Academic literature on the topic 'Human Skeletal muscle derived stem cells'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Human Skeletal muscle derived stem cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Human Skeletal muscle derived stem cells"

1

Tchao, Jason, Jong Jin Kim, Bo Lin, Guy Salama, Cecilia W. Lo, Lei Yang, and Kimimasa Tobita. "Engineered Human Muscle Tissue from Skeletal Muscle Derived Stem Cells and Induced Pluripotent Stem Cell Derived Cardiac Cells." International Journal of Tissue Engineering 2013 (December 5, 2013): 1–15. http://dx.doi.org/10.1155/2013/198762.

Full text
Abstract:
During development, cardiac and skeletal muscle share major transcription factors and sarcomere proteins which were generally regarded as specific to either cardiac or skeletal muscle but not both in terminally differentiated adult cardiac or skeletal muscle. Here, we investigated whether artificial muscle constructed from human skeletal muscle derived stem cells (MDSCs) recapitulates developmental similarities between cardiac and skeletal muscle. We constructed 3-dimensional collagen-based engineered muscle tissue (EMT) using MDSCs (MDSC-EMT) and compared the biochemical and contractile properties with EMT using induced pluripotent stem (iPS) cell-derived cardiac cells (iPS-EMT). Both MDSC-EMT and iPS-EMT expressed cardiac specific troponins, fast skeletal muscle myosin heavy chain, and connexin-43 mimicking developing cardiac or skeletal muscle. At the transcriptional level, MDSC-EMT and iPS-EMT upregulated both cardiac and skeletal muscle-specific genes and expressed Nkx2.5 and Myo-D proteins. MDSC-EMT displayed intracellular calcium ion transients and responses to isoproterenol. Contractile force measurements of MDSC-EMT demonstrated functional properties of immature cardiac and skeletal muscle in both tissues. Results suggest that the EMT from MDSCs mimics developing cardiac and skeletal muscle and can serve as a useful in vitro functioning striated muscle model for investigation of stem cell differentiation and therapeutic options of MDSCs for cardiac repair.
APA, Harvard, Vancouver, ISO, and other styles
2

Metzler, Eric, Helena Escobar, Daniele Yumi Sunaga-Franze, Sascha Sauer, Sebastian Diecke, and Simone Spuler. "Generation of hiPSC-Derived Skeletal Muscle Cells: Exploiting the Potential of Skeletal Muscle-Derived hiPSCs." Biomedicines 10, no. 5 (May 23, 2022): 1204. http://dx.doi.org/10.3390/biomedicines10051204.

Full text
Abstract:
Cell therapies for muscle wasting disorders are on the verge of becoming a realistic clinical perspective. Muscle precursor cells derived from human induced pluripotent stem cells (hiPSCs) represent the key to unrestricted cell numbers indispensable for the treatment of generalized muscle wasting such as cachexia or intensive care unit (ICU)-acquired weakness. We asked how the cell of origin influences efficacy and molecular properties of hiPSC-derived muscle progenitor cells. We generated hiPSCs from primary muscle stem cells and from peripheral blood mononuclear cells (PBMCs) of the same donors (n = 4) and compared their molecular profiles, myogenic differentiation potential, and ability to generate new muscle fibers in vivo. We show that reprogramming into hiPSCs from primary muscle stem cells was faster and 35 times more efficient than from blood cells. Global transcriptome comparison revealed significant differences, but differentiation into induced myogenic cells using a directed transgene-free approach could be achieved with muscle- and PBMC-derived hiPSCs, and both cell types generated new muscle fibers in vivo. Differences in myogenic differentiation efficiency were identified with hiPSCs generated from individual donors. The generation of muscle-stem-cell-derived hiPSCs is a fast and economic method to obtain unrestricted cell numbers for cell-based therapies in muscle wasting disorders, and in this aspect are superior to blood-derived hiPSCs.
APA, Harvard, Vancouver, ISO, and other styles
3

Sato, Takahiko. "Induction of Skeletal Muscle Progenitors and Stem Cells from human induced Pluripotent Stem Cells." Journal of Neuromuscular Diseases 7, no. 4 (September 18, 2020): 395–405. http://dx.doi.org/10.3233/jnd-200497.

Full text
Abstract:
Induced pluripotent stem cells (iPSCs) have the potential to differentiate into various types of cells and tissues including skeletal muscle. The approach to convert these stem cells into skeletal muscle cells offers hope for patients afflicted with skeletal muscle diseases such as Duchenne muscular dystrophy (DMD). Several methods have been reported to induce myogenic differentiation with iPSCs derived from myogenic patients. An important point for generating skeletal muscle cells from iPSCs is to understand in vivo myogenic induction in development and regeneration. Current protocols of myogenic induction utilize techniques with overexpression of myogenic transcription factors such as Myod1(MyoD), Pax3, Pax7, and others, using recombinant proteins or small molecules to induce mesodermal cells followed by myogenic progenitors, and adult muscle stem cells. This review summarizes the current approaches used for myogenic induction and highlights recent improvements.
APA, Harvard, Vancouver, ISO, and other styles
4

Pappas, Matthew P., Ning Xie, Jacqueline S. Penaloza, and Sunny S. K. Chan. "Defining the Skeletal Myogenic Lineage in Human Pluripotent Stem Cell-Derived Teratomas." Cells 11, no. 9 (May 9, 2022): 1589. http://dx.doi.org/10.3390/cells11091589.

Full text
Abstract:
Skeletal muscle stem cells are essential to muscle homeostasis and regeneration after injury, and have emerged as a promising cell source for treating skeletal disorders. An attractive approach to obtain these cells utilizes differentiation of pluripotent stem cells (PSCs). We recently reported that teratomas derived from mouse PSCs are a rich source of skeletal muscle stem cells. Here, we showed that teratoma formation is also capable of producing skeletal myogenic progenitors from human PSCs. Using single-cell transcriptomics, we discovered several distinct skeletal myogenic subpopulations that represent progressive developmental stages of the skeletal myogenic lineage and recapitulate human embryonic skeletal myogenesis. We further discovered that ERBB3 and CD82 are effective surface markers for prospective isolation of the skeletal myogenic lineage in human PSC-derived teratomas. Therefore, teratoma formation provides an accessible model for obtaining human skeletal myogenic progenitors from PSCs.
APA, Harvard, Vancouver, ISO, and other styles
5

Jiwlawat, Nunnapas, Eileen Lynch, Jeremy Jeffrey, Jonathan M. Van Dyke, and Masatoshi Suzuki. "Current Progress and Challenges for Skeletal Muscle Differentiation from Human Pluripotent Stem Cells Using Transgene-Free Approaches." Stem Cells International 2018 (2018): 1–18. http://dx.doi.org/10.1155/2018/6241681.

Full text
Abstract:
Neuromuscular diseases are caused by functional defects of skeletal muscles, directly via muscle pathology or indirectly via disruption of the nervous system. Extensive studies have been performed to improve the outcomes of therapies; however, effective treatment strategies have not been fully established for any major neuromuscular disease. Human pluripotent stem cells have a great capacity to differentiate into myogenic progenitors and skeletal myocytes for use in treating and modeling neuromuscular diseases. Recent advances have allowed the creation of patient-derived stem cells, which can be used as a unique platform for comprehensive study of disease mechanisms, in vitro drug screening, and potential new cell-based therapies. In the last decade, a number of methods have been developed to derive skeletal muscle cells from human pluripotent stem cells. By controlling the process of myogenesis using transcription factors and signaling molecules, human pluripotent stem cells can be directed to differentiate into cell types observed during muscle development. In this review, we highlight signaling pathways relevant to the formation of muscle tissue during embryonic development. We then summarize current methods to differentiate human pluripotent stem cells toward the myogenic lineage, specifically focusing on transgene-free approaches. Lastly, we discuss existing challenges for deriving skeletal myocytes and myogenic progenitors from human pluripotent stem cells.
APA, Harvard, Vancouver, ISO, and other styles
6

Bisleri, C., C. Alessandri, G. Invernici, A. Negri, J. Manfredi, A. Caruso, and C. Muneretto. "HUMAN SKELETAL MUSCLE-DERIVED STEM CELLS FOR MYOCAR-DIAL REGENERATION." ASAIO Journal 50, no. 2 (March 2004): 171. http://dx.doi.org/10.1097/00002480-200403000-00239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stern-Straeter, Jens, Juritz Stephanie, Gregor Bran, Frank Riedel, Haneen Sadick, Karl Hörmann, and Ulrich R. Goessler. "Skeletal Muscle Regeneration: MSC versus Satellite Cells." Otolaryngology–Head and Neck Surgery 139, no. 2_suppl (August 2008): P86. http://dx.doi.org/10.1016/j.otohns.2008.05.484.

Full text
Abstract:
Problem Differentiating stem cells into the myogenic linage in order to create functional muscle tissue is a challenging endeavour. In this work, adipose-derived mesenchymal stem cells (MSC) and satellite cells derived from muscle biopsies were compared regarding proliferation and myogenic differentiation potential under standardized cell culture conditions. This data was obtained in order to discover the most promising type of stem cell for regeneration of muscle tissue and to determine the optimal culture conditions for later clinical use. Methods Human MSC were isolated from adipose tissue, and primary human skeletal myoblasts were extracted from muscle biopsies by enzymatic digestion. Proliferation was analysed using the AlamarBlue® assay. Gene expression of marker genes – such as Myogenin, Myo D, Myf 5 and MHC – were analysed by RT-PCR. Immunostainings against desmin and sarcomeric-actin were performed as differentiation markers. Results MSC cell cultures showed a greater proliferation rate compared with satellite cell cultures. In both stem cell cultures, myogenic differentiation/heritage could be verified by immunostainings against the muscle-specific marker desmin. Gene expression and protein analysis revealed a more stable differentiation of human satellite cell cultures. Conclusion Characterization of both human MSC cultures and satellite cell cultures – and thereby an understanding of myogenesis – might lead to their clinical usage in skeletal muscle tissue engineering. The results in this study appear to indicate that human satellite cell cultures have a more stable differentiation under in vitro conditions and that they might offer a greater potential for skeletal muscle tissue engineering purposes. Significance Our study contributes to the understanding of myogenic differentiation of MSC and satellite cells and helps to improve culture systems for later clinical utilization.
APA, Harvard, Vancouver, ISO, and other styles
8

Xie, Ning, Sabrina N. Chu, Cassandra B. Schultz, and Sunny S. K. Chan. "Efficient Muscle Regeneration by Human PSC-Derived CD82+ ERBB3+ NGFR+ Skeletal Myogenic Progenitors." Cells 12, no. 3 (January 18, 2023): 362. http://dx.doi.org/10.3390/cells12030362.

Full text
Abstract:
Differentiation of pluripotent stem cells (PSCs) is a promising approach to obtaining large quantities of skeletal myogenic progenitors for disease modeling and cell-based therapy. However, generating skeletal myogenic cells with high regenerative potential is still challenging. We recently reported that skeletal myogenic progenitors generated from mouse PSC-derived teratomas possess robust regenerative potency. We have also found that teratomas derived from human PSCs contain a skeletal myogenic population. Here, we showed that these human PSC-derived skeletal myogenic progenitors had exceptional engraftability. A combination of cell surface markers, CD82, ERBB3, and NGFR enabled efficient purification of skeletal myogenic progenitors. These cells expressed PAX7 and were able to differentiate into MHC+ multinucleated myotubes. We further discovered that these cells are expandable in vitro. Upon transplantation, the expanded cells formed new dystrophin+ fibers that reconstituted almost ¾ of the total muscle volume, and repopulated the muscle stem cell pool. Our study, therefore, demonstrates the possibility of producing large quantities of engraftable skeletal myogenic cells from human PSCs.
APA, Harvard, Vancouver, ISO, and other styles
9

Yoshioka, Kiyoshi, Hiroshi Nagahisa, Fumihito Miura, Hiromitsu Araki, Yasutomi Kamei, Yasuo Kitajima, Daiki Seko, et al. "Hoxa10 mediates positional memory to govern stem cell function in adult skeletal muscle." Science Advances 7, no. 24 (June 2021): eabd7924. http://dx.doi.org/10.1126/sciadv.abd7924.

Full text
Abstract:
Muscle stem cells (satellite cells) are distributed throughout the body and have heterogeneous properties among muscles. However, functional topographical genes in satellite cells of adult muscle remain unidentified. Here, we show that expression of Homeobox-A (Hox-A) cluster genes accompanied with DNA hypermethylation of the Hox-A locus was robustly maintained in both somite-derived muscles and their associated satellite cells in adult mice, which recapitulates their embryonic origin. Somite-derived satellite cells were clearly separated from cells derived from cranial mesoderm in Hoxa10 expression. Hoxa10 inactivation led to genomic instability and mitotic catastrophe in somite-derived satellite cells in mice and human. Satellite cell–specific Hoxa10 ablation in mice resulted in a decline in the regenerative ability of somite-derived muscles, which were unobserved in cranial mesoderm–derived muscles. Thus, our results show that Hox gene expression profiles instill the embryonic history in satellite cells as positional memory, potentially modulating region-specific pathophysiology in adult muscles.
APA, Harvard, Vancouver, ISO, and other styles
10

Byun, Seong-Eun, Changgon Sim, Yoonhui Chung, Hyung Kyung Kim, Sungmoon Park, Do Kyung Kim, Seongmin Cho, and Soonchul Lee. "Skeletal Muscle Regeneration by the Exosomes of Adipose Tissue-Derived Mesenchymal Stem Cells." Current Issues in Molecular Biology 43, no. 3 (October 9, 2021): 1473–88. http://dx.doi.org/10.3390/cimb43030104.

Full text
Abstract:
Profound skeletal muscle loss can lead to severe disability and cosmetic deformities. Mesenchymal stem cell (MSC)-derived exosomes have shown potential as an effective therapeutic tool for tissue regeneration. This study aimed to determine the regenerative capacity of MSC-derived exosomes for skeletal muscle regeneration. Exosomes were isolated from human adipose tissue-derived MSCs (AD-MSCs). The effects of MSC-derived exosomes on satellite cells were investigated using cell viability, relevant genes, and protein analyses. Moreover, NOD-SCID mice were used and randomly assigned to the healthy control (n = 4), muscle defect (n = 6), and muscle defect + exosome (n = 6) groups. Muscle defects were created using a biopsy punch on the quadriceps of the hind limb. Four weeks after the surgery, the quadriceps muscles were harvested, weighed, and histologically analyzed. MSC-derived exosome treatment increased the proliferation and expression of myocyte-related genes, and immunofluorescence analysis for myogenin revealed a similar trend. Histologically, MSC-derived exosome-treated mice showed relatively preserved shapes and sizes of the muscle bundles. Immunohistochemical staining revealed greater expression of myogenin and myoblast determination protein 1 in the MSC-derived exosome-treated group. These results indicate that exosomes extracted from AD-MSCs have the therapeutic potential for skeletal muscle regeneration.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Human Skeletal muscle derived stem cells"

1

Shelton, Michael L. "Generation and Characterization of Human Embryonic Stem Cells-Derived Skeletal Muscle Progenitors." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37973.

Full text
Abstract:
The long-term treatment of injured, aging, or pathological skeletal muscle using stem cell therapy requires an abundant source of skeletal muscle progenitors (SMP) that are capable of self-replenishment. While adult SMPs—known as satellite cells and marked by PAX7 expression—can be collected from healthy donors, these satellite cells have limited replication potential once extracted, and may have difficulties providing sufficient numbers for therapy. Therefore, we sought to utilize the near-unlimited replication potential of human embryonic stem cells (hESC) to generate large quantities of SMPs in vitro. We developed a 50-day directed hESC differentiation that produced cultures with up to 90% myogenic identity; roughly 43 ± 4% become PAX7+ SMPs, and 47 ± 3% of cells become skeletal myocytes. We also performed gene expression profiling on our differentiating cultures to better understand in vitro skeletal myogenesis, and to better characterize in vitro hESC-derived SMPs, which remain poorly understood relative to adult satellite cells. 50-day cultures shared gene expression profiles more similar to quiescent rather than activated satellite cells, featuring a number of genes related to FOS/JUN, NOTCH, and TGFB-signaling. Day 50 cultures also expressed surface proteins known to mark adult or embryonic SMPs: CD82, CXCR4, ERBB3, NGFR, and PDGFRA. Transplanting 50-day cultures into cardiotoxin or BaCl2 injured immunodeficient murine muscle showed donor human cells persisted within the host muscle for 1 – 2 months post-injection; however, donor cells were confined to the interstitial space and did not contribute to host myofibers or the satellite cell niche. Together, these studies provide a tool for generating large quantities of embryonic skeletal muscle, and a gene expression resource that can provide insight into signaling factors that might improve or accelerate SMP development, or provide putative new surface receptors that may isolate embryonic SMPs better suited for in vivo transplantation.
APA, Harvard, Vancouver, ISO, and other styles
2

Ruan, Travis. "Identification of Terminal Differentiation Enhancers in Human Embryonic Stem Cell Derived Skeletal Muscle Cells." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/27257.

Full text
Abstract:
Skeletal myogenesis is a tightly coordinated process resulting from the temporal expression of signalling cascades that specify myogenic cell fate. Identification of signalling pathways and small molecules that can modulate this developmental process, continues to be an active area of research. Utilising the pluripotent nature of human embryonic stem cells (hESC) and combined with next generation sequencing, we demonstrate our in vitro skeletal muscle differentiation system accurately recapitulate major skeletal muscle developmental process. We show myotubes formation can be further enhanced using a combination of anabolic factors and myokines. Multi-omics analysis revealed oxidative phosphorylation as the major up-regulated pathway, suggesting energy metabolism is coupled to enhanced skeletal muscle differentiation. Finally, to identify novel drug candidates that could reinforce muscle strength, we performed a high throughput drug screening of over 1000 drugs in hESC derived skeletal muscle cells (hESC-SkMC) and identified several candidate compounds that significantly increased the muscle marker Myosin Heavy Chain (MyHC) expression level. We further demonstrate this enhanced muscle differentiation is also closely associated with an up-regulation of energy metabolism. Together, this work presents a genetic dissection of hESC-SkMC development in vitro, which may assist in the identification and development of more effective drug therapies targeting skeletal muscle development or diseases.
APA, Harvard, Vancouver, ISO, and other styles
3

Merrison, Dr Andria Frances Alexandra. "Human adult bone marrow-derived mesenchymal stem cells: myogenic potential and the factors influencing skeletal muscle differentiation." Thesis, University of Bristol, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492624.

Full text
Abstract:
Thousands of people in the United Kingdom suffer from primary muscle disease and secondary dysfunction is an increasingly recognised cause of muscle-related morbidity. Patients suffering from these conditions face significant disability and few treatment options. Much excitement has surrounded the therapeutic implications of stem cell research, including potential treatment for muscle disease.
APA, Harvard, Vancouver, ISO, and other styles
4

CANZI, LAURA. "Human stem cells for the treatment of motorneuron diseases: regenerative potential, translatability and development of new biotechnologies. Cellule staminali umane per la cura delle malattie degenerative del motoneurone." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2010. http://hdl.handle.net/10281/19217.

Full text
Abstract:
Stem cell therapy is considered one of the most promising approaches against different neurodegenerative disorders, including Amyotorophic Lateral Sclerosis (ALS). The evidence that the systemic injection of human cord blood mononuclear cells (HuCB-MNC) was able to reduce the clinical outcomes and increase the lifespan in a murine model of fALS1, the SOD1G93A mouse, even if localized far from affected motor neurons, opens the way for new possible candidates and alternative ways of administration. Here the effect of human skeletal muscle-derived stem cell (SkmSCs) was investigated by single administration in lateral ventricles in the most characterized model of spontaneous motor neuron degeneration, the Wobbler (Wr) mouse. Before evaluating clinical progression, we found that SkmSCs (previously labeled with the super paramagnetic contrast agent Endorem™ and/or with the fluorescent nuclear dye Hoeschst 33258): 1) spread along the whole ventricular system as far as the ependymal canal at the spinal cord level; 2) remained for a longer time in the Wr than in the healthy mice, and; 3) did not significantly migrate to the parenchyma. Similar to the SOD1G93A mice treated with HuCB-MNCs, the transplantation of SkmSCs: 1) significantly improved the disease progression of ALS-related Wr motorneuropathology; 2) this effect was not associated with a migration of SkmSCs close to the degenerating motor neurons. Very interestingly, we also found that cell grafting in the Wr brain ventricles significantly increased the gene expression of anti-inflammatory cytokines or chemokines activated in the inflammatory response. These results further confirm the consistency of the hypothesis of the bystander effect of stem cells in motor neurodegenerative disorders by a mechanism of action aimed at reducing the neuroinflammatory response.
APA, Harvard, Vancouver, ISO, and other styles
5

BACI, DENISA. "Human induced pluripotent stem cells for skeletal muscle diseases." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2014. http://hdl.handle.net/2108/201887.

Full text
Abstract:
Regenerative medicine along with tissue engineering represent two closely related fields leading promising advances for the treatment of numerous musculoskeletal diseases and injuries. Nevertheless, new efforts are urgently needed to design a successful therapeutic approach for muscular disorders, aiming at identifying a functional stem cell population and biomaterial scaffolds in which cells and growth factors could be embedded. In this context, recent studies have suggested that reprogramming of somatic cells by defined transcription factors into induced pluripotent stem cells (iPS), as source for generating autologous muscle progenitor cells (MPs), overcomes several limitations related to adult myoblast therapy. The prospect of an unlimited cell source combined with properties such as a more proliferative capacity in vitro, suggesting a better regenerative capacity in vivo models, indicates that iPS could be a promising candidate for stem cell therapy to regenerate skeletal muscle. iPS have been shown to retain specific features that are remnants of epigenomes and transcriptomes of the donor tissue termed ‘epigenetic memory’. Given to these findings, during the first part of the present study, we generated iPS derived from skin fibroblasts and pericytes (known to have a remarkable myogenic capacity) from the same donor to determine whether the epigenetic memory could influence iPS properties, preferentially generating cells similar of the donor somatic cell type. Until now, different approaches have been reported to generate MPs from iPS. So far, these methods present limitations such as low efficiency/reproducibility and usually involve cell sorting for enrichment or forced expression of skeletal master genes risking undesired genetic recombination. Recently, substantial interest is mounting regarding extracellular vesicles (EVs) and their involvement in many cellular processes, including myogenesis. We explored the possibility to use EVs as "physiological liposomes" enriched with myogenic factors to trigger skeletal myogenesis. To this end, during the second part of the study we developed a new transgenic-free approach to obtain transplantable MPs by means of defined factors and extracellular vesicles (EVs) secreted from differentiated mouse skeletal myoblasts. We established a novel, robust stepwise protocol by treating iPS with a WNT agonist, CHIR 99021 and myotubes-derived EVs. Thus, this method has two main advantages: (i) studying molecular mechanisms of myogenesis which is overpassed in case of genetic manipulation; (ii) muscle progenitors are not terminally differentiated, and therefore have a better repair potential following transplantation. One of the major hurdles of stem cell therapy for skeletal muscle regeneration is the massive death following transplantation. Biomaterials exhibit immune protection properties and would ensure an artificial microenvironment which permits them to interact with host cells and exert their therapeutic benefits. With the purpose of a better engraftment, we employed Poly (ethylene glycol) (PEG) -fibrinogen hydrogel (PF) as cell carrier for skeletal muscle regeneration. When transplanted in a αsarcoglycan knockout/severe combined immunodeficiency beige (α-SGKO/SCIDbg) mice, PF-embedded myogenic progenitor cells exhibited stable long-term engraftment and participated in muscle regeneration by fusing with existing muscle fibers. Importantly, no teratoma and no abnormal structure were detected in the muscles transplanted with MPs Finally, our finding and differentiation system provide an effective method that facilitates further utilization of iPS .
APA, Harvard, Vancouver, ISO, and other styles
6

Yeo, Wendy Wai Yeng. "Differentiation of skeletal muscle-derived stem cells into beta pancreatic lineage." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS091.

Full text
Abstract:
Le diabète de type 1 (DT1) est caractérisé par des niveaux élevés de glucose en raison de la destruction des cellules ß pancréatiques sécrétrices d'insuline. Cependant, les thérapies actuelles de remplacement des cellules bêta du pancréas impliquant la transplantation d'îlots pancréatiques sont techniquement difficiles et limitées par la disponibilité de don d'organes. Bien que les cellules souches embryonnaires et les cellules souches pluripotentes induites soient intensément étudiées, aucune de ces deux sources de cellules souches ne peut être utilisée directement sans le risque de développement de tumeurs. Les cellules souches dérivées du muscle squelettique (MDSC) sont une source de cellules alternative intéressante car elles sont multi-potentes et peuvent donc se différencier vers plusieurs lignages cellulaires tels que des cellules cardiaques à battement autonome “pacemaker-like” et des cellules neuronales. Par conséquent, nous avons émis l'hypothèse qu'elles pourraient se différencier en lignées de type pancréatique. Les objectifs de cette étude étaient donc d'étudier le potentiel des MDSC (1) à se différencier in vitro en cellules beta pancréatiques exprimant l'insuline et (2) à se différentier in vivo dans le pancréas et ainsi réduire l'hyperglycémie chez la souris modèle d'un diabète de type 1. Dans cette étude, les MDSC de muscle de souris ont été isolées via une série de passages des cellules les moins adhérentes en culture. Les cellules souches ainsi isolées peuvent adhérer sur une couche de cellules de types fibroblastes ou sur une matrice extra-cellulaire de type laminine pour ensuite se différentier in vitro ou bien être utilisées comme cellules souches MDSC non-adhérentes et non différentiées pour les études in vivo. In vitro, les MDSC peuvent se différencier spontanément en agrégats de cellules formant des îlots et exprimant des marqueurs de cellules bêta identifiés par immunofluorescence et analyse “PCR transcription inverse”. Ceci a été confirmé par immuno-analyse montrant l'expression des protéines nécessaires à la fonction des cellules ß, comme Nkx6.1, MafA et Glut2. Les MDSC différenciées en aggrégats cellulaires de type îlots pancréatiques montrent une sécrétion d'insuline en réponse au glucose in vitro. Cependant, dans des modèles murins de DT1 induit par la streptozotocine, l'injection intra-péritonéale des MDSC n'a pas permis de rétablir chez les souris diabétiques une normoglycémie du glucose sanguin en dépit d'un engreffement des MDSC dans les tissus pancréatiques. Ces données montrent que les MDSC peuvent constituer une source de cellules souches alternative intéressante pour le traitement du diabète
Type 1 Diabetes (T1D) is characterized by high and poorly controlled glucose levels due to the destruction of insulin-secreting pancreatic ß-cells. However, current ß-cell replacement therapies, involving pancreas and pancreatic islet transplantation are technically demanding and limited by donor availability. While embryonic stem cells and induced pluripotent stem cells are intensely investigated, neither can be used due to safety issues. Skeletal muscle-derived stem cells (MDSC) are an attractive alternative cell source as they have the potential to undergo multilineage differentiation into beating pacemaker-like cells and neuronal cells. Hence, it is hypothesised that they can differentiate into pancreatic lineages. This led to the goals of this study, which were (1) to investigate the potential of MDSC to differentiate into mature insulin expressing cells in vitro and (2) to reduce hyperglycemia in mouse model type 1 diabetes. In this study, MDSC were isolated from mouse via a serial pre-plating based on the adhesive characteristics of cultured cells, in which the cells of interest adhered to plates at a later time for in vitro differentiation, while the non-adherence undifferentiated MDSC were used for in vivo study. The MDSC were found to spontaneously differentiate into islet-like aggregates and expressed ß-cell markers in vitro, as determined by immunofluorescence and reverse transcription PCR analyses. This was further confirmed by immunoblotting analysis showing expression of proteins required for ß-cell function, such as Nkx6.1, MafA and Glut2. The differentiation of MDSC into islet-like clusters demonstrated glucose responsiveness in vitro. In streptozotocin-induced T1D mouse models, intraperitoneal injection of the undifferentiated MDSC did not restore the blood glucose levels of the diabetic mice to normoglycemia despite successful engraftment of MDSC into the pancreatic tissues. Taken together, these data show that MDSC may serve as an alternative source of stem cells for the treatment of diabetes
APA, Harvard, Vancouver, ISO, and other styles
7

Arrigoni, E. "ADIPOSE-DERIVED STEM CELLS (ASCS) FOR FUTURE CELLULAR THERAPIES IN MUSCLE-SKELETAL TISSUES REGENERATION." Doctoral thesis, Università degli Studi di Milano, 2012. http://hdl.handle.net/2434/170261.

Full text
Abstract:
Every year several patients have to deal with bone tissue loss due to trauma or diseases. Bone tissue engineering aims to restore or repair musculoskeletal disorders through the development of bio-substitutes that require the use of cells and scaffolds which should possess both adequate mechanical properties and interconnecting pores to allow cellular infiltration, graft integration and vascularization. The ideal cell for tissue engineering should possess a potential plasticity with the ability to functionally repair the damaged tissue, and it should be available in large amount. Mesenchymal stem cells (MSCs) are present in many adult tissues, and adipose tissue represents an attractive source of MSCs for researchers and clinicians of nearly all medical specialties. Adipose-derived stem cells (ASCs) are similar to MSCs isolated from bone marrow, placenta, and umbilical cord blood in morphology, immunophenotype, and differentiation ability, and they represent a promising approach of bone regeneration. Additional features of ASCs are their immunoregolatory and anti-inflammatory properties both in vivo and in vitro and their low immunogenicity. Since several years our laboratory is studying mesenchymal stem cells isolated from human and animal adipose tissues. Human ASCs (hASCs) have been characterized by their immunophenotype, their self-renewal potential, and they have been induced to differentiate towards adipogenic, osteogenic and chondrogenic lineages. The ability of hASCs to grow in the presence of several scaffolds has also been tested. hASCs adhered to the surface of tested biomaterials, filling the pores and forming a 3D web-like structure, allowing these progenitor cells to osteo-differentiate more efficiently respect to cells maintained on polystyrene. Since our interest was to regenerate muscle-skeletal defects by ASCs in pre-clinical models, we first studied ASCs isolated from adipose tissue of rat (rASCs), rabbit (rbASCs) and pig (pASCs), considered good models in the orthopaedic field. We have shown that animal ASCs behaved similarly to the human ones, and, in collaboration with the Faculty of Veterinary Medicine of University of Milan and the IRCCS Galeazzi Orthopaedic Institute of Milan, we have tested the ability of autologous ASCs to regenerate a full-thickness critical-size bone defect in rabbits. The experimental study was conducted on the tibiae of 12 New Zealand rabbits, and from 6 rabbits out of 12 we have collected adipose tissue from the interscapular region. We have isolated 2.8x105±1.9x105 rbASCs per ml of raw tissue, and after 3-4 days in culture the cells showed the typical fibroblast-like morphology. One week later, all the 6 cellular populations started to steadily proliferate, and they generated fibroblast (CFU-F) and osteoblast (CFU-O) colonies, highlighting the presence of osteogenic progenitors. Indeed, when rbASCs were induced to osteo-differentiate, either after 7 and 14 days, we have observed an up-regulation of specific osteogenic markers, such as alkaline phosphatase (ALP, +28.9%), collagen (+105.9%) and extracellular calcified matrix (+168.1%), compared to undifferentiated cells. In parallel, testing HA, the scaffold selected for the in vivo experiment, we found that rbASCs were osteoinduced; indeed the presence of HA granules increased per se the amount of collagen production (+48.2%). 1.5x106 undifferentiated rbASCs were seeded on custom-made HA disks (8 mm Ø x 4 mm ↕), and the day after, each bioconstruct was implanted into the lesion created in the tibia of each rabbit. We had an additional experimental group of defects where the same number of rbASCs were inserted in the lesion as a semi-liquid suspension; moreover, as controls, we treated 6 lesioned tibia with just the scaffolds, and we left 6 untreated lesioned bone. 8 weeks after surgery animals were sacrificed and the tibia explanted. A macroscopic analysis showed no bone resorption, no abnormal bone callous formation, no fractures, infection or inflammatory reactions, and all the bone defects were completely filled without any significant differences among the four groups. Interestingly, in the presence of scaffold seeded with rbASCs, histology and immunohistochemistry showed a new bone tissue more mature and similar to the native bone. These data have also been confirmed by biomechanical tests: indeed, the mechanical properties of the bone defect treated by rbASCs-HA were improved, suggesting that these constructs bore mechanical loading with an increase in stiffness of 19.8% and in hardness of 31.6% respect to just HA treated group, indicating that the bioconstructs made out of autologous rbASCs and hydroxyapatite might ameliorate the treatment for large bone defects. We would suggest the use of ASCs as a safe cellular therapy in future clinical applications where a large bone defect needs to be treated. These promising results on small size animals allow us to plan a new study on large size animals such as minipigs. However, before moving to the clinic, we know that there are several important aspects that need to be faced regarding safeness and the features of the candidate patients: 1. may the “quality” of hASCs be affected by the donor’s physiological or pathological conditions? 2. may the use of pharmacological treatment enhance cellular plasticity of multipotent cells? 3. may the use of immunoselected hASCs ameliorate tissue regeneration in the field of muscle-skeletal? We have addressed some of these aspects, comparing different populations of hASCs from subcutaneous adipose tissue of healthy-young-female donors (hASCs<35 y/o, n=12, mean age 31±4 years, BMI=23.5±1.6), and from middle-age ones (hASCs>45 y/o n=14, mean age 56±7 years, mean BMI=28.4±1.8). The cellular yield of hASCs derived from older donors was 2.5 fold greater than the one of hASCs<35 y/o, whereas hASCs from younger donors were more clonogenic than hASCs isolated from older ones, with an increase of 129%. No significant differences were observed looking at their immunophenotype. When hASCs were induced to differentiate into cells of the adipogenic and osteogenic lineages, the donor’s age did not affect their adipogenic differentiation, whereas the osteogenic one was significantly affected by age both in the absence and in the presence of three-dimensional scaffolds, showing a decreased ALP basal levels of about 10-fold in hASCs>45 y/o respect to hASCs<35 y/o. These results seems to indicate that ASCs from different donors could behave differently. Trying to overcome this aspect we have used different approaches, and we have studied if Reversine, a synthetic purine already known to increase plasticity of terminally differentiated cells, might improve the differentiation ability of hASCs. 72 hours treatment with 50 nM Reversine induced hASCs to differentiate into osteoblast like-cells (+45% of alkaline phosphatase activity), smooth muscle cells (+89% of α-actin expression) and skeletal muscle cells (myotubes formation) compared to control hASCs. Moreover, since it is known that CD34 and L-NGFR positive cells define a subset of high proliferative and multipotent MSCs, we have immunoselected, these progenitor cells from hASC populations. In contrast to the whole population, the immunoseparated fractions maintained their undifferentiate state and their ability to differentiate much longer during culture. We have shown that both CD34+ and L-NGFR+ hASCs can be used as alternative candidates for tissue engineering and regenerative medicine applications. In particular, due to the improved ability of L-NGFR positive cells to adipo- and chondro-differentiate, they appear an ideal tool in reconstructive plastic surgery and cartilage regeneration. From our data, and the ones from researchers in other fields, we believe that in the near future adipose-derived stem cells might be considered a safe tool in regenerative medicine. Furthermore, to improve this “cellular therapy”, we could either pre-treat ASCs with molecules, such as drugs and/or siRNAs known to affect specific differentiation pathways, or by selecting subpopulations of progenitor cells which may be used as allogenic implants. Next step will be to confirm our in vivo data in a large size animal model such as minipig, and then to test if pre-treated cells or selected population might be used in an autologous and allogenic small size animal model.
APA, Harvard, Vancouver, ISO, and other styles
8

Kocharyan, Avetik. "Derivation and Characterization of Pax7 Positive Skeletal Muscle Precursor Cells from Control and HGPS-derived induced Pluripotent Stem Cells." Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/37517.

Full text
Abstract:
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic disorder associated with premature aging in various tissues and organs of the afflicted individuals, including accelerated skeletal muscle atrophy. Classical HGPS manifests due to single-base substitution in the LAMNA gene which encodes Lamin A/C proteins. As a result of the mutation, a truncated form of Lamin (known as Progerin) is produced which undergoes persistent farnesylation during post-translational modification. Accumulation of Progerin in the nucleus has been linked to various cellular abnormalities including abnormal nuclear morphologies and altered chromatin organization, among others. However, the exact molecular mechanisms leading to skeletal muscle atrophy have not yet been elucidated. In this study, the iPSC approach was implemented in order to study the skeletal muscle phenotype of HGPS by generating and characterizing a population of Pax7 positive skeletal muscle precursor cells (SMPs). During the course of this project, we have demonstrated the need for excessive optimization of the previously developed directed differentiation protocol for successful application on induced Pluripotent Stem Cells. Furthermore, we have successfully modified the protocol to allow for a more rapid expansion of the SMPs through regular passaging of the myogenic cells starting on day 20 of differentiation. Additionally, this new method produced more uniform distribution of the myogenic cells and allowed for successful freezing/thawing of the myogenic cells. When compared to the controls, the HGPS-derived SMPs did not appear to be defective in formation, proliferation or differentiation. Abnormal nuclear morphology and DNA damage, documented in HGPS fibroblasts and vascular smooth muscle cells, were not detected the in myogenic cells. Furthermore, we were not able to detect Progerin protein accumulation in the generated myogenic cultures, offering an explanation for the absence of these phenotypes in the skeletal muscle system.
APA, Harvard, Vancouver, ISO, and other styles
9

Iyer, Dharini. "Generation of epicardium and epicardium-derived coronary-like smooth muscle cells from human pluripotent stem cells." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708997.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shahriyari, Mina [Verfasser]. "Engineered skeletal muscle from human pluripotent stem cells to model muscle disease and regeneration / Mina Shahriyari." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2021. http://d-nb.info/123640176X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Human Skeletal muscle derived stem cells"

1

Čamernik, Klemen, Janja Marc, and Janja Zupan. "Human Skeletal Muscle-Derived Mesenchymal Stem/Stromal Cell Isolation and Growth Kinetics Analysis." In Stem Cells and Aging, 119–29. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/7651_2018_201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Čamernik, Klemen, and Janja Zupan. "Complete Assessment of Multilineage Differentiation Potential of Human Skeletal Muscle-Derived Mesenchymal Stem/Stromal Cells." In Stem Cells and Aging, 131–44. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/7651_2018_200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tamaki, Tetsuro. "Skeletal Muscle-Derived Stem Cells: Role in Cellular Cardiomyoplasty." In Stem Cells and Cancer Stem Cells, Volume 2, 323–30. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2016-9_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dechesne, Claude A., Didier F. Pisani, Sébastien Goudenege, and Christian Dani. "Adipose-Derived Stem Cells and Skeletal Muscle Repair." In Stem Cells & Regenerative Medicine, 77–87. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-60761-860-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Abou-Khalil, Rana, Fabien Le Grand, and Bénédicte Chazaud. "Human and Murine Skeletal Muscle Reserve Cells." In Stem Cell Niche, 165–77. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-508-8_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dilley, Rodney, Yu Suk Choi, and Gregory Dusting. "Generating Human Cardiac Muscle Cells from Adipose-Derived Stem Cells." In Stem Cells and Cancer Stem Cells, Volume 2, 269–75. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2016-9_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Čamernik, Klemen, and Janja Zupan. "Surface Antigen-Based Identification of In Vitro Expanded Skeletal Muscle-Derived Mesenchymal Stromal/Stem Cells Using Flow Cytometry." In Stem Cells and Aging, 225–33. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/7651_2018_198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Latroche, Claire, Michèle Weiss-Gayet, and Bénédicte Chazaud. "Investigating the Vascular Niche: Three-Dimensional Co-culture of Human Skeletal Muscle Stem Cells and Endothelial Cells." In Stem Cell Niche, 121–28. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/7651_2018_182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Malatesta, Manuela, Marzia Giagnacovo, Rosanna Cardani, Giovanni Meola, and Carlo Pellicciari. "Human Myoblasts from Skeletal Muscle Biopsies: In Vitro Culture Preparations for Morphological and Cytochemical Analyses at Light and Electron Microscopy." In Stem Cells and Aging, 67–79. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-317-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Herrero-Hernandez, Pablo, Atze J. Bergsma, and W. W. M. Pim Pijnappel. "Generation of Human iPSC-Derived Myotubes to Investigate RNA-Based Therapies In Vitro." In Methods in Molecular Biology, 235–43. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2010-6_15.

Full text
Abstract:
AbstractAlternative pre-mRNAsplicing can be cell-type specific and results in the generation of different protein isoforms from a single gene. Deregulation of canonical pre-mRNAsplicing by disease-associated variants can result in genetic disorders. Antisense oligonucleotides (AONs) offer an attractive solution to modulate endogenous gene expression through alteration of pre-mRNAsplicing events. Relevant in vitro models are crucial for appropriate evaluation of splicing modifying drugs. In this chapter, we describe how to investigate the splicing modulating activity of AONs in an in vitro skeletal muscle model, applied to Pompe disease. We also provide a detailed description of methods to visualize and analyze gene expression in differentiated skeletal muscle cells for the analysis of muscledifferentiation and splicing outcome. The methodology described here is relevant to develop treatment options using AONs for other genetic muscle diseases as well, including Duchenne muscular dystrophy, myotonic dystrophy, and facioscapulohumeral muscular dystrophy.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Human Skeletal muscle derived stem cells"

1

Cassino, Theresa R., Masaho Okada, Lauren Drowley, Johnny Huard, and Philip R. LeDuc. "Mechanical Stimulation Improves Muscle-Derived Stem Cell Transplantation for Cardiac Repair." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192941.

Full text
Abstract:
Muscle-derived stem cells (MDSCs) have been successfully transplanted into both skeletal (1) and cardiac muscle (2) of dystrophin-deficient (mdx) mice, and show potential for improving cardiac and skeletal dysfunction in diseases like Duchenne muscular dystrophy (DMD). Our previous study explored the regeneration of dystrophin-expressing myocytes following MDSC transplantation into environments with distinct blood flow and chemical/mechanical stimulation attributes. After MDSC transplantation within left ventricular myocardium and gastrocnemius (GN) muscles of the same mdx mice, significantly more dystrophin-positive fibers were found within the myocardium than in the GN. We hypothesized that the differences in mechanical loading of the two environments influenced the transplantation and explored whether using MDSCs exposed to mechanical stimulation prior to transplantation could improve transplantation. Our study shows increased engraftment into the heart and GN muscle for cells pretreated with mechanical stretch for 24 hours. This increase was significant for transplantation into the heart. These studies have implications in a variety of applications including mechanotransduction, stem cell biology, and Duchenne muscular dystrophy.
APA, Harvard, Vancouver, ISO, and other styles
2

Soker, Shay, Dawn Delo, Samira Neshat, and Anthony Atala. "Amniotic Fluid Derived Stem Cells for Cardiac Muscle Therapies." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192492.

Full text
Abstract:
Many forms of pediatric and adult heart disease are accompanied by high morbidity and mortality, as the heart muscle has limited regenerative potential. Cell therapy has been proposed as a means to promote the regeneration of injured heart muscle. We have established lines of broad spectrum multipotent stem cells derived from primitive fetal cells present in human amniotic fluid (hAFS) cells (1). AFS cells offer several advantages: They are easy to isolate and grow (no feeder layers needed), are highly expansive including clonal growth and they can differentiate into all germ layers. In the current study, we demonstrate that AFS cells can differentiate into cardiac muscle cells and be used for cardiac tissue regeneration.
APA, Harvard, Vancouver, ISO, and other styles
3

Jacob, Aishwarya, Sanjay Sinha, and Chris Smith. "BS17 RNA binding protein multiple splicing (RBPMS) drives a contractile splicing network in human embryonic stem cell derived vascular smooth muscle cells." In British Cardiovascular Society Virtual Annual Conference, ‘Cardiology and the Environment’, 7–10 June 2021. BMJ Publishing Group Ltd and British Cardiovascular Society, 2021. http://dx.doi.org/10.1136/heartjnl-2021-bcs.215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Krawiec, Jeffrey T., Julie A. Phillippi, Brian J. Philips, Yi Hong, William R. Wagner, Claudette St. Croix, Simon C. Watkins, Thomas G. Gleason, J. Peter Rubin, and David A. Vorp. "Initial Assessment of Effects of Diabetes and Advanced Age on the Construction and Efficacy of Human Adipose-Derived Stem Cell-Based Tissue Engineered Blood Vessels." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14490.

Full text
Abstract:
Tissue engineering, the use of a biodegradable scaffold with incorporation of a cellular source, particularly with mesenchymal stem cells (MSCs) has shown great promise in developing blood vessel grafts 1. Vascular tissue engineering not only combats the important clinical need for bypass grafts but also has the potential to advance current approaches by limiting intimal hyperplasia, thrombosis, and extended cell culture times 2–5. However, despite significant progress in this field, many preclinical evaluations of tissue engineered blood vessels (TEBVs) utilize cells from donor bases that are either non-human or from humans that are healthy 1. It is therefore unclear if cells from compromised donor populations are able to function effectively as the cellular component of TEBVs. This is particularly important for MSC-based TEBVs as they rely heavily on cellular processes to remodel in vivo to a native-like structure, with the current hypothesis being that MSCs stimulate the migration of smooth muscle cells (SMCs) from the adjacent vascular walls 6,7. While some studies have noted that cellular dysfunction exists with the presence of certain conditions 8–11, it is critically important for the field of TEBVs to evaluate human cells, specifically those from patients at high risk for cardiovascular disease such as diabetics and those of advanced age.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Human Skeletal muscle derived stem cells"

1

Halevy, Orna, Sandra Velleman, and Shlomo Yahav. Early post-hatch thermal stress effects on broiler muscle development and performance. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7597933.bard.

Full text
Abstract:
In broilers, the immediate post-hatch handling period exposes chicks to cold or hot thermal stress, with potentially harmful consequences to product quantity and quality that could threaten poultry meat marketability as a healthy, low-fat food. This lower performance includes adverse effects on muscle growth and damage to muscle structure (e.g., less protein and more fat deposition). A leading candidate for mediating the effects of thermal stress on muscle growth and development is a unique group of skeletal muscle cells known as adult myoblasts (satellite cells). Satellite cells are multipotential stem cells that can be stimulated to follow other developmental pathways, especially adipogenesis in lieu of muscle formation. They are most active during the first week of age in broilers and have been shown to be sensitive to environmental conditions and nutritional status. The hypothesis of the present study was that immediate post-hatch thermal stress would harm broiler growth and performance. In particular, growth characteristics and gene expression of muscle progenitor cells (i.e., satellite cells) will be affected, leading to increased fat deposition, resulting in long-term changes in muscle structure and a reduction in meat yield. The in vitro studies on cultured satellite cells derived from different muscle, have demonstrated that, anaerobic pectoralis major satellite cells are more predisposed to adipogenic conversion and more sensitive during myogenic proliferation and differentiation than aerobic biceps femoris cells when challenged to both hot and cold thermal stress. These results corroborated the in vivo studies, establishing that chronic heat exposure of broiler chicks at their first two week of life leads to impaired myogenicity of the satellite cells, and increased fat deposition in the muscle. Moreover, chronic exposure of chicks to inaccurate temperature, in particular to heat vs. cold, during their early posthatch periods has long-term effects of BW, absolute muscle growth and muscle morphology and meat quality. The latter is manifested by higher lipid and collagen deposition and may lead to the white striping occurrence. The results of this study emphasize the high sensitivity of muscle progenitor cells in the early posthatch period at a time when they are highly active and therefore the importance of rearing broiler chicks under accurate ambient temperatures. From an agricultural point of view, this research clearly demonstrates the immediate and long-term adverse effects on broiler muscling and fat formation due to chronic exposure to hot stress vs. cold temperatures at early age posthatch. These findings will aid in developing management strategies to improve broiler performance in Israel and the USA. BARD Report - Project4592 Page 2 of 29
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography