature to the air masses according to their origin (North Atlantic or Arctic).Finally, I installed the new calibration instrument (LHLG) built at the beginning of my PhD at Dumont D'Urville (DDU), on the coast in Terre Adélie. Thanks to this, the first continuous measurement campaign of the vapor isotopic composition at DDU initiated in January 2019 is still ongoing. I present here the first 22 months of this new record. This unique series makes possible to document the isotopic signature of the atmospheric hydrological cycle in Terre Adélie all year round. I have studied the influence of katabatic winds, sea ice and atmospheric rivers on the signal recorded in the vapor. These preliminary results open perspectives for the interpretation of recently drilled cores from the ASUMA program
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Humidity Generator"

1

M, Suder, Lee M. C, and United States. National Aeronautics and Space Administration., eds. Advancements in oxygen generation and humidity control by water vapor electrolysis. [Cleveland, Ohio?]: Life Systems, Inc., 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mihaylov, Vyacheslav, Elena Sotnikova, and Nina Kalpina. Eco-friendly air protection systems for motor transport facilities. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1093106.

Full text
Abstract:
The textbook considers the issue of assessing the heat and humidity state of air in the processes of its processing in various systems, provides requirements for air protection means, taking into account their environmental friendliness, shows ways of energy saving in cooling, heating and year-round air conditioning systems, as well as when protecting the atmosphere from harmful emissions. The way of energy saving with individual thermal protection of the operator by means of local cooling during air treatment in an irrigated intensified nozzle is shown and recommendations for reducing its material consumption are developed. The method and means of reducing the toxicity of emissions of tractor internal combustion engines during its operation in rooms of limited volume by water vapor humidification of the fuel-air mixture are demonstrated. The ways of noise reduction of air protection systems are shown. Meets the requirements of the federal state educational standards of higher education of the latest generation. It is intended for students studying in the specialties "Ground transport and technical means", "Operation of transport and technological machines and complexes", "Power engineering", "Ground transport and technological complexes", "Refrigeration, cryogenic equipment and life support systems", "Technosphere safety", "Ecology and nature management".
APA, Harvard, Vancouver, ISO, and other styles
3

Konstantinou, Thaleia, Nataša Ćuković Ignjatović, and Martina Zbašnik-Senegačnik. ENERGY: resources and building performance. TU Delft Bouwkunde, 2018. http://dx.doi.org/10.47982/bookrxiv.25.

Full text
Abstract:
The use of energy in buildings is a complex problem, but it can be reduced and alleviated by making appropriate decisions. Therefore, architects face a major and responsible task of designing the built environment in such a way that its energy dependence will be reduced to a minimum, while at the same time being able to provide comfortable living conditions. Today, architects have many tools at their disposal, facilitating the design process and simultaneously ensuring proper assessment in the early stages of building design. The purpose of this book is to present ongoing research from the universities involved in the project Creating the Network of Knowledge Labs for Sustainable and Resilient Environments (KLABS). This book attempts to highlight the problem of energy use in buildings and propose certain solutions. It consists of nine chapters, organised in three parts. The gathering of chapters into parts serves to identify the different themes that the designer needs to consider, namely energy resources, energy use and comfort, and energy efficiency. Part 1, entitled “Sustainable and Resilient Energy Resources,” sets off by informing the reader about the basic principles of energy sources, production, and use. The chapters give an overview of all forms of energies and energy cycle from resources to end users and evaluate the resilience of renewable energy systems. This information is essential to realise that the building, as an energy consumer, is part of a greater system and the decisions can be made at different levels. Part 2, entitled “Energy and Comfort in the Built Environment”, explain the relationship between energy use and thermal comfort in buildings and how it is predicted. Buildings consume energy to meet the users’ needs and to provide comfort. The appropriate selection of materials has a direct impact on the thermal properties of a building. Moreover, comfort is affected by parameters such as temperature, humidity, air movement, air quality, lighting, and noise. Understanding and calculating those conditions are valuable skills for the designers. After the basics of energy use in buildings have been explained, Part 3, entitled “Energy Saving Strategies” aims to provide information and tools that enable an energy- and environmentally-conscious design. This part is the most extensive as it aims to cover different design aspects. Firstly, passive and active measures that the building design needs to include are explained. Those measures are seen from the perspective of heat flow and generation. The Passive House concept, which is explained in the second chapter of Part 3, is a design approach that successfully incorporates such measures, resulting in low energy use by the building. Other considerations that the following chapters cover are solar control, embodied energy and CO2 emissions, and finally economic evaluation. The energy saving strategies explained in this book, despite not being exhaustive, provide basic knowledge that the designer can use and build upon during the design of new buildings and existing building upgrades. In the context of sustainability and resilience of the built environment, the reduction of energy demand is crucial. This book aims to provide a basic understanding of the energy flows in buildings and the subsequent impact for the building’s operation and its occupants. Most importantly, it covers the principles that need to be taken into account in energy efficient building design and demonstrates their effectiveness. Designers are shaping the built environment and it is their task to make energy-conscious and informed decisions that result in comfortable and resilient buildings.
APA, Harvard, Vancouver, ISO, and other styles
4

Gleń-Karolczyk, Katarzyna. Zabiegi ochronne kształtujące plonowanie zdrowotność oraz różnorodność mikroorganizmów związanych z czernieniem pierścieniowym korzeni chrzanu (Atmoracia rusticana Gaertn.). Publishing House of the University of Agriculture in Krakow, 2019. http://dx.doi.org/10.15576/978-83-66602-39-7.

Full text
Abstract:
Horseradish roots, due to the content of many valuable nutrients and substances with healing and pro-health properties, are used more and more in medicine, food industry and cosmetics. In Poland, the cultivation of horseradish is considered minor crops. In addition, its limited size causes horseradish producers to encounter a number of unresolved agrotechnical problems. Infectious diseases developing on the leaves and roots during the long growing season reduce the size and quality of root crops. The small range of protection products intended for use in the cultivation of horseradish generates further serious environmental problems (immunization of pathogens, low effectiveness, deterioration of the quality of raw materials intended for industry, destruction of beneficial organisms and biodiversity). In order to meet the problems encountered by horseradish producers and taking into account the lack of data on: yielding, occurrence of infectious diseases and the possibility of combating them with methods alternative to chemical ones in the years 2012–2015, rigorous experiments have been carried out. The paper compares the impact of chemical protection and its reduced variants with biological protection on: total yield of horseradish roots and its structure. The intensification of infectious diseases on horseradish leaves and roots was analyzed extensively. Correlations were examined between individual disease entities and total yield and separated root fractions. A very important and innovative part of the work was to learn about the microbial communities involved in the epidemiology of Verticillium wilt of horseradish roots. The effect was examined of treatment of horseradish cuttings with a biological preparation (Pythium oligandrum), a chemical preparation (thiophanate-methyl), and the Kelpak SL biostimulator (auxins and cytokinins from the Ecklonia maxima algae) on the quantitative and qualitative changes occurring in the communities of these microorganisms. The affiliation of species to groups of frequencies was arranged hierarchically, and the biodiversity of these communities was expressed by the following indicators: Simpson index, Shannon–Wiener index, Shannon evenness index and species richness index. Correlations were assessed between the number of communities, indicators of their biodiversity and intensification of Verticillium wilt of horseradish roots. It was shown that the total yield of horseradish roots was on average 126 dt · ha–1. Within its structure, the main root was 56%, whereas the fraction of lateral roots (cuttings) with a length of more than 20 cm accounted for 26%, and those shorter than 20 cm for 12%, with unprofitable yield (waste) of 6%. In the years with higher humidity, the total root yield was higher than in the dry seasons by around 51 dt · ha–1 on average. On the other hand, the applied protection treatments significantly increased the total yield of horseradish roots from 4,6 to 45,3 dt · ha–1 and the share of fractions of more than 30 cm therein. Higher yielding effects were obtained in variants with a reduced amount of foliar application of fungicides at the expense of introducing biopreparations and biostimulators (R1, R2, R3) and in chemical protection (Ch) than in biological protection (B1, B2) and with the limitation of treatments only to the treatment of cuttings. The largest increments can be expected after treating the seedlings with Topsin M 500 SC and spraying the leaves: 1 × Amistar Opti 480 SC, 1 × Polyversum WP, 1 × Timorex Gold 24 EC and three times with biostimulators (2 × Kelpak SL + 1 × Tytanit). In the perspective of the increasing water deficit, among the biological protection methods, the (B2) variant with the treatment of seedlings with auxins and cytokinins contained in the E. maxima algae extract is more recommended than (B1) involving the use of P. oligandrum spores. White rust was the biggest threat on horseradish plantations, whereas the following occurred to a lesser extent: Phoma leaf spot, Cylindrosporium disease, Alternaria black spot and Verticillium wilt. In turn, on the surface of the roots it was dry root rot and inside – Verticillium wilt of horseradish roots. The best health of the leaves and roots was ensured by full chemical protection (cuttings treatment + 6 foliar applications). A similar effect of protection against Albugo candida and Pyrenopeziza brassicae was achieved in the case of reduced chemical protection to one foliar treatment with synthetic fungicide, two treatments with biological preparations (Polyversum WP and Timorex Gold 24 EC) and three treatments with biostimulators (2 × Kelpak SL, 1 × Tytanit). On the other hand, the level of limitation of root diseases comparable with chemical protection was ensured by its reduced variants R3 and R2, and in the case of dry root rot, also both variants of biological protection. In the dry years, over 60% of the roots showed symptoms of Verticillium wilt, and its main culprits are Verticillium dahliae (37.4%), Globisporangium irregulare (7.2%), Ilyonectria destructans (7.0%), Fusarium acuminatum (6.7%), Rhizoctonia solani (6.0%), Epicoccum nigrum (5.4%), Alternaria brassicae (5.17%). The Kelpak SL biostimulator and the Polyversum WP biological preparation contributed to the increased biodiversity of microbial communities associated with Verticillium wilt of horseradish roots. In turn, along with its increase, the intensification of the disease symptoms decreased. There was a significant correlation between the richness of species in the communities of microbial isolates and the intensification of Verticillium wilt of horseradish roots. Each additional species of microorganism contributed to the reduction of disease intensification by 1,19%.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Humidity Generator"

1

Yang, Youjian, Margaret Hyland, Chris Seal, and Zhaowen Wang. "Modelling HF Generation: The Role of Ambient Humidity." In Light Metals 2014, 641–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118888438.ch108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Youjian, Margaret Hyland, Chris Seal, and Zhaowen Wang. "Modelling HF Generation: The Role of Ambient Humidity." In Light Metals 2014, 641–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-48144-9_108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Salamat, Arshi, and Tarikul Islam. "Impact of Humidity-Sensing Technology on Clean Energy Generation." In Energy Harvesting, 131–41. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003218760-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nanda, Omita, A. M. Biradar, and Kanchan Saxena. "Humidity-Enabled Graphene Based Bilayer Device for Power Generation." In Springer Proceedings in Energy, 51–56. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9280-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Morgan, Lynette. "The greenhouse environment and energy use." In Hydroponics and protected cultivation: a practical guide, 30–46. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0003.

Full text
Abstract:
Abstract This chapter discusses the greenhouse environment and its energy use. Its heating, cooling, shading, ventilation and air movement, humidity, carbon dioxide enrichment, automation, energy use and conservation in protected cropping, renewable energy sources for protected cropping such as geothermal energy, solar energy, passive solar energy, wind-generated energy, biomass and biofuels are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

Morgan, Lynette. "The greenhouse environment and energy use." In Hydroponics and protected cultivation: a practical guide, 30–46. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0030.

Full text
Abstract:
Abstract This chapter discusses the greenhouse environment and its energy use. Its heating, cooling, shading, ventilation and air movement, humidity, carbon dioxide enrichment, automation, energy use and conservation in protected cropping, renewable energy sources for protected cropping such as geothermal energy, solar energy, passive solar energy, wind-generated energy, biomass and biofuels are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Sullivan-Kwantes, Wendy, Matthew Cramer, Fethi Bouak, and Leonard Goodman. "Environmental Stress in Military Settings." In Handbook of Military Sciences, 1–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-02866-4_107-1.

Full text
Abstract:
AbstractDuring military training and operations, exposure to extremes of noise, temperature, humidity, pressure, or acceleration can induce levels of physiological strain that degrade cognitive and physical capabilities, threaten health and safety, and affect behavior and performance. The overarching purpose of this chapter is to discuss the impact of environmental stress on military personnel. Because each of the aforementioned stressors induces disparate effects, each section addresses a unique stressor in terms of (i) the nature of the threat, (ii) physiological and biomedical effects, (iii) the impact on performance, and (iv) management strategies. The evolution of next-generation wearable biosensors, smart performance algorithms, and scientifically based operational training methods including stress inoculation exposure that will contribute to improved training, adaptation, and tolerance to these operational stresses is discussed.
APA, Harvard, Vancouver, ISO, and other styles
8

Rabefiraisana, Harimialimalala Jhonny, Abdelbagi Mukhtar Ali Ghanim, Alice Andrianjaka, Berthe Rasoamampionona, Ljupcho Jankuloski, Mbolatiana Alinà Razafindrasoa, Ratsimiala Ramonta Isabelle, Ivan Ingelbrecht, Nirina Hanitriniaina Ravelonjanahary, and Noronirina Victorine Rakotoarisoa. "Impact of mulch-based cropping systems using green mulch and residues on the performance of advanced mutant lines of maize (Zea mays (L.)) under infested field with the parasitic weed Striga asiatica (L.) Kuntze in Madagascar." In Mutation breeding, genetic diversity and crop adaptation to climate change, 235–42. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789249095.0024.

Full text
Abstract:
Abstract In Madagascar, cereal yields remain insufficient due to various biotic and abiotic constraints, including Striga asiatica, a parasitic weed that has contributed to decreased maize yield up to 100%. This work aims to assess the impact of the practice of two cropping systems on the maize crop infested by S. asiatica. PLATA maize seed of the putative tolerant mutant line from the M5 generation after gamma irradiation at 100, 200 and 300 Gy and of the sensitive parent variety were grown in fields naturally infested or artificially inoculated with one pinch of around 3000 ready-to-germinate seeds of S. asiatica. The cropping system (SCV) is a community of plants that is managed by a farm unit to achieve various human goals. The residue of Stylosanthes sp. legumes was used as mulch SCVm and the legume cowpea was planted with the host plant for the intercropping system SCVv. Results have shown that the use of mulch, either residue SCVm or green mulch SCVv, minimizes S. asiatica infestation on maize plants. The SCV reduces significantly the number of emerging Striga plants with an emergence of 1.33 ± 0.36 for SCVm, 4.33 ± 0.27 for SCVv and 15.00 ± 1.08 for the control. Moreover, M5 lines have shown significant differences in plant survival rate of 50.57 ± 1.25% to 80.00 ± 0.91%, versus 13.50 ± 0.47% for the parent variety. Yields of the parent and M5 lines on SCVm are, respectively, 3.46 ± 0.02 t/ha and 4.64 ± 0.01 t/ha, and 2.30 ± 0.04 t/ha and 3.61 ± 0.05 t/ha for SCVv, while that of the control plot remains low, varying from 0.50 ± 0.04 t/ha to 2.29 ± 0.01 t/ha. Cover increases soil humidity and delays the development of S. asiatica and infection of the host plant, thus improving host plant yield. These results demonstrate the benefit of the integrated approach of mutation breeding and cultural practice to ensure more durable crop production under heavy Striga infestation.
APA, Harvard, Vancouver, ISO, and other styles
9

Sultan, Muhammad, Hadeed Ashraf, Takahiko Miyazaki, Redmond R. Shamshiri, and Ibrahim A. Hameed. "Temperature and Humidity Control for the Next Generation Greenhouses: Overview of Desiccant and Evaporative Cooling Systems." In Next-Generation Greenhouses for Food Security. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97273.

Full text
Abstract:
Temperature and humidity control are crucial in next generation greenhouses. Plants require optimum temperature/humidity and vapor pressure deficit conditions inside the greenhouse for optimum yield. In this regard, an air-conditioning system could provide the required conditions in harsh climatic regions. In this study, the authors have summarized their published work on different desiccant and evaporative cooling options for greenhouse air-conditioning. The direct, indirect, and Maisotsenko cycle evaporative cooling systems, and multi-stage evaporative cooling systems have been summarized in this study. Different desiccant materials i.e., silica-gels, activated carbons (powder and fiber), polymer sorbents, and metal organic frameworks have also been summarized in this study along with different desiccant air-conditioning options. However, different high-performance zeolites and molecular sieves are extensively studied in literature. The authors conclude that solar operated desiccant based evaporative cooling systems could be an alternate option for next generation greenhouse air-conditioning.
APA, Harvard, Vancouver, ISO, and other styles
10

Murrieta-Rico, Fabian N., Moisés Rivas-López, Oleg Sergiyenko, Vitalii Petranovskii, Joel Antúnez-García, Julio C. Rodríguez-Quiñonez, Wendy Flores-Fuentes, Abelardo Mercado Herrera, and Araceli Gárate García. "Analysis of Frequency Domain Data Generated by a Quartz Crystal." In Encyclopedia of Data Science and Machine Learning, 2272–84. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-9220-5.ch136.

Full text
Abstract:
During the monitoring of a process, there are multiple information sources that can generate large amounts of data in a continuous fashion. Accordingly, the appropriate use of data science tools is required. In this work, data was generated from the measurement of the frequency in a signal, whose frequency was defined by a quartz crystal. In order to generate a stable frequency, the quartz crystal was connected to a gate-oscillator. Then the frequency was measured using a frequency counter that implements the principle of rational approximations. In this method, the desired signal is compared with other signals whose frequency is known. After some conditions are fulfilled, the desired frequency is approximated. In this experimental set-up, besides of the desired frequency, other parameters were measured, such as temperature and relative humidity. As a result, a large amount of data was generated and analyzed using the principal components analysis.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Humidity Generator"

1

Sumereder, C., and M. Muhr. "Humidity Absorption of Generator Bars." In 2006 IEEE 8th International Conference on Properties and applications of Dielectric Materials. IEEE, 2006. http://dx.doi.org/10.1109/icpadm.2006.284275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Buchczik, Dariusz, and Witold Ilewicz. "Two-temperature humidity generator KW-2." In Optoelectronic and Electronic Sensors IV, edited by Jerzy Fraczek. SPIE, 2001. http://dx.doi.org/10.1117/12.435907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Iwaszko, Roman, and Jerzy Weremczuk. "Electronic control unit for two stream humidity generator." In SPIE Proceedings, edited by Ryszard S. Romaniuk. SPIE, 2007. http://dx.doi.org/10.1117/12.784742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Deng, Yiping, Yi Xiang, Xiaoyun Zhang, Bo Yang, Yu Zhang, Chenguang Wu, Yuan Zhai, Junjie Bai, and Ying Wu. "An improved standard humidity generator based on bubbling sulfuric acid." In 2018 IEEE International Conference of Safety Produce Informatization (IICSPI). IEEE, 2018. http://dx.doi.org/10.1109/iicspi.2018.8690422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ying-shu, Cheng, Shou Wen-jie, Zhou Lian-qin, Xia Hai-lei, and Zhu Ying. "The key technology research of humidity generator based on divided flow method." In 2016 International Conference on Integrated Circuits and Microsystems (ICICM). IEEE, 2016. http://dx.doi.org/10.1109/icam.2016.7813611.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alshahrani, Saad. "Design and Fabrication of an Atmospheric Water Generator Based on Vapor Compression Refrigeration Cycle." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94117.

Full text
Abstract:
Abstract Water generation from the atmosphere is an environmentally friendly alternative and a sustainable process to extract pure and fresh water. An atmospheric water generator (AWG) is a device that uses dehumidification to generate potable water out of moisture present in the air. The moisture or humidity present in the air is cooled below the dew point temperature and as a result, water vapor is condensed into water droplets. The collected water droplets are filtered and re-mineralized to produce fresh and potable drinking water. Using these principles, we have designed and fabricated a prototype system for extracting clean drinking water from atmospheric air using a vapor compression refrigeration cycle. An AWG is fabricated by using a secondhand window air conditioning unit with a capacity 18000 Btu/h. The device consists of an air filter, compressor, condenser, throttling device, and cooling coils. In addition, the device utilizes the dehumidified cool air to cool the condenser and improves its effectiveness considerably. During two operating days, the system was able to collect 5800 mL. Initially it was employed for two days starting from 12 noon, on October 3, 2020 to 12 noon, October 5th 2020. After that, the AWG was employed for two more days, staring from 12:30 pm, October 5th 2020 to 12 noon, October 7th 2020. During this run, 4100 mL of water was collected. It was found that the quality of collected water from the AWG was on par with that of normal drinking water. The quality of the collected water was assessed by an Oakton PC 450 waterproof portable meter with a combination probe and calibration system. The instantaneous temperature and relative humidity values are represented on the psychrometric chart to understand the possibility of water generation and are shown in results and discussions. During the aforementioned trial between 12:30 pm, October 5th 2020 and 12 noon, October 7th 2020, temperature and relative humidity readings were recorded.
APA, Harvard, Vancouver, ISO, and other styles
7

Ishida, Takeshi, Hiroaki Okajima, Kiyoshi Endo, Masamichi Kinoshita, Osamu Fujiwara, and Shuich Nitta. "Combined effects of relative humidity and temperature on air discharges of electrostatic discharge generator." In 2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI). IEEE, 2017. http://dx.doi.org/10.1109/isemc.2017.8078009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Georgin, Eric. "Response time measurement of hygrometers at LNE-CETIAT." In 19th International Congress of Metrology (CIM2019), edited by Sandrine Gazal. Les Ulis, France: EDP Sciences, 2019. http://dx.doi.org/10.1051/metrology/201924001.

Full text
Abstract:
LNE-CETIAT has been involved in European project JRP HIT – EMPIR (www.empir-hit.eu). The objectives of this project were to improve the accuracy of industrial humidity measurements, to provide new traceability capabilities and to develop new calibration techniques at high temperatures up to 180 °C and under transient conditions. Considering the last aspect, LNE-CETIAT has worked on the development of a humidity step generator for studying response time of hygrometers. Indeed, classical calibrations are performed under quasi-static conditions whilst the end users measurement conditions are, most of the time, non-static or dynamic. In order to tackle this situation, LNE-CETIAT has started to developed dynamic humidity generator which enables response time measurement by applying humidity step to the device under test. In this article the test rig is presented as well as results obtained with chilled mirror hygrometers. A discussion about response time of chilled mirror concludes this work.
APA, Harvard, Vancouver, ISO, and other styles
9

Georgin, Eric, Nicolas Bernard, and Marzougui Salem. "New calibration facility developped at LNE-CETIAT." In 19th International Congress of Metrology (CIM2019), edited by Sandrine Gazal. Les Ulis, France: EDP Sciences, 2019. http://dx.doi.org/10.1051/metrology/201918004.

Full text
Abstract:
LNE-CETIAT has developed its own primary realization of the unit in humidity. Willing to have a more versatile generator, the laboratory has developed a new humid air generator based on dilution principle. These facilities are presented in this work as well as the results of two comparisons.
APA, Harvard, Vancouver, ISO, and other styles
10

Asad, Usman, Christopher Kelly, Meiping Wang, and Jimi Tjong. "Effects of Intake Air Humidity on the NOX Emissions and Performance of a Light-Duty Diesel Engine." In ASME 2012 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icef2012-92027.

Full text
Abstract:
The effects of intake air humidity on the performance of a turbo-charged 4-cylinder diesel engine have been investigated. The relative humidity of the intake charge was varied from 31 to 80% at a fixed ambient air temperature of 26°C. The intake humidity was controlled to within ±1% of the desired value by using a steam generator-equipped intake-air conditioning system. The tests were conducted at 3 load points (4.1, 9.1 and 15 bar BMEP) at engine speeds of 1500, 2500 and 3500 RPM without exhaust gas recirculation. The results indicate that increasing the intake air moisture leads to a reduction of 3∼14% in the NOX emissions for the tested conditions. The smoke was found to increase with speed but no significant increase in the smoke values was observed with the increased humidity. The CO and HC emissions were found to be largely insensitive to the humidity levels and were otherwise extremely low. The emissions have been analyzed on both the volumetric (ppm) and brake-specific basis to provide an insight into the effect of humidity on the quantitative results.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Humidity Generator"

1

Meyer, C. W., J. T. Hodges, P. H. Huang, W. W. Miller, D. C. Ripple, and G. E. Scace. Calibration of hygrometers with the hybrid humidity generator. Gaithersburg, MD: National Institute of Standards and Technology, 2008. http://dx.doi.org/10.6028/nist.sp.250-83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Meyer, C. W., T. Herman, and W. W. Miller. Calibration of Hygrometers with the Hybrid Humidity Generator. National Institute of Standards and Technology, September 2021. http://dx.doi.org/10.6028/nist.sp.250-83r1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Veirs, Douglas K., John M. Berg, Dallas D. Hill, David M. Harradine, Joshua E. Narlesky, Edward L. Romero, Leonardo Trujillo, and Kennard V. Jr Wilson. Water radiolysis on plutonium dioxide: Initial results identifying a threshold relative humidity for oxygen gas generation. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1056505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography