Academic literature on the topic 'Human Telomeric DNA'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Human Telomeric DNA.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Human Telomeric DNA"

1

Mattern, Karin A., Susan J. J. Swiggers, Alex L. Nigg, Bob Löwenberg, Adriaan B. Houtsmuller, and J. Mark J. M. Zijlmans. "Dynamics of Protein Binding to Telomeres in Living Cells: Implications for Telomere Structure and Function." Molecular and Cellular Biology 24, no. 12 (June 15, 2004): 5587–94. http://dx.doi.org/10.1128/mcb.24.12.5587-5594.2004.

Full text
Abstract:
ABSTRACT Telomeric proteins have an essential role in the regulation of the length of the telomeric DNA tract and in protection against end-to-end chromosome fusion. Telomere organization and how individual proteins are involved in different telomere functions in living cells is largely unknown. By using green fluorescent protein tagging and photobleaching, we investigated in vivo interactions of human telomeric DNA-binding proteins with telomeric DNA. Our results show that telomeric proteins interact with telomeres in a complex dynamic fashion: TRF2, which has a dual role in chromosome end protection and telomere length homeostasis, resides at telomeres in two distinct pools. One fraction (∼73%) has binding dynamics similar to TRF1 (residence time of ∼44 s). Interestingly, the other fraction of TRF2 binds with similar dynamics as the putative end-protecting factor hPOT1 (residence time of ∼11 min). Our data support a dynamic model of telomeres in which chromosome end-protection and telomere length homeostasis are governed by differential binding of telomeric proteins to telomeric DNA.
APA, Harvard, Vancouver, ISO, and other styles
2

Cook, Brandoch D., Jasmin N. Dynek, William Chang, Grigoriy Shostak, and Susan Smith. "Role for the Related Poly(ADP-Ribose) Polymerases Tankyrase 1 and 2 at Human Telomeres." Molecular and Cellular Biology 22, no. 1 (January 1, 2002): 332–42. http://dx.doi.org/10.1128/mcb.22.1.332-342.2002.

Full text
Abstract:
ABSTRACT Telomere maintenance is essential for the continuous growth of tumor cells. In most human tumors telomeres are maintained by telomerase, a specialized reverse transcriptase. Tankyrase 1, a human telomeric poly(ADP-ribose) polymerase (PARP), positively regulates telomere length through its interaction with TRF1, a telomeric DNA-binding protein. Tankyrase 1 ADP-ribosylates TRF1, inhibiting its binding to telomeric DNA. Overexpression of tankyrase 1 in the nucleus promotes telomere elongation, suggesting that tankyrase 1 regulates access of telomerase to the telomeric complex. The recent identification of a closely related homolog of tankyrase 1, tankyrase 2, opens the possibility for a second PARP at telomeres. We therefore sought to establish the role of tankyrase 1 at telomeres and to determine if tankyrase 2 might have a telomeric function. We show that endogenous tankyrase 1 is a component of the human telomeric complex. We demonstrate that telomere elongation by tankyrase 1 requires the catalytic activity of the PARP domain and does not occur in telomerase-negative primary human cells. To investigate a potential role for tankyrase 2 at telomeres, recombinant tankyrase 2 was subjected to an in vitro PARP assay. Tankyrase 2 poly(ADP-ribosyl)ated itself and TRF1. Overexpression of tankyrase 2 in the nucleus released endogenous TRF1 from telomeres. These findings establish tankyrase 2 as a bona fide PARP, with itself and TRF1 as acceptors of ADP-ribosylation, and suggest the possibility of a role for tankyrase 2 at telomeres.
APA, Harvard, Vancouver, ISO, and other styles
3

Hsieh, Yi-Ching, Pei-Jung Tu, Ying-Yuan Lee, Chun-Chen Kuo, Yi-Chien Lin, Chi-Fang Wu, and Jing-Jer Lin. "The U3 small nucleolar ribonucleoprotein component Imp4p is a telomeric DNA-binding protein." Biochemical Journal 408, no. 3 (November 28, 2007): 387–93. http://dx.doi.org/10.1042/bj20070968.

Full text
Abstract:
Imp4p is a component of U3 snoRNP (small nucleolar ribonucleoprotein) involved in the maturation of 18S rRNA. We have shown that Imp4p interacts with Cdc13p, a single-stranded telomere-binding protein involved in telomere maintenance. To understand the role of Imp4p in telomeres, we purified recombinant Imp4p protein and tested its binding activity towards telomeric DNA using electrophoretic mobility-shift assays. Our results showed that Imp4p bound specifically to single-stranded telomeric DNA in vitro. The interaction of Imp4p to telomeres in vivo was also demonstrated by chromatin immunoprecipitation experiments. Significantly, the binding of Imp4p to telomeres was not limited to yeast proteins, since the hImp4 (human Imp4) also bound to vertebrate single-stranded telomeric DNA. Thus we conclude that Imp4p is a novel telomeric DNA-binding protein that, in addition to its role in rRNA processing, might participate in telomere function.
APA, Harvard, Vancouver, ISO, and other styles
4

Lin, Chih-Yi Gabriela, Anna Christina Näger, Thomas Lunardi, Aleksandra Vančevska, Gérald Lossaint, and Joachim Lingner. "The human telomeric proteome during telomere replication." Nucleic Acids Research 49, no. 21 (November 8, 2021): 12119–35. http://dx.doi.org/10.1093/nar/gkab1015.

Full text
Abstract:
Abstract Telomere shortening can cause detrimental diseases and contribute to aging. It occurs due to the end replication problem in cells lacking telomerase. Furthermore, recent studies revealed that telomere shortening can be attributed to difficulties of the semi-conservative DNA replication machinery to replicate the bulk of telomeric DNA repeats. To investigate telomere replication in a comprehensive manner, we develop QTIP-iPOND - Quantitative Telomeric chromatin Isolation Protocol followed by isolation of Proteins On Nascent DNA - which enables purification of proteins that associate with telomeres specifically during replication. In addition to the core replisome, we identify a large number of proteins that specifically associate with telomere replication forks. Depletion of several of these proteins induces telomere fragility validating their importance for telomere replication. We also find that at telomere replication forks the single strand telomere binding protein POT1 is depleted, whereas histone H1 is enriched. Our work reveals the dynamic changes of the telomeric proteome during replication, providing a valuable resource of telomere replication proteins. To our knowledge, this is the first study that examines the replisome at a specific region of the genome.
APA, Harvard, Vancouver, ISO, and other styles
5

Douglas, Max E., and John F. X. Diffley. "Budding yeast Rap1, but not telomeric DNA, is inhibitory for multiple stages of DNA replication in vitro." Nucleic Acids Research 49, no. 10 (May 28, 2021): 5671–83. http://dx.doi.org/10.1093/nar/gkab416.

Full text
Abstract:
Abstract Telomeres are copied and reassembled each cell division cycle through a multistep process called telomere replication. Most telomeric DNA is duplicated semiconservatively during this process, but replication forks frequently pause or stall at telomeres in yeast, mouse and human cells, potentially causing chronic telomere shortening or loss in a single cell cycle. We have investigated the cause of this effect by examining the replication of telomeric templates in vitro. Using a reconstituted assay for eukaryotic DNA replication in which a complete eukaryotic replisome is assembled and activated with purified proteins, we show that budding yeast telomeric DNA is efficiently duplicated in vitro unless the telomere binding protein Rap1 is present. Rap1 acts as a roadblock that prevents replisome progression and leading strand synthesis, but also potently inhibits lagging strand telomere replication behind the fork. Both defects can be mitigated by the Pif1 helicase. Our results suggest that GC-rich sequences do not inhibit DNA replication per se, and that in the absence of accessory factors, telomere binding proteins can inhibit multiple, distinct steps in the replication process.
APA, Harvard, Vancouver, ISO, and other styles
6

Higa, Mitsunori, Yukihiro Matsuda, Jumpei Fujii, Nozomi Sugimoto, Kazumasa Yoshida, and Masatoshi Fujita. "TRF2-mediated ORC recruitment underlies telomere stability upon DNA replication stress." Nucleic Acids Research 49, no. 21 (November 11, 2021): 12234–51. http://dx.doi.org/10.1093/nar/gkab1004.

Full text
Abstract:
Abstract Telomeres are intrinsically difficult-to-replicate region of eukaryotic chromosomes. Telomeric repeat binding factor 2 (TRF2) binds to origin recognition complex (ORC) to facilitate the loading of ORC and the replicative helicase MCM complex onto DNA at telomeres. However, the biological significance of the TRF2–ORC interaction for telomere maintenance remains largely elusive. Here, we employed a TRF2 mutant with mutations in two acidic acid residues (E111A and E112A) that inhibited the TRF2–ORC interaction in human cells. The TRF2 mutant was impaired in ORC recruitment to telomeres and showed increased replication stress-associated telomeric DNA damage and telomere instability. Furthermore, overexpression of an ORC1 fragment (amino acids 244–511), which competitively inhibited the TRF2–ORC interaction, increased telomeric DNA damage under replication stress conditions. Taken together, these findings suggest that TRF2-mediated ORC recruitment contributes to the suppression of telomere instability.
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Qin, Yun-Ling Zheng, and Curtis C. Harris. "POT1 and TRF2 Cooperate To Maintain Telomeric Integrity." Molecular and Cellular Biology 25, no. 3 (February 1, 2005): 1070–80. http://dx.doi.org/10.1128/mcb.25.3.1070-1080.2005.

Full text
Abstract:
ABSTRACT Mammalian telomeric DNA contains duplex TTAGGG repeats and single-stranded overhangs. POT1 (protection of telomeres 1) is a telomere-specific single-stranded DNA-binding protein, highly conserved in eukaryotes. The biological function of human POT1 is not well understood. In the present study, we demonstrate that POT1 plays a key role in telomeric end protection. The reduction of POT1 by RNA interference led to the loss of telomeric single-stranded overhangs and induced apoptosis, chromosomal instability, and senescence in cells. POT1 and TRF2 interacted with each other to form a complex with telomeric DNA. A dominant negative TRF2, TRF2ΔBΔM, bound to POT1 and prevented it from binding to telomeres. POT1 overexpression protected against TRF2ΔBΔM-induced loss of telomeric single-stranded overhangs, chromosomal instability, and senescence. These results demonstrate that POT1 and TRF2 share in part in the same pathway for telomere capping and suggest that POT1 binds to the telomeric single-stranded DNA in the D-loop and cooperates with TRF2 in t-loop maintenance.
APA, Harvard, Vancouver, ISO, and other styles
8

Gineitis, Arunas A., Irina A. Zalenskaya, Peter M. Yau, E. Morton Bradbury, and Andrei O. Zalensky. "Human Sperm Telomere–Binding Complex Involves Histone H2b and Secures Telomere Membrane Attachment." Journal of Cell Biology 151, no. 7 (December 25, 2000): 1591–98. http://dx.doi.org/10.1083/jcb.151.7.1591.

Full text
Abstract:
Telomeres are unique chromatin domains located at the ends of eukaryotic chromosomes. Telomere functions in somatic cells involve complexes between telomere proteins and TTAGGG DNA repeats. During the differentiation of germ-line cells, telomeres undergo significant reorganization most likely required for additional specific functions in meiosis and fertilization. A telomere-binding protein complex from human sperm (hSTBP) has been isolated by detergent treatment and was partially purified. hSTBP specifically binds double-stranded telomeric DNA and does not contain known somatic telomere proteins TRF1, TRF2, and Ku. Surprisingly, the essential component of this complex has been identified as a specific variant of histone H2B. Indirect immunofluorescence shows punctate localization of H2B in sperm nuclei, which in part coincides with telomeric DNA localization established by fluorescent in situ hybridization. Anti–H2B antibodies block interactions of hSTBP with telomere DNA, and spH2B forms specific complex with this DNA in vitro, indicating that this protein plays a role in telomere DNA recognition. We propose that hSTBP participates in the membrane attachment of telomeres that may be important for ordered chromosome withdrawal after fertilization.
APA, Harvard, Vancouver, ISO, and other styles
9

Kelleher, Colleen, Isabel Kurth, and Joachim Lingner. "Human Protection of Telomeres 1 (POT1) Is a Negative Regulator of Telomerase Activity In Vitro." Molecular and Cellular Biology 25, no. 2 (January 15, 2005): 808–18. http://dx.doi.org/10.1128/mcb.25.2.808-818.2005.

Full text
Abstract:
ABSTRACT The telomeric single-strand DNA binding protein protection of telomeres 1 (POT1) protects telomeres from rapid degradation in Schizosaccharomyces pombe and has been implicated in positive and negative telomere length regulation in humans. Human POT1 appears to interact with telomeres both through direct binding to the 3′ overhanging G-strand DNA and through interaction with the TRF1 duplex telomere DNA binding complex. The influence of POT1 on telomerase activity has not been studied at the molecular level. We show here that POT1 negatively effects telomerase activity in vitro. We find that the DNA binding activity of POT1 is required for telomerase inhibition. Furthermore, POT1 is incapable of inhibiting telomeric repeat addition to substrate primers that are defective for POT1 binding, suggesting that in vivo, POT1 likely affects substrate access to telomerase.
APA, Harvard, Vancouver, ISO, and other styles
10

Groff-Vindman, Cindy, Anthony J. Cesare, Shobhana Natarajan, Jack D. Griffith, and Michael J. McEachern. "Recombination at Long Mutant Telomeres Produces Tiny Single- and Double-Stranded Telomeric Circles." Molecular and Cellular Biology 25, no. 11 (June 1, 2005): 4406–12. http://dx.doi.org/10.1128/mcb.25.11.4406-4412.2005.

Full text
Abstract:
ABSTRACT Recombinational telomere elongation (RTE) known as alternate lengthening of telomeres is the mechanism of telomere maintenance in up to 5 to 10% of human cancers. The telomeres of yeast mutants lacking telomerase can also be maintained by recombination. Previously, we proposed the roll-and-spread model to explain this elongation in the yeast Kluveromyces lactis. This model suggests that a very small (∼100-bp) circular molecule of telomeric DNA is copied by a rolling circle event to generate a single long telomere. The sequence of this primary elongated telomere is then spread by recombination to all remaining telomeres. Here we show by two-dimensional gel analysis and electron microscopy that small circles of single- and double-stranded telomeric DNA are commonly made by recombination in a K. lactis mutant with long telomeres. These circles were found to be especially abundant between 100 and 400 bp (or nucleotides). Interestingly, the single-stranded circles consist of only the G-rich telomeric strand sequence. To our knowledge this is the first report of single-stranded telomeric circles as a product of telomere dysfunction. We propose that the small telomeric circles form through the resolution of an intratelomeric strand invasion which resembles a t-loop. Our data reported here demonstrate that K. lactis can, in at least some circumstances, make telomeric circles of the very small sizes predicted by the roll-and-spread model. The very small circles seen here are both predicted products of telomere rapid deletion, a process observed in both human and yeast cells, and predicted templates for roll-and-spread RTE.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Human Telomeric DNA"

1

Brown, Karen E. "Telomere-directed breakage of the human Y chromosome." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tkac, Jan. "Detection of telomeric DNA circles in human ALT cells using rolling circle amplification." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/15217.

Full text
Abstract:
Telomeres, the nucleoprotein structures at the ends of linear chromosomes, maintain genomic stability by protecting chromosome ends from fusion, degradation, and processing by the DNA double-strand break repair machinery. Telomere shortening, which occurs naturally in somatic cells during aging, leads to cellular senescence or apoptosis. In contrast, germline cells and cancer cells acquire unlimited replicative potential by activating a telomere lengthening mechanism, generally via reactivating the enzyme telomerase reverse transcriptase. To date, drug development targeting cellular immortalization in cancer has focused on telomerase inhibition. However, in a subset of tumours and in vitro-immortalized cell lines, telomeres are maintained by homologous recombination-mediated pathways, termed alternative lengthening of telomeres (ALT). ALT tumours are expected to be refractory to anti-telomerase therapies, so the ability to rapidly and reliably screen for ALT status in tumour-derived cells is essential for guiding therapeutic strategies that target cellular immortalization. One characteristic of ALT-mediated telomere maintenance is the presence of extrachromosomal telomeric repeat-containing DNA circles (t-circles), which provide an attractive target for detection in screening applications. Current methods oft-circle detection require considerable amounts of cells, making them unsuitable for analysis of limited clinical samples. We optimized a screen for ALT status based on a novel technique of rolling circle amplification (RCA) oft-circles from extrachromosomal DNA extracts of human ALT cells. We demonstrate that RCA requires a much lower number of cells than previously established t-circle detection methods, and screening many samples can be performed in parallel, making RCA suitable for analyzing clinical samples. T-circles were reproducibly detected in human immortalized ALT cell lines, but not in telomerase-utilizing cell lines. In addition, ectopic over-expression of telomerase in an ALT cell line does not appear to affect t-circle formation. This suggests that presence of active telomerase within a cell does not inhibit all telomeric recombination reactions. The potential for RCA as a tool to screen tumour samples for ALT activity and the link between telomerase and ALT-based telomere lengthening mechanisms are discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Koirala, Deepak P. "Mechanochemistry, Transition Dynamics and Ligand-Induced Stabilization of Human Telomeric G-Quadruplexes at Single-Molecule Level." Kent State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=kent1397919270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pataskar, Shashank S. "Structure Function Studies Of Biologically Important Simple Repetitive DNA Sequences." Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/261.

Full text
Abstract:
The recent explosion of DNA sequence information has provided compelling evidence for the following facts. (1) Simple repetitive sequences-microsatellites and minisatellites occur commonly in the human genome and (2) these repetitive DNA sequences could play an important role in the regulation of various genetic processes including modulation of gene expression. These sequences exhibit extensive polymorphism in both length and the composition between species and between organisms of the same species and even cells of the same organism. The repetitive DNA sequences also exhibit structural polymorphism depending on the sequence composition. The functional significance of repetitive DNA is a well-established fact. The work done in many laboratories including ours has conclusively documented the functional role played by repetitive sequences in various cellular processes. Structural studies have established the sequence requirement for various non-B DNA structures and the functional significance of these unusual DNA structures is becoming increasingly clear. The structures that were characterised earlier purely from conformation point of view have aroused interest after the recent realisation that these structures could be formed in vivo when cloned in a supercoiled plasmid. The discovery of novel type of dynamic mutations where intragenic amplifications of trinucleotide repeats is associated with phenotypic changes causing many neurodegenerative disorders has provided the most compelling evidence for the importance of simple repeats in the etiology of these disorders. Secondary structures adopted by these simple repeats is a common causative factor in the mechanism of expansion of these repeats. This realisation prompted many investigations into the relationship between the DNA sequence, structure and molecular basis of dynamic mutation. Many experimental evidences have implicated paranemic DNA structures in various biological processes, especially in the regulation of gene expression. Earlier work done in our laboratory on the structure function relationship of repetitive DNA sequences provided experimental evidence for the role of paranemic DNA structure in the regulation of gene expression. It was demonstrated that intramolecular triplex potential sequences within a gene downregulate its expression in vivo (Sarkar and Brahmachari (1992) Nucleic Acids Res., 20, 5713-5718). Similarly the effect of cruciform structure forming sequences on gene expression was also documented. Sequence specific alterations in DNA structures were studied in our laboratory using a variety of biophysical and biochemical techniques. An intramolecular, antiparallel tetraplex structure was proposed for human telomeric repeat sequences (Balagurumoorthy, et al., (1994) J. Biol. Chem., 269, 21858-21869). The telomeric repeats are not only present at the end of chromosomes but they are also present at many interstitial sites in the human genome. Database search reveals that the human telomeric sequences as well as similar sequences with minor variations are present at many locations in the human genome. Telomeric repeats are GC rich sequences with the G rich strand protruding as a 3' end overhang at the end of chromosomes. When human telomeric repeats are cloned in a supercoiled plasmid, the C rich strand adopts a hairpin like conformation where as the G-rich strand extrudes into a quadruplex structure. However, the biological significance of these structures in vivo still remains to be elucidated completely. The role of a putative tetraplex DNA structure in the insulin gene linked polymorphic region of the human insulin gene in vivo in the regulation of expression of the insulin gene has been suggested. In this context, we have addressed the question whether the telomeric repeats when present within a gene affect its expression in vivol If so, what would be the possible mechanism? An attempt has been made to understand the effect of presence of telomeric repeats within a gene on its expression. The details of these studies have been presented in Chapter 2 of this thesis. Contrary to telomeric repeats which provide stability to the chromosomes, recently expansion of a GC rich dodecamer repeat upstream of cystatin B gene (chromosome 21q) has been shown to be the most common mutation associated with Progressive Myoclonus Epilepsy (EPM1) of Unverricht-Lundberg type. Two to three copies of the repeat (CCCCGCCCCGCG)n are present in normal individuals whereas the affected individuals have 30-75 copies of this repeat. The expression of cystatin B gene is reduced in patients in a cell specific manner. The repeat also shows intergenerational variability. The exact mechanism of expansion of this repeat is not known. In the case of trinucleotide repeat expansion, it is shown that the structure adopted by the repeat plays an important role in the mechanism of expansion and that some of the secondary structures adopted by trinucleotide repeats could be inherently mutagenic conformations. In order to understand the mechanism of expansion EPM1 dodecamer repeat, the work reported in this thesis was carried out with the following objectives. • To understand the structure of G rich and C-rich strands of EPM1 repeat. • To understand the variations in the structure with the increase in the length and its possible implications in the mechanism of expansion of EPM 1 repeat. Studies aimed with these objectives are presented in chapters 3, 4 and 5 of the thesis. Chapter 1 provides a general introduction to repetitive DNA, the various structures adopted by repetitive DNA sequences in the genome, the functional significance of the various simple repetitive DNA sequences in the genome has been presented. An account of trinucleotide repeat expansion and associated disorders, non-trinucleotide repeat expansions and associated disorders has been presented. The various non B-DNA structures adopted these repeats and their implications in the mechanism of expansion have been discussed. Chapter 2 describes in frame cloning of human telomeric repeats d(G3T2A)3G3 in the N-terminal region of β-galactosidase gene. The effect of such repeat Sequences on transcription elongation in vivo has been studied using E.coli as a model system. The 3.5 copies of human telomeric repeat sequences were cloned in the sense strand of plasmid pBluescriptllSK+ so as to create plasmid clone pSBQ8 and in the template strand of plasmid pBluescriptHKS+ so as to create clone pSBRQ8. One dimensional chloroquine gel shift assay indicated presence of an unwound structure in pSBQ8 and pSBRQ8. β-galactosidase activity assay suggested downregulation of the gene in vivo. In the case of plasmid pSBQ8 the difference in β-galactosidase activity was approximately 6 fold as compared to the parent plasmid pBluescriptIISK+ whereas in the case of pSBRQ8 the difference in β-galactosidase activity was approximately 8 fold as compared to the control pBluescriptIIKS+. The analysis of β-galactosidase transcript showed that full length transcript was formed in the case of pSBQ8. Full length transcript was not formed in the case of pSBRQ8. We propose that in the case of pSBQ8 the gene expression is inhibited in steps subsequent to transcription elongation. In the case of pSBRQ8, we propose that quadruplex structure may be formed by the template strand at the DNA level thereby blocking transcription elongation step. Chapter 3 describes studies aimed at understanding the structure of G-rich strand (referred to as G strand) of Progressive Myoclonus Epilepsy (EPM1) repeat. The sequence of the G strand of dodecamer EPM1 repeat is d(GGGGCGGGGCGC)n. Oligoucleotides containing one (12mer), two (24mer) and three(36mer) were synthesised. These oligonucleotides are referred to as dG12, dG24 and dG36 respectively. Structural studies were carried out using CD spectroscopy, UV melting, non-denaturing gel electrophoresis and chemical and enzymatic probing. The G strand oligonucleotides showed enhanced gel elecrophoretic mobility in the presence of monovalent cations KCl and NaCl. Oligonucleotide dG12 also showed retarded species on non-denaturing gel in the presence of 70mM KCl indicating intermolecular associations. Oligonucleotides dG24 and dG36 predominantly formed intramolecular structures which migrated anomalously faster than the expected size. The CD spectrum for dG12 showed an intense positive band at 260nm and a negative band at 240nm in the presence of KCl indicative of an intermolecular, parallel G quartet structure. The CD spectra of dG24 and dG36 showed 260nm positive peak, 240nm negative peak along with a positive band around 290nm. This is indicative of folded back structure. These findings support the results of non-denaturing gel electrophoresis of G strand oligonucleotides. The UV melting profiles suggested increase in the stability with the increase in the length. These structures were further characterised by PI nuclease and chemical probing using DMS and DEPC. The structural studies with G-rich strand of EPM1 dodecamer repeat showed that this repeat motif adopts intramolecularly folded structures with increase in the length of the repeat thereby favouring slippage during replication. Chapter 4 deals with the studies aimed at understanding the structure at acidic pH of C-rich strand (referred to as C strand) of Progressive Myoclonus Epilepsy (EPM1) repeat. The sequence of the C strand of dodecamer EPM1 repeat is d(CCCCGCCCCGCG)n. The C rich oligonucleotides are known to form a four stranded structure called i-motif at acidic pH involving intercalated base pairs. The i-motif consists of two parallel stranded, base paired duplexes are arranged in an antiparallel orientation. Since, the base pairs of one base paired duplex intercalate into those of the other duplex, the structure is called as i-motif. We have investigated structure of C strand of EPM1 repeat by circular dichroism (CD), native polyacrylamide gel electrophoresis and UV melting. Oligonucleotide dC12 showed two bands of which the major band was retarded on the native gel (pH 5.0) at low temperature suggesting that dC12 predominantly formed intermolecular structure, Oligonucleotides dC24 and dC36 migrated anomalously faster than the expected size indicating formation of compact, intramolecularly folded structures. Circular dichroism studies indicate that, all the oligonucleotides displayed an intense positive band near 285nm, a negative band around 260nm with a cross over at 270nm, This is a characteristic CD signature for an i-motif structure and reflects the presence of secondary structure due to formation of hydrogen bonded pairs between protonated cytosines. All the C strand oligonucleotides showed hyperchromism at 265nm, which is an isobestic wavelength for C protonation. Studies described in this chapter suggest an intramolecular i-motif structure for dC24 and dC36 and an intermolecular i-motif for oligonucleotide dC12. In addition, it was interesting to note that inspite of the presence of G residues, the stretch of C residues could adopt i-motif structure. Although these structures are formed at an acidic pH, it is indicative of formation of possible intramolecularly folded structure. Many reports have suggested the possibility of cytosine rich sequences adopting i-motif structure even at neutral pH. In order to test this possibility, structural studies were carried out on the C strand EPM1 oligonucleotides at pH 7.2 in the presence of 70mM NaCl. These studies have been described in Chapter 5. The investigations were done using CD spectroscopy, UV melting, native polyacrylamide gel electrophoresis, and chemical probing using hydroxylamine and PI nuclease. These studies indicate that all the C strand oligonucleotides form intramolecular, hairpin structure at physiological pH. All the three C strand oligonucleotides migrated anomalously faster on the native gel indicating the presence of a compact structure. The CD spectra at pH 7.2 showed a blue shift as compared to those at pH 5.0. This indicated absence of base pairs. The hydroxylamine chemical probing suggested presence of G-C Watson-Crick base pairs. The loop residues of the folded back hairpin structures were probed with PI nuclease. The C strand oligonucleotides showed possibility of formation of multiple hairpin structures with the increase in the length of the repeat. The propensity to form hairpin structures suggests a possibility of formation of slip loop structures during the replication process thereby promoting expansion of this repeat. Formation of folded back hairpin like structures is significant in terms of mechanism of expansion of this repeat. Chapter 6 is devoted to concluding remarks highlighting the significance of the experimental results presented in this thesis and their possible biological implications in the light of contemporary research.
APA, Harvard, Vancouver, ISO, and other styles
5

Pataskar, Shashank S. "Structure Function Studies Of Biologically Important Simple Repetitive DNA Sequences." Thesis, Indian Institute of Science, 2001. https://etd.iisc.ac.in/handle/2005/261.

Full text
Abstract:
The recent explosion of DNA sequence information has provided compelling evidence for the following facts. (1) Simple repetitive sequences-microsatellites and minisatellites occur commonly in the human genome and (2) these repetitive DNA sequences could play an important role in the regulation of various genetic processes including modulation of gene expression. These sequences exhibit extensive polymorphism in both length and the composition between species and between organisms of the same species and even cells of the same organism. The repetitive DNA sequences also exhibit structural polymorphism depending on the sequence composition. The functional significance of repetitive DNA is a well-established fact. The work done in many laboratories including ours has conclusively documented the functional role played by repetitive sequences in various cellular processes. Structural studies have established the sequence requirement for various non-B DNA structures and the functional significance of these unusual DNA structures is becoming increasingly clear. The structures that were characterised earlier purely from conformation point of view have aroused interest after the recent realisation that these structures could be formed in vivo when cloned in a supercoiled plasmid. The discovery of novel type of dynamic mutations where intragenic amplifications of trinucleotide repeats is associated with phenotypic changes causing many neurodegenerative disorders has provided the most compelling evidence for the importance of simple repeats in the etiology of these disorders. Secondary structures adopted by these simple repeats is a common causative factor in the mechanism of expansion of these repeats. This realisation prompted many investigations into the relationship between the DNA sequence, structure and molecular basis of dynamic mutation. Many experimental evidences have implicated paranemic DNA structures in various biological processes, especially in the regulation of gene expression. Earlier work done in our laboratory on the structure function relationship of repetitive DNA sequences provided experimental evidence for the role of paranemic DNA structure in the regulation of gene expression. It was demonstrated that intramolecular triplex potential sequences within a gene downregulate its expression in vivo (Sarkar and Brahmachari (1992) Nucleic Acids Res., 20, 5713-5718). Similarly the effect of cruciform structure forming sequences on gene expression was also documented. Sequence specific alterations in DNA structures were studied in our laboratory using a variety of biophysical and biochemical techniques. An intramolecular, antiparallel tetraplex structure was proposed for human telomeric repeat sequences (Balagurumoorthy, et al., (1994) J. Biol. Chem., 269, 21858-21869). The telomeric repeats are not only present at the end of chromosomes but they are also present at many interstitial sites in the human genome. Database search reveals that the human telomeric sequences as well as similar sequences with minor variations are present at many locations in the human genome. Telomeric repeats are GC rich sequences with the G rich strand protruding as a 3' end overhang at the end of chromosomes. When human telomeric repeats are cloned in a supercoiled plasmid, the C rich strand adopts a hairpin like conformation where as the G-rich strand extrudes into a quadruplex structure. However, the biological significance of these structures in vivo still remains to be elucidated completely. The role of a putative tetraplex DNA structure in the insulin gene linked polymorphic region of the human insulin gene in vivo in the regulation of expression of the insulin gene has been suggested. In this context, we have addressed the question whether the telomeric repeats when present within a gene affect its expression in vivol If so, what would be the possible mechanism? An attempt has been made to understand the effect of presence of telomeric repeats within a gene on its expression. The details of these studies have been presented in Chapter 2 of this thesis. Contrary to telomeric repeats which provide stability to the chromosomes, recently expansion of a GC rich dodecamer repeat upstream of cystatin B gene (chromosome 21q) has been shown to be the most common mutation associated with Progressive Myoclonus Epilepsy (EPM1) of Unverricht-Lundberg type. Two to three copies of the repeat (CCCCGCCCCGCG)n are present in normal individuals whereas the affected individuals have 30-75 copies of this repeat. The expression of cystatin B gene is reduced in patients in a cell specific manner. The repeat also shows intergenerational variability. The exact mechanism of expansion of this repeat is not known. In the case of trinucleotide repeat expansion, it is shown that the structure adopted by the repeat plays an important role in the mechanism of expansion and that some of the secondary structures adopted by trinucleotide repeats could be inherently mutagenic conformations. In order to understand the mechanism of expansion EPM1 dodecamer repeat, the work reported in this thesis was carried out with the following objectives. • To understand the structure of G rich and C-rich strands of EPM1 repeat. • To understand the variations in the structure with the increase in the length and its possible implications in the mechanism of expansion of EPM 1 repeat. Studies aimed with these objectives are presented in chapters 3, 4 and 5 of the thesis. Chapter 1 provides a general introduction to repetitive DNA, the various structures adopted by repetitive DNA sequences in the genome, the functional significance of the various simple repetitive DNA sequences in the genome has been presented. An account of trinucleotide repeat expansion and associated disorders, non-trinucleotide repeat expansions and associated disorders has been presented. The various non B-DNA structures adopted these repeats and their implications in the mechanism of expansion have been discussed. Chapter 2 describes in frame cloning of human telomeric repeats d(G3T2A)3G3 in the N-terminal region of β-galactosidase gene. The effect of such repeat Sequences on transcription elongation in vivo has been studied using E.coli as a model system. The 3.5 copies of human telomeric repeat sequences were cloned in the sense strand of plasmid pBluescriptllSK+ so as to create plasmid clone pSBQ8 and in the template strand of plasmid pBluescriptHKS+ so as to create clone pSBRQ8. One dimensional chloroquine gel shift assay indicated presence of an unwound structure in pSBQ8 and pSBRQ8. β-galactosidase activity assay suggested downregulation of the gene in vivo. In the case of plasmid pSBQ8 the difference in β-galactosidase activity was approximately 6 fold as compared to the parent plasmid pBluescriptIISK+ whereas in the case of pSBRQ8 the difference in β-galactosidase activity was approximately 8 fold as compared to the control pBluescriptIIKS+. The analysis of β-galactosidase transcript showed that full length transcript was formed in the case of pSBQ8. Full length transcript was not formed in the case of pSBRQ8. We propose that in the case of pSBQ8 the gene expression is inhibited in steps subsequent to transcription elongation. In the case of pSBRQ8, we propose that quadruplex structure may be formed by the template strand at the DNA level thereby blocking transcription elongation step. Chapter 3 describes studies aimed at understanding the structure of G-rich strand (referred to as G strand) of Progressive Myoclonus Epilepsy (EPM1) repeat. The sequence of the G strand of dodecamer EPM1 repeat is d(GGGGCGGGGCGC)n. Oligoucleotides containing one (12mer), two (24mer) and three(36mer) were synthesised. These oligonucleotides are referred to as dG12, dG24 and dG36 respectively. Structural studies were carried out using CD spectroscopy, UV melting, non-denaturing gel electrophoresis and chemical and enzymatic probing. The G strand oligonucleotides showed enhanced gel elecrophoretic mobility in the presence of monovalent cations KCl and NaCl. Oligonucleotide dG12 also showed retarded species on non-denaturing gel in the presence of 70mM KCl indicating intermolecular associations. Oligonucleotides dG24 and dG36 predominantly formed intramolecular structures which migrated anomalously faster than the expected size. The CD spectrum for dG12 showed an intense positive band at 260nm and a negative band at 240nm in the presence of KCl indicative of an intermolecular, parallel G quartet structure. The CD spectra of dG24 and dG36 showed 260nm positive peak, 240nm negative peak along with a positive band around 290nm. This is indicative of folded back structure. These findings support the results of non-denaturing gel electrophoresis of G strand oligonucleotides. The UV melting profiles suggested increase in the stability with the increase in the length. These structures were further characterised by PI nuclease and chemical probing using DMS and DEPC. The structural studies with G-rich strand of EPM1 dodecamer repeat showed that this repeat motif adopts intramolecularly folded structures with increase in the length of the repeat thereby favouring slippage during replication. Chapter 4 deals with the studies aimed at understanding the structure at acidic pH of C-rich strand (referred to as C strand) of Progressive Myoclonus Epilepsy (EPM1) repeat. The sequence of the C strand of dodecamer EPM1 repeat is d(CCCCGCCCCGCG)n. The C rich oligonucleotides are known to form a four stranded structure called i-motif at acidic pH involving intercalated base pairs. The i-motif consists of two parallel stranded, base paired duplexes are arranged in an antiparallel orientation. Since, the base pairs of one base paired duplex intercalate into those of the other duplex, the structure is called as i-motif. We have investigated structure of C strand of EPM1 repeat by circular dichroism (CD), native polyacrylamide gel electrophoresis and UV melting. Oligonucleotide dC12 showed two bands of which the major band was retarded on the native gel (pH 5.0) at low temperature suggesting that dC12 predominantly formed intermolecular structure, Oligonucleotides dC24 and dC36 migrated anomalously faster than the expected size indicating formation of compact, intramolecularly folded structures. Circular dichroism studies indicate that, all the oligonucleotides displayed an intense positive band near 285nm, a negative band around 260nm with a cross over at 270nm, This is a characteristic CD signature for an i-motif structure and reflects the presence of secondary structure due to formation of hydrogen bonded pairs between protonated cytosines. All the C strand oligonucleotides showed hyperchromism at 265nm, which is an isobestic wavelength for C protonation. Studies described in this chapter suggest an intramolecular i-motif structure for dC24 and dC36 and an intermolecular i-motif for oligonucleotide dC12. In addition, it was interesting to note that inspite of the presence of G residues, the stretch of C residues could adopt i-motif structure. Although these structures are formed at an acidic pH, it is indicative of formation of possible intramolecularly folded structure. Many reports have suggested the possibility of cytosine rich sequences adopting i-motif structure even at neutral pH. In order to test this possibility, structural studies were carried out on the C strand EPM1 oligonucleotides at pH 7.2 in the presence of 70mM NaCl. These studies have been described in Chapter 5. The investigations were done using CD spectroscopy, UV melting, native polyacrylamide gel electrophoresis, and chemical probing using hydroxylamine and PI nuclease. These studies indicate that all the C strand oligonucleotides form intramolecular, hairpin structure at physiological pH. All the three C strand oligonucleotides migrated anomalously faster on the native gel indicating the presence of a compact structure. The CD spectra at pH 7.2 showed a blue shift as compared to those at pH 5.0. This indicated absence of base pairs. The hydroxylamine chemical probing suggested presence of G-C Watson-Crick base pairs. The loop residues of the folded back hairpin structures were probed with PI nuclease. The C strand oligonucleotides showed possibility of formation of multiple hairpin structures with the increase in the length of the repeat. The propensity to form hairpin structures suggests a possibility of formation of slip loop structures during the replication process thereby promoting expansion of this repeat. Formation of folded back hairpin like structures is significant in terms of mechanism of expansion of this repeat. Chapter 6 is devoted to concluding remarks highlighting the significance of the experimental results presented in this thesis and their possible biological implications in the light of contemporary research.
APA, Harvard, Vancouver, ISO, and other styles
6

Yasaei, Hemad. "Analysis of telomere maintenance in artemis defective human cell lines." Thesis, Brunel University, 2009. http://bura.brunel.ac.uk/handle/2438/4406.

Full text
Abstract:
Telomeres are physical ends of chromosomes consisting of (TTAGGG)n DNA sequence and a specialized set of proteins that protect chromosomal ends from degradation and from eliciting DNA damage response. These specialized set of proteins, known as shelterin, directly bind to telomeric DNA. In addition, some DNA double-strand break (DSB) repair proteins such as, DNA-PKcs and KU70/80, play active roles in telomere maintenance. Mouse knock-out experiments have revealed that deletion of either DNA-PKcs or Ku70/80 resulted in elevated levels of telomeric fusion, indicative of dysfunctional telomeres. Artemis protein is involved in DNA DSB repair through non-homologous end joining (NHEJ) and it is phosphorylated by DNAPKcs. Human cells defective in Artemis have been identified and shown to be radiosensitive and patients with an Artemis defective gene suffer from radiosensitive severe-combined immune deficiency syndrome (RS-SCID). Mouse cells defective in Artemis have elevated levels of telomeric fusion. We have demonstrated in this thesis that Artemis defective human cell lines show a mild telomeric dysfunction phenotype detectable at the cytological level. The nature of telomere dysfunction phenotype appears to be similar to that observed in DNAPKcs defective cells as exemplified by the presence of IR induced chromatid telomeric fusions. We have also shown that (a) DNA damage occurring within the telomeric DNA is difficult to repair or irreparable in older cells and that (b) Artemis defective older cells show higher proportion of DNA damage at telomeres than their normal counterparts. Finally, we have demonstrated that inhibition of DNA-PKcs causes (a) an increase in telomeric fusions in Artemis defective cell lines relative to both normal cell lines after inhibition and Artemis cell lines before inhibition and (b)elevated levels of DNA damage at telomeres following exposure of cells to radiation relative to both irradiated normal cells exposed to a DNA-PKcs inhibitor and irradiated Artemis defective cells but not exposed to the DNA-PKcs inhibitor. These results suggest that the effects of Artemis and DNA-PKcs on telomeres are cumulative. We have also performed (a) experiments to examine telomere function in Artemis defective cell lines after knocking down DNA-PKcs levels by RNAi and b) preliminary experiments to knock-down Artemis in DNA-PKcs defective cells. Taken together, our results suggest that the Artemis defect causes mild telomere dysfunction phenotype in human cells.
APA, Harvard, Vancouver, ISO, and other styles
7

Wainwright, Linda Jane. "Studies of mean telomere length in human skin : changes with age and in malignancy." Thesis, University of Newcastle Upon Tyne, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jeyapalan, Jessie Chandika. "The significance of drug induced DNA damage of telomeres in human tumour cells." Thesis, University of Newcastle Upon Tyne, 2005. http://hdl.handle.net/10443/779.

Full text
Abstract:
Telomere shortening is a major mechanism to induce telomere uncapping and thus to signal growth arrest and/ or apoptosis and can be caused by different mechanisms, one of which is damage to DNA, to which telomeres appear to be particularly sensitive. Contradictory data exists on the relationship between conventionally used chemotherapeutic drugs and the telomere/ telomerase complex. The aim of the work described in this thesis was to determine whether or not damage to telomeres played a significant role in the cytotoxic action of the anti-cancer drugs cisplatin and etoposide. Two cell lines were used with either short (neuroblastorna cell line SHSY5Y) or long (lymphoblastic T cell line 1301) telomeres. Cytotoxic effects of the drugs were assessed by growth inhibition assays and measurement of apoptosis and cell cycle progression by flow cytometry. Etoposide caused readily detectable DNA strand breakage and led to formation of nuclear foci of phosphorylated histone y-H2A. X. Cisplatin treatment did not induce strand breaks after initial drug exposure but strand breaks and DNA damage foci were detected after further incubation. For cells with either long or short telomeres, no detectable changes in total telomere length or overhang length were observed before apoptosis became manifest. Preferential occurrences of single strand breaks in the G-rich strand of telorneres were not found. Through the development of a dual staining method it was established that drug-induced histone H2A. X foci did not colocalise to the telomeres. Telomerase was transiently activated by lower concentrations of etoposide and its activity decreased only after onset of apoptosis. Taken together, the results show no indication that telorneres and/ or telomeric damage play any preferential role as signal transducers towards apoptosis and/ or growth arrest in either of these cell lines. Also, the protective function of telornerase &-I - seems to be telomere independent. The data are consistent with a model of druginduced growth arrest and apoptosis being triggered by damage elsewhere in the genome.
APA, Harvard, Vancouver, ISO, and other styles
9

Musetti, Caterina Livia. "Heterocyclic Cations as Potential Anticancer Agents: An Approach that Targets G-quadruplex with Different Binding Modes." Digital Archive @ GSU, 2010. http://digitalarchive.gsu.edu/chemistry_theses/26.

Full text
Abstract:
G-quadruplex structures are found in important regions of the eukaryotic genome, such as telomeres and regulatory sequences of genes, and are likely to play important roles in regulation of biological events. The significant structural differences with duplex DNA make quadruplex DNA a very attractive target for anticancer drug design. The purpose of this study is to explore conformational space in a series of heterocyclic cations to discover novel structural motifs that can selectively bind and stabilize specific G-quadruplex arrangements. A variety of biophysical techniques such as thermal melting experiments, biosensor surface plasmon resonance, circular dichroism, fluorescence displacement assay and mass spectrometry were employed to evaluate the affinity of the compounds and their recognition properties. The screening of the molecules allowed the identification of not only selective G-quadruplex ligands but also potential quadruplex groove binders. These results can be useful for the development of new efficient telomerase inhibitors which are endowed with pharmacological activity.
APA, Harvard, Vancouver, ISO, and other styles
10

Lannan, Ford. "Folding of the human telomere sequence DNA in non-aqueous and otherwise viscous solvents." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/47598.

Full text
Abstract:
G-quadruplex forming human telomere sequence (HTS) DNA, has been widely studied due to the telomere's implied role in biological processes, including cellular ageing and cancer physiology. The goal of these previous efforts has been to characterize the physiologically relevant structures and their stability and dynamics in order to develop therapeutic applications. Unfortunately, understanding the biologically relevant form of the human telomere DNA is complicated by the fact that HTS-derived sequences are highly polymorphic. To further complicate the issue, recent investigations have demonstrated the ability of "cell-like" co-solvents to alter the preferred G-quadruplex fold of HTS DNA. However, the origins of G-quadruplex structure selection, the relative contributions of crowding versus dehydration, and the possible effects of co-solvents on kinetically determined folding pathways remain unresolved. Towards answering these questions, I investigated HTS DNA G-quadruplex in extreme anhydrous and high viscosity conditions utilizing a deep eutectic solvent (DES) consisting of choline chloride and urea. Herein I report that the water-free DES supports an extremely stable parallel stranded structure, consistent with observations that diminished water activity is the main cause of structural transitions to the "parallel-propeller" form. Furthermore, my research shows that the highly viscous nature of the solvent enables significant diffusion based control over HTS g-quadruplex folding rates and topology, fully consistent with Kramers rate theory. To the best of my knowledge, this is the first example of the kinetic exploration of G-quadruplex folding utilizing high friction solvent; the results of which display a decreased intramolecular folding rate of HTS DNA to a never before encountered time scale on the order of days at physiological temperature. Moreover, I have demonstrated that the folding pathway of a G-quadruplex can be altered with increased solvent friction. These discoveries are important because they highlight the need to consider the viscosity when exploring the dynamics of human telomeres specifically drug binding and folding of G-quadruplexes in vivo where cellular viscosity has been reported to be as high as 140cP. Lastly, it appears that tuning solvent viscosity could prove useful to the continued study of G-quadruplex dynamics.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Human Telomeric DNA"

1

Stauropoulos, Dimitrios James. An analysis of the interplay between telomeric factors and DNA repair proteins, in the human ALT pathway and cellular response to genomic double strand breaks. 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Marti, Amelia, and Guillermo Zalba. Telomeres, Diet and Human Disease: Advances and Therapeutic Opportunities. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Telomeres, Diet and Human Disease: Advances and Therapeutic Opportunities. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marti, Amelia, and Guillermo Zalba. Telomeres, Diet and Human Disease: Advances and Therapeutic Opportunities. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Marti, Amelia, and Guillermo Zalba. Telomeres, Diet and Human Disease: Advances and Therapeutic Opportunities. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marti, Amelia, and Guillermo Zalba. Telomeres, Diet and Human Disease: Advances and Therapeutic Opportunities. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gray, Doug, Carole Proctor, and Tom Kirkwood. Biological aspects of human ageing. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199644957.003.0001.

Full text
Abstract:
At the molecular and cellular levels human ageing is characterized by the accumulation of unrepaired random damage, and an accompanying loss of function. A major source of damage is oxidative stress caused by the generation of reactive oxygen species as a by-product of respiration. DNA and proteins are both susceptible to damage but whereas DNA damage repair systems exist, faulty proteins are generally removed by protein degradation systems. During ageing these systems become less efficient and the subsequent accumulation of damaged protein promotes protein aggregation, a process which is especially problematic in the ageing brain. Other aspects of ageing include genetic and epigenetic changes, mitochondrial dysfunction, telomere shortening, and cellular senescence, all subject to stochasticity. The complexity of the biology of ageing has led to an increase in the use of systems biology approaches whereby the use of mathematical modelling and bioinformatic tools complement the more traditional experimental approaches.
APA, Harvard, Vancouver, ISO, and other styles
8

Zapico, Sara C. Mechanisms Linking Aging, Diseases and Biological Age Estimation. Taylor & Francis Group, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zapico, Sara C. Mechanisms Linking Aging Diseases and Biological Age Estimation. Taylor & Francis Group, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mechanisms Linking Aging, Diseases and Biological Age Estimation. Taylor & Francis Group, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Human Telomeric DNA"

1

Segatto, Marcela, and Maria Isabel Nogueira Cano. "Homeostasis of DNA Integrity." In Telomeres, Diet and Human Disease, 1–24. Boca Raton, FL : CRC Press, 2017. | “A science publishers book.”| Includes bibliographical references and index.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315152431-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Neidle, Stephen. "The Structures of Human Telomeric DNA Quadruplexes." In Therapeutic Applications of Quadruplex Nucleic Acids, 43–66. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-375138-6.00003-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lucchesi, John C. "Aging, cellular senescence and cancer: the role of genomic instability, cellular homeostasis and telomeres." In Epigenetics, Nuclear Organization & Gene Function, 227–37. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198831204.003.0020.

Full text
Abstract:
Aging hallmarks are causative factors of oncogenesis. Genomic instability results from the accumulation of errors that occur during DNA replication or from exposure to endogenous or environmental insults. The genome contains genes responsible for normal cell division and differentiation (oncogenes), and genes that regulate cell division and limit cell growth and proliferation (tumor suppressor genes). Over-expression of oncogenes or inactivation of tumor suppressors results in cancer. During aging, alterations in proteostasis result in the disruption of metabolic pathways that connect with environmental factors. Telomeres are terminal regions of chromosomes that protect the DNA from attack by exonucleases, prevent end-to-end fusions and prevent the shortening of the DNA molecules at each replication cycle. Using RNA as a template, telomerase synthesizes telomeric DNA. Telomerase is absent in most adult human tissues, resulting in a progressive shortening of all telomeres and causing cells to senesce. Cancer cells must activate telomerase to gain “immortality.”
APA, Harvard, Vancouver, ISO, and other styles
4

McHughen, Alan. "Is Human DNA Special?" In DNA Demystified, 83–99. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780190092962.003.0004.

Full text
Abstract:
Chapter 3 explores “Human DNA” and the genetic features of human beings. Genetic inheritance in humans follows the same patterns and principles as those of other animals and plants, but far more scientists have studied humans than have studied any other species. Thus, scientists have accumulated a hugely disproportionate amount of information directly relevant to humans. This chapter examines some curious features of human evolution. Is there a genetic basis for human race and genetic “purity”? Are telomeres ticking time bombs inside cells limiting the human life span? How did most humans end up with Neanderthal DNA in their genomes? It’s just the way the DNA cookie crumbles. This chapter also introduces the use of technology based on DNA, from human DNA fingerprinting to probing human history.
APA, Harvard, Vancouver, ISO, and other styles
5

"Genes." In Examining the Causal Relationship Between Genes, Epigenetics, and Human Health, 145–61. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8066-9.ch007.

Full text
Abstract:
Two types of nucleic acids, DNA and RNA, carry genetic information of organisms across generations. Many researchers are credited with the early work that laid the foundation of the discovery of the structure of DNA. During cell division, the cell replicates its DNA and organelles during the synthesis (S) phase of the cell cycle. Four main steps are involved in the processes of replication. DNA replication errors and cells have evolved a complex system of fixing most (but not all) of those replication errors proofreading and mismatch repair. With repeated cell division, the DNA molecule shortens with the loss of critical genes, leading to cell death. In gonads, a special enzyme called telomerase lengthens telomeres from its own RNA sequence which serves as a template to synthesize new telomeres. Although most DNA is packaged within the nucleus, mitochondria have a small amount of their own DNA called mitochondrial DNA. This chapter explores this aspect of genes.
APA, Harvard, Vancouver, ISO, and other styles
6

Asseri, Khalid A., and Afaf Ahmed Aldahish. "Cancer Traits; Present and Future." In Molecular Targets and Cancer Therapeutics (Part 1), 12–51. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815080384123010005.

Full text
Abstract:
This chapter on “Cancer Traits; Present and Future” begins with a description of the process of carcinogenesis and, finally, the abnormal process leading to carcinogenesis. Cancer is a multi-step mechanism in which cells undergo biochemical and behavioral changes, causing them to proliferate in an unnecessary and untimely manner. These changes occur from modifications in mechanisms that regulate cell proliferation and longevity, relationships with neighboring cells, and the ability to escape the immune system. Modifications that contribute to cancer require genetic modifications that alter the DNA sequence. Another way to alter the program of cells is to adjust the conformation of chromatin, the matrix that bundles up DNA and controls its access through DNA reading, copying and repair machinery. These modifications are called “epigenetic. The abnormal process that leads to carcinogenesis includes early mutational events in carcinogenesis, microRNAs in human cancer and cancer stem cell hypothesis, Contact inhibition of proliferation, autophagy, necroptosis, signaling pathways, telomere deregulation, microenvironment, growth suppressors evasion, resisting cell death and sustained cell survival, enabling replicative immortality through activation of telomeres, inducing angiogenesis, ability to oppose apoptosis, and activating invasion and metastasis. Intensive research efforts during the last several decades have increased our understanding of carcinogenesis and have identified a genetic basis for the multi-step process of cancer development. Recognition and understating of the prevalent applicability of cancer cell characterization will increasingly affect the development of new means to treat human cancer.
APA, Harvard, Vancouver, ISO, and other styles
7

Gray, Doug, Carole Proctor, and Tom Kirkwood. "Biological aspects of human ageing." In Oxford Textbook of Old Age Psychiatry, 1–14. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198807292.003.0001.

Full text
Abstract:
At the molecular and cellular levels, human ageing is characterized by the accumulation of unrepaired random damage and an accompanying loss of function. A major source of damage is oxidative stress caused by the generation of reactive oxygen species as a by-product of respiration. DNA and proteins are both susceptible to damage, but whereas DNA damage repair systems exist, faulty proteins are generally removed by protein degradation systems. During ageing, these systems become less efficient and the subsequent accumulation of damaged protein promotes protein aggregation, a process which is especially problematic in the ageing brain. Other aspects of ageing include genetic and epigenetic changes, mitochondrial dysfunction, telomere shortening, and cellular senescence, all subject to stochasticity. The complexity of the biology of ageing has led to an increase in the use of systems biology approaches whereby the use of mathematical modelling and bioinformatic tools complement the more traditional experimental approaches.
APA, Harvard, Vancouver, ISO, and other styles
8

Uchiumi, Fumiaki, Takahiro Oyama, Kensuke Ozaki, and Sei-ichi Tanum. "Characterization of 5’-Flanking Regions of Various Human Telomere Maintenance Factor-Encoding Genes." In DNA Repair. InTech, 2011. http://dx.doi.org/10.5772/22320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ünal, Mehmet. "Epigenetic." In Epigenetics to Optogenetics - A New Paradigm in the Study of Biology [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99964.

Full text
Abstract:
Lately, a brand-new studies agenda emphasizing interactions between societal elements and wellness has emerged. The phrase social determinant of health and fitness typically refers to any nonmedical element directly effecting health, including behaviors, knowledge, attitudes, and values. Status of health is adversely and strongly impacted throughout the life span by social disadvantages. Epigenetic mechanisms are implicated in the processes through which social stressors erode health in humans and other animals. Research in epigenetics suggests that alterations in DNA methylation might offer a temporary link between interpersonal adversity and wellness disparity. Likewise, accelerated loss in telomeres is extremely correlated not only with chronic and social stress but also aging. Therefore, it may provide a link between the various physiological events associated with health inequalities. Research in epigenetics indicates that alterations in DNA methylation may provide a causal link between social adversity and health disparity. Additionally, these experimental paradigms have yielded insights into the potential role of epigenetic mechanisms in mediating the effects of the environment on human development and indicate that consideration of the sensitivity of laboratory animals to environmental cues may be an important factor in predicting long-term health and welfare.
APA, Harvard, Vancouver, ISO, and other styles
10

Wagner, Karl-Heinz, Bernhard Franzke, and Oliver Neubauer. "Super DNAging—New Insights Into DNA Integrity, Genome Stability, and Telomeres in the Oldest Old." In Conn's Handbook of Models for Human Aging, 1083–93. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-811353-0.00076-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Human Telomeric DNA"

1

Stohr, Bradley A., Lifeng Xu, and Elizabeth H. Blackburn. "Abstract B64: Telomeric DNA sequence determines the mechanism of dysfunctional telomere fusion in human cancer cells." In Abstracts: First AACR International Conference on Frontiers in Basic Cancer Research--Oct 8–11, 2009; Boston MA. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.fbcr09-b64.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sánchez, J. A. Mondragón, R. Garduño Juárez, Jesús Clemente-Gallardo, Pierpaolo Bruscolini, Francisco Castejón, Pablo Echenique, and José Félix Sáenz-Lorenzo. "Study on the stability of the Quadruplex DNA Structure formed by the human telomeric repeat sequence d[AG[sub 3](TTAGGG)[sub 3]]." In LARGE SCALE SIMULATIONS OF COMPLEX SYSTEMS, CONDENSED MATTER AND FUSION PLASMA: Proceedings of the BIFI2008 International Conference: Large Scale Simulations of Complex Systems, Condensed Matter and Fusion Plasma. AIP, 2008. http://dx.doi.org/10.1063/1.3033361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sadler, J. Evan. "THE MOLECULAR BIOLOGY OF VON WILLEBRAND FACTOR." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643930.

Full text
Abstract:
Human von Willebrand factor (vWF) is a plasma glycoprotein that is synthesized by endothelial cells and megakaryocytes, and perhaps by syncytiotrophoblast of placenta. The biosynthesis of vWF is very complex, involving proteolytic processing, glycosyla-tion, disulfide bond formation, and sulfation. Mature vWF consists of a single subunit of ∼ 250,000 daltons that is assembled into multimer ranging from dimers to species of over 10 million daltons. vWF performs its essential hemostatic function through several binding interactions, forming a bridge between specific receptors on the platelet surface and components of damaged vascular subendothelial connective tissue. Inherited deficiency of vWF, or von Willebrand disease (vWD), is the most common genetically transmitted bleeding disorder worldwide. The last two years has been a time of very rapid progress in understanding the molecular biology of vWF. Four research groups have independently isolated and sequenced the 9 kilobase full-length vWF cDNA. The predicted protein sequence has provided a foundation for understanding the biosynthetic processing of vWF, and has clarified the relationship between vWF and a 75-100 kilodalton plasma protein of unknown function, von Willebrand antigen II (vWAgll)/ vWAgll is co-distributed with vWF in endothelial cells and platelets, and is deficient in patients with vWD. The cDNA sequence of vWF shows that vWAgll is a rather large pro-peptide for vWF, explaining the biochemical and genetic association between the two proteins. vWF has a complex evolutionary history marked by many separate gene segment duplications. The primary structure of the protein contains four distinct types of repeated domains present in two to four copies each. Repeated domains account for over 90 percent of the protein sequence. This sequence provides a framework for ordering the functional domains that have been defined by protein chemistry methods. A tryptic peptide from the amino-terminus of vWF that overlaps domain D3 binds to factor VIII and also appears to bind to heparin. Peptides that include domain A1 bind to collagens, to heparin, and to platelet glycoprotein Ib. A second collagen binding site appears to lie within domain A3. The vWF cDNA has been expressed in heterologous cells to produce small amounts of functionally and structurally normal vWF, indicating that endothelial cells are not unique in their ability to process and assemble vWF multimers. Site-directed mutagenesis has been used to show that deletion of the propeptide of vWF prevents the formation of multimers. Cloned cDNA probes have been employed to isolate vWF genomic DNA from cosmid and λ-phage libraries, and the size of the vWF gene appears to be ∼ 150 kilobases. The vWF locus has been localized to human chromosome 12p12—pter. Several intragenic RFLPs have been characterized. With them, vWF has been placed on the human genetic linkage map as the most telomeric marker currently available for the short arm of chromosome 12. A second apparently homologous locus has been identified on chromosome 22, but the relationship of this locus to the authentic vWF gene is not yet known. The mechanism of vWD has been studied by Southern blotting of genomic DNA with cDNA probes in a few patients. Three unrelated pedigrees have been shown to have total deletions of the vWF gene as the cause of severe vWD (type III). This form of gene deletion appears to predispose to the development of inhibitory alloantibodies to vWF during therapy with cryoprecipitate. During the next several years recombinant DNA methods will continue to contribute our understanding of the evolution, biosynthesis, and structure-function relationships of vWF, as well as the mechanism of additional variants of vWD at the level of gene structure.
APA, Harvard, Vancouver, ISO, and other styles
4

Ferreira, Carlos Eduardo Gomes, Matheus Antonio Pereira Costa, Rafael Leite Carvalho, and Adriana Sarmento De Oliveira. "A BIOLOGIA DO ENVELHECIMENTO: TELÔMEROS, TELOMERASE E ATIVIDADE FÍSICA (UMA REVISÃO SISTEMÁTICA)." In I Congresso Nacional On-line de Biologia Celular e Estrutural. Revista Multidisciplinar em Saúde, 2021. http://dx.doi.org/10.51161/rems/1954.

Full text
Abstract:
Introdução: Ao longo dos anos, mudanças na qualidade de vida vêm impactando diretamente a expectativa de vida humana. Estudos apontam certo envelhecimento mundial. Isso indica a importância de pesquisar a relação do impacto das atividades físicas no organismo e no envelhecimento, principalmente a nível celular, como em estruturas celulares consideradas possíveis marcadores: os telômeros. Compostos por uma curta e repetitiva sequência de DNA rica em guanina (5’-TTAGGG-3’)n, têm a função de proteger a integridade do DNA e a informação genética. Contudo, os telômeros são encurtados a cada ciclo celular, logo, acredita-se que estejam ligados ao envelhecimento biológico e senescência da célula. Para contornar tal situação, algumas células possuem a telomerase, enzima capaz de sintetizar DNA telomérico através de transcriptase reversa. Objetivos: Familiarizar o leitor com a questão atual dos telômeros, fornecendo informações atualizadas e integradas sobre a sua estrutura e função e a possível relação da prática de atividades físicas com seu comprimento e o envelhecimento, além de debater possíveis mecanismos de ação. Metodologia: Revisão bibliográfica a partir dos bancos de dados PubMed, MEDLINE e LILACS, adotando os seguintes indexadores, em diferentes combinações: telomere(s), telomerase, exercise, physical activity, aging, elderly. E a partir de artigos pré-selecionados foi realizada uma lista de referências. Resultados: A maioria dos estudos alega a associação entre a atividade física e o aumento do comprimento dos telômeros em idosos. No caso de jovens não há diferença significativa. Achados revelam telômeros, em média, 200 pb mais longos em indivíduos idosos que treinavam do que os sem treinamento. Estudos sugerem que atividade física moderada apresenta um efeito protetor no comprimento dos telômeros de leucócitos. Porém, a prática de exercícios de modo intenso possui efeito contrário na proteção dos telômeros. Ou seja, atividades físicas tanto em níveis baixos quanto em altos podem ser fatores que, em longo prazo, favorecem o encurtamento dos telômeros de leucócitos. Conclusão: Alguns estudos apresentam certa limitação, pois os dados sobre atividade física foram autorrelatados, podendo ser tendenciosos. E a inconsistência entre as pesquisas pode ser atribuída às diferentes etnias das amostras, aos métodos utilizados e a outras variáveis não levadas em consideração.
APA, Harvard, Vancouver, ISO, and other styles
5

Ohyashiki, Junko H., Tomohiro Umezu, Michiyo Ohyashiki, Kazushige Ohtsuki, Chiaki Kobayashi, and Kazuma Ohyashiki. "Abstract C19: DNA demethylation induces upregulation of telomere repeat-containing RNA (TERRA) and downregulation of telomerase activity in human leukemia cells." In Abstracts: Second AACR International Conference on Frontiers in Basic Cancer Research--Sep 14-18, 2011; San Francisco, CA. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.fbcr11-c19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography