Academic literature on the topic 'Human induce pluripotent stem cell'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Human induce pluripotent stem cell.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Human induce pluripotent stem cell"

1

El-Sayes, Abdullah. "Induced Pluripotent Stem Cells." Sciential - McMaster Undergraduate Science Journal, no. 1 (November 25, 2018): 16–22. http://dx.doi.org/10.15173/sciential.v1i1.1908.

Full text
Abstract:
The isolation of human embryonic stem cells in 1998 has since fueled the ideology that stem cells may eventually be used for human disease therapies as well as the regeneration of tissues and organs. The transformation of somatic cells to a pluripotent state via somatic nuclear transfer and embryonic stem cell fusion brought the scientific community nearer to understanding the molecular mechanisms that govern cellular pluripotency. In 2006, the first induced pluripotent stem (iPS) cell was reported, where a mouse somatic cell was successfully converted to a pluripotent state via transduction of four essential factors. This cellular breakthrough has allowed for robust scientific investigations of human diseases that were once extremely difficult to study. Scientists and pharmaceuticals now use iPS cells as means for disease investigations, drug development and cell or tissue transplantation. There is little doubt that scientific progress on iPS cells will change many aspects of medicine in the next couple of decades.
APA, Harvard, Vancouver, ISO, and other styles
2

Cruvinel, Estela, Isabella Ogusuku, Rosanna Cerioni, Sirlene Rodrigues, Jéssica Gonçalves, Maria Elisa Góes, Juliana Morais Alvim, et al. "Long-term single-cell passaging of human iPSC fully supports pluripotency and high-efficient trilineage differentiation capacity." SAGE Open Medicine 8 (January 2020): 205031212096645. http://dx.doi.org/10.1177/2050312120966456.

Full text
Abstract:
Objectives: To establish a straightforward single-cell passaging cultivation method that enables high-quality maintenance of human induced pluripotent stem cells without the appearance of karyotypic abnormalities or loss of pluripotency. Methods: Cells were kept in culture for over 50 passages, following a structured chronogram of passage and monitoring cell growth by population doubling time calculation and cell confluence. Standard procedures for human induced pluripotent stem cells monitoring as embryonic body formation, karyotyping and pluripotency markers expression were evaluated in order to assess the cellular state in long-term culture. Cells that underwent these tests were then subjected to differentiation into keratinocytes, cardiomyocytes and definitive endoderm to evaluate its differentiation capacity. Results: Human induced pluripotent stem cells clones maintained its pluripotent capability as well as chromosomal integrity and were able to generate derivatives from the three germ layers at high passages by embryoid body formation and high-efficient direct differentiation into keratinocytes, cardiomyocytes and definitive endoderm. Conclusions: Our findings support the routine of human induced pluripotent stem cells single-cell passaging as a reliable procedure even after long-term cultivation, providing healthy human induced pluripotent stem cells to be used in drug discovery, toxicity, and disease modeling as well as for therapeutic approaches.
APA, Harvard, Vancouver, ISO, and other styles
3

Loh, Yuin-Han, Suneet Agarwal, In-Hyun Park, Achia Urbach, Hongguang Huo, Garrett C. Heffner, Kitai Kim, Justine D. Miller, Kitwa Ng, and George Q. Daley. "Generation of induced pluripotent stem cells from human blood." Blood 113, no. 22 (May 28, 2009): 5476–79. http://dx.doi.org/10.1182/blood-2009-02-204800.

Full text
Abstract:
Human dermal fibroblasts obtained by skin biopsy can be reprogrammed directly to pluripotency by the ectopic expression of defined transcription factors. Here, we describe the derivation of induced pluripotent stem cells from CD34+ mobilized human peripheral blood cells using retroviral transduction of OCT4/SOX2/KLF4/MYC. Blood-derived human induced pluripotent stem cells are indistinguishable from human embryonic stem cells with respect to morphology, expression of surface antigens, and pluripotency-associated transcription factors, DNA methylation status at pluripotent cell-specific genes, and the capacity to differentiate in vitro and in teratomas. The ability to reprogram cells from human blood will allow the generation of patient-specific stem cells for diseases in which the disease-causing somatic mutations are restricted to cells of the hematopoietic lineage.
APA, Harvard, Vancouver, ISO, and other styles
4

Dinnyes, A., M. K. Pirity, E. Gocza, P. Osteil, N. Daniel, Zs Tancos, Zs Polgar, et al. "GENERATION OF RABBIT PLURIPOTENT STEM CELL LINES." Reproduction, Fertility and Development 24, no. 1 (2012): 286. http://dx.doi.org/10.1071/rdv24n1ab246.

Full text
Abstract:
Pluripotent stem cells have the capacity to divide indefinitely and to differentiate to all the somatic tissues. They can be genetically manipulated in vitro by knocking in and out genes, therefore they serve as an excellent tool for gene-function studies and for the generation of models for human diseases. Since 1981, when the first mouse embryonic stem cell (ESC) line was generated, several attempts have been made to generate pluripotent stem cells from other species as it would help us to understand the differences and similarities of signaling pathways involved in pluripotency and differentiation, and would reveal whether the fundamental mechanism controlling self-renewal of pluripotent cells is conserved among different species. This review gives an overlook of embryonic and induced pluripotent stem cell (iPSCs) research in the rabbit which is one of the most relevant non-rodent species for animal models. To date, several lines of putative ESCs and iPSCs have been described in the rabbit. All expressed stem cell-associated markers and exhibited longevity and pluripotency in vitro, but none have been proven to exhibit full pluripotency in vivo. Moreover, similarly to several domestic species, markers used to characterize the putative ESCs are not fully adequate because studies in domestic species have revealed that they are not specific to the pluripotent inner cell mass. Future validation of rabbit pluripotent stem cells would benefit greatly from a reliable panel of molecular markers specific to pluripotent cells of the developing rabbit embryo. The status of isolation and characterization of the putative pluripotency genes in rabbit will be discussed. Using rabbit specific pluripotency genes we might be able to reprogram somatic cells and generate induced pluripotent stem cells more efficiently thus overcome some of the challenges towards harnessing the potential of this technology. This study was financed by EU FP7 (PartnErS, PIAP-GA-2008-218205; InduHeart, PEOPLE-IRG-2008-234390; InduVir, PEOPLE-IRG-2009-245808; RabPstem, PERG07-GA-2010-268422; PluriSys, HEALTH-2007-B-223485; AniStem, PIAP-GA-2011-286264), NKTH-OTKA-EU-7KP HUMAN-MB08-C-80-205; Plurabbit, OMFB-00130-00131/2010 ANR-NKTH/09-GENM-010-01.
APA, Harvard, Vancouver, ISO, and other styles
5

Yuan, Liyun, Xiaoyan Tang, Binyan Zhang, and Guohui Ding. "Cell Pluripotency Levels Associated with Imprinted Genes in Human." Computational and Mathematical Methods in Medicine 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/471076.

Full text
Abstract:
Pluripotent stem cells are exhibited similarly in the morphology, gene expression, growth properties, and epigenetic modification with embryonic stem cells (ESCs). However, it is still controversial that the pluripotency of induced pluripotent stem cell (iPSC) is much inferior to ESC, and the differentiation capacity of iPSC and ESC can also be separated by transcriptome and epigenetics. miRNAs, which act in posttranscriptional regulation of gene expression and are involved in many basic cellular processes, may reveal the answer. In this paper, we focused on identifying the hidden relationship between miRNAs and imprinted genes in cell pluripotency. Total miRNA expression patterns in iPSC and ES cells were comprehensively analysed and linked with human imprinted genes, which show a global picture of their potential function in pluripotent level. A new CPA4-KLF14 region which locates in chromosomal homologous segments (CHSs) within mammals and include both imprinted genes and significantly expressed miRNAs was first identified. Molecular network analysis showed genes interacted with imprinted genes closely and enriched in modules such as cancer, cell death and survival, and tumor morphology. This imprinted region may provide a new look for those who are interested in cell pluripotency of hiPSCs and hESCs.
APA, Harvard, Vancouver, ISO, and other styles
6

Go, Young-Hyun, Jumee Kim, Ho-Chang Jeong, Seong-Min Kim, Yun-Jeong Kim, Soon-Jung Park, Sung-Hwan Moon, and Hyuk-Jin Cha. "Luteolin Induces Selective Cell Death of Human Pluripotent Stem Cells." Biomedicines 8, no. 11 (October 27, 2020): 453. http://dx.doi.org/10.3390/biomedicines8110453.

Full text
Abstract:
Despite recent advances in clinical stem cell therapy applications based on human pluripotent stem cells (hPSCs), potential teratoma formation due to the presence of residual undifferentiated hPSCs remains a serious risk factor that challenges widespread clinical application. To overcome this risk, a variety of approaches have been developed to eliminate the remaining undifferentiated hPSCs via selective cell death induction. Our study seeks to identify natural flavonoids that are more potent than quercetin (QC), to selectively induce hPSC death. Upon screening in-house flavonoids, luteolin (LUT) is found to be more potent than QC to eliminate hPSCs in a p53-dependent manner, but not hPSC-derived smooth muscle cells or perivascular progenitor cells. Particularly, treating human embryonic stem cell (hESC)-derived cardiomyocytes with LUT efficiently eliminates the residual hESCs and only results in marginal effects on cardiomyocyte (CM) functions, as determined by calcium influx. Considering the technical limitations of isolating CMs due to a lack of exclusive surface markers at the end of differentiation, LUT treatment is a promising approach to minimize teratoma formation risk.
APA, Harvard, Vancouver, ISO, and other styles
7

Salloum-Asfar, Salam, Rudolf Engelke, Hanaa Mousa, Neha Goswami, I. Richard Thompson, Freshteh Palangi, Kamal Kamal, et al. "Hyperosmotic Stress Induces a Specific Pattern for Stress Granule Formation in Human-Induced Pluripotent Stem Cells." Stem Cells International 2021 (October 15, 2021): 1–19. http://dx.doi.org/10.1155/2021/8274936.

Full text
Abstract:
Stress granules (SGs) are assemblies of selective messenger RNAs (mRNAs), translation factors, and RNA-binding proteins in small untranslated messenger ribonucleoprotein (mRNP) complexes in the cytoplasm. Evidence indicates that different types of cells have shown different mechanisms to respond to stress and the formation of SGs. In the present work, we investigated how human-induced pluripotent stem cells (hiPSCs/IMR90-1) overcome hyperosmotic stress compared to a cell line that does not harbor pluripotent characteristics (SH-SY5Y cell line). Gradient concentrations of NaCl showed a different pattern of SG formation between hiPSCs/IMR90-1 and the nonpluripotent cell line SH-SY5Y. Other pluripotent stem cell lines (hiPSCs/CRTD5 and hESCs/H9 (human embryonic stem cell line)) as well as nonpluripotent cell lines (BHK-21 and MCF-7) were used to confirm this phenomenon. Moreover, the formation of hyperosmotic SGs in hiPSCs/IMR90-1 was independent of eIF2α phosphorylation and was associated with low apoptosis levels. In addition, a comprehensive proteomics analysis was performed to identify proteins involved in regulating this specific pattern of hyperosmotic SG formation in hiPSCs/IMR90-1. We found possible implications of microtubule organization on the response to hyperosmotic stress in hiPSCs/IMR90-1. We have also unveiled a reduced expression of tubulin that may protect cells against hyperosmolarity stress while inhibiting SG formation without affecting stem cell self-renewal and pluripotency. Our observations may provide a possible cellular mechanism to better understand SG dynamics in pluripotent stem cells.
APA, Harvard, Vancouver, ISO, and other styles
8

Unzu, Carmen, Marc Friedli, Alexis Bosman, Marisa E. Jaconi, Barbara E. Wildhaber, and Anne-Laure Rougemont. "Human Hepatocyte-Derived Induced Pluripotent Stem Cells: MYC Expression, Similarities to Human Germ Cell Tumors, and Safety Issues." Stem Cells International 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/4370142.

Full text
Abstract:
Induced pluripotent stem cells (iPSC) are a most promising approach to the development of a hepatocyte transplantable mass sufficient to induce long-term correction of inherited liver metabolic diseases, thus avoiding liver transplantation. Their intrinsic self-renewal ability and potential to differentiate into any of the three germ layers identify iPSC as the most promising cell-based therapeutics, but also as drivers of tumor development. Teratoma development currently represents the gold standard to assess iPSC pluripotency. We analyzed the tumorigenic potential of iPSC generated from human hepatocytes (HEP-iPSC) and compared their immunohistochemical profiles to that of tumors developed from fibroblast and hematopoietic stem cell-derived iPSC. HEP-iPSC generated tumors significantly presented more malignant morphological features than reprogrammed fibroblasts or CD34+ iPSC. Moreover, the protooncogenemycshowed the strongest expression in HEP-iPSC, compared to only faint expression in the other cell subsets. Random integration of transgenes and the use of potent protooncogenes such asmycmight be a risk factor for malignant tumor development if hepatocytes are used for reprogramming. Nonviral vector delivery systems or reprogramming of cells obtained from less invasive harvesting methods would represent interesting options for future developments in stem cell-based approaches for liver metabolic diseases.
APA, Harvard, Vancouver, ISO, and other styles
9

Cantone, Irene, and Amanda G. Fisher. "Human X chromosome inactivation and reactivation: implications for cell reprogramming and disease." Philosophical Transactions of the Royal Society B: Biological Sciences 372, no. 1733 (September 25, 2017): 20160358. http://dx.doi.org/10.1098/rstb.2016.0358.

Full text
Abstract:
X-chromosome inactivation (XCI) is an exemplar of epigenetic regulation that is set up as pluripotent cells differentiate. Once established, XCI is stably propagated, but can be reversed in vivo or by pluripotent reprogramming in vitro . Although reprogramming provides a useful model for inactive X (Xi) reactivation in mouse, the relative instability and heterogeneity of human embryonic stem (ES) cells and induced pluripotent stem cells hampers comparable progress in human. Here we review studies aimed at reactivating the human Xi using different reprogramming strategies. We outline our recent results using mouse ES cells to reprogramme female human fibroblasts by cell–cell fusion. We show that pluripotent reprogramming induces widespread and rapid chromatin remodelling in which the human Xi loses XIST and H3K27m3 enrichment and selected Xi genes become reactivated, ahead of mitotic division. Using RNA sequencing to map the extent of human Xi reactivation, and chromatin-modifying drugs to potentiate reactivation, we outline how this approach could be used to better design strategies to re-express human X-linked loci. As cell fusion induces the expression of human pluripotency genes that represent both the ‘primed’ and ‘naive’ states, this approach may also offer a fresh opportunity to segregate human pluripotent states with distinct Xi expression profiles, using single-cell-based approaches. This article is part of the themed issue ‘X-chromosome inactivation: a tribute to Mary Lyon’.
APA, Harvard, Vancouver, ISO, and other styles
10

Palladino, Antonio, Isabella Mavaro, Carmela Pizzoleo, Elena De Felice, Carla Lucini, Paolo de Girolamo, Paolo A. Netti, and Chiara Attanasio. "Induced Pluripotent Stem Cells as Vasculature Forming Entities." Journal of Clinical Medicine 8, no. 11 (October 25, 2019): 1782. http://dx.doi.org/10.3390/jcm8111782.

Full text
Abstract:
Tissue engineering (TE) pursues the ambitious goal to heal damaged tissues. One of the most successful TE approaches relies on the use of scaffolds specifically designed and fabricated to promote tissue growth. During regeneration the guidance of biological events may be essential to sustain vasculature neoformation inside the engineered scaffold. In this context, one of the most effective strategies includes the incorporation of vasculature forming cells, namely endothelial cells (EC), into engineered constructs. However, the most common EC sources currently available, intended as primary cells, are affected by several limitations that make them inappropriate to personalized medicine. Human induced Pluripotent Stem Cells (hiPSC), since the time of their discovery, represent an unprecedented opportunity for regenerative medicine applications. Unfortunately, human induced Pluripotent Stem Cells-Endothelial Cells (hiPSC-ECs) still display significant safety issues. In this work, we reviewed the most effective protocols to induce pluripotency, to generate cells displaying the endothelial phenotype and to perform an efficient and safe cell selection. We also provide noteworthy examples of both in vitro and in vivo applications of hiPSC-ECs in order to highlight their ability to form functional blood vessels. In conclusion, we propose hiPSC-ECs as the preferred source of endothelial cells currently available in the field of personalized regenerative medicine.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Human induce pluripotent stem cell"

1

Matz, Peggy. "Human induced pluripotent stem cell–based modeling of hepatogenesis." Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2016. http://dx.doi.org/10.18452/17530.

Full text
Abstract:
In dieser Studie wurden nicht-integrative Vektorkonstrukte zur Reprogrammierung von zwei menschlichen Zelllinien (HFF1, HUVEC) verwendet, um integrations-freie, episomal generierte iPSC Zelllinien (E-iPSCs) zu generieren. Darüber hinaus wurden diese iPSCs zu sogenannten Leberzell-ähnlichen Zellen (HLCs) differenziert. Hierzu konnten die verschiedenen Stufen der Hepatogenese und die potentielle Reifung zu Leberzellen untersucht sowie mit fötalen und ausgereiften menschlichen Leberzellen verglichen werden. Diese Studie konnte Gen-regulierende Netzwerke aufdecken, welche eine pi-potentiale Vorläuferpopulation in den HLCs präsentieren. Zusätzlich deckte das Transkriptions-Profil auf, dass die iPSC-generierten HLCs unreif und ähnlicher den fötalen Leberzellen sind. Dennoch weisen die HLCs typische funktionelle Charakteristika von Leberzellen auf, z.B. Glykogen-Einlagerung, Aufnahme und Abgabe von Substanzen wie ICG und CDFDA, Sekretierung von Gallensäure und Harnstoff. Zusätzlich konnten typische Leber-Strukturen wie Gallenkanälchen mit Mikrovilli, Fettspeicherung und sogenannte tight junctions, Verbindungsgänge zwischen den Zellen nachgewiesen werden. Um die potentielle Reifung dieser HLCs voranzutreiben, wurde eine Langzeit-Kultivierung von HUVEC-iPSC-generierten HLCs durchgeführt. Dies sollte zugleich zeigen, ob die HLCs länger kultiviert und gleichzeitig reifen können. Ein zweiter Teil dieser Studie befasst sich mit der Generierung von endodermalen Vorläuferzellen (EPs). Es wurden HFF1-iPSCs zu EPs differenziert um die endodermale Entwicklung vor der Entstehung der Gallenwege und des Hepatoblasten zu untersuchen. Die EPs zeigen Merkmale dafür, dass sie sowohl in Hepatozyten, Cholangozyten und auch Pankreaszellen differenziert werden können. Mit Hilfe dieser multipotenten EPs könnte es möglich sein die endodermale Entwicklung des Darmes, der Lunge, Leber, Gallengänge und Gallenblase sowie der Bauchspeicheldrüse näher zu untersuchen.
This project generated and characterized integration-free, episomal-derived induced pluripotent stem cell lines (E-iPSCs) from human somatic cell lines of different origins. Two different somatic cell lines were used, the human fetal fibroblast cell line HFF1 and human umbilical vein endothelial cell line HUVEC. Both were reprogrammed into integration-free iPSCs and were comparable amongst themselves and to human embryonic stem cells, the gold standard of pluripotent stem cells. Furthermore, the iPSCs with different genetic background were differentiated to hepatocyte-like cells (HLCs). With the use of iPSC-derived hepatocytes different stages during hepatogenesis and the potential of maturation could be analyzed as well as compared to fetal liver and primary human hepatocytes (PHH). This study could uncover gene regulatory networks which presence bipotential progenitor populations in HLCs. Additionally, comparable transcriptome profile analyses revealed that the iPSC-derived HLCs are immature and more similar to fetal liver. However, the HLCs hold typical functionality characteristics of hepatocyte, e.g. glycogen storage, uptake and release of ICG and CDFDA, bile acid and urea secretion. Furthermore, typical structures of hepatocytes such as bile canaliculi with microvilli, lipid storage and tight junctions are visible. In order to analyze the maturation potential of HLCs a long-term culture experiment was performed using HUVEC-iPSC-derived HLCs which implies the possibility for long-term culture of HLCs while increasing maturation. Additionally, HFF1-derived iPSCs were differentiated to endodermal progenitors (EPs) to analyze the endodermal development before biliary tree and hepatoblast which can give rise to hepatocytes, cholangiocytes and pancreatic cells. The multipotent EPs hold a great potential to analyze the endodermal development of intestine, lung, liver, bile duct and gallbladder, as well as pancreas.
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Xike. "Integration Capacity of Human Induced Pluripotent Stem Cell-Derived Cartilage." Kyoto University, 2019. http://hdl.handle.net/2433/242390.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Jiao, and 张姣. "Regulation of cell proliferation and modulation of differentiation in human induced pluripotent stem cell-derived mesenchumal stem cells." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49617503.

Full text
Abstract:
Functional mesenchymal stem cells (MSCs) derived from human induced pluripotent stem cells (iPSCs) may represent an unlimited cell source with superior therapeutic benefits for tissue regeneration to somatic tissue, such as bone marrow (BM)-derived MSC. In the first part of this project, I investigated whether the differential expression of ion channels in iPSC-MSCs was responsible for their higher proliferation capacity than that of BM-MSCs. The expression of ion channels for K+, Na+, Ca2+ and Cl- currents was assessed by reverse transcription-polymerase chain reaction (RT-PCR). The functional role of these ion channels were then verified by patch clamp experiments to compare the electrophysiological properties of iPSC-MSCs versus BM-MSCs. I detected significant mRNA expression of ion channel genes including KCa1.1, KCa3.1, KCNH1, Kir2.1, SCN9A, CACNA1C and Clcn3 in both human iPSC-MSCs and BM-MSCs; while Kir2.2 and Kir2.3 were only observed in human iPSC-MSCs. Furthermore, I identified five types of currents (BKCa, IKDR, IKir, IKCa and ICl) in iPSC-MSCs, while only four of them (BKCa, IKDR, IKir and IKCa) were observed in BM-MSCs. The rate of cell proliferation was 1.4 fold faster in iPSC-MSCs as compared to BM-MSCs. Interestingly, the proliferation rate of human iPSCMSCs was significantly reduced when inhibiting IKDR with shRNA and hEAG1 channel blockers, 4-AP and astemizole. Though to a lesser extent, the proliferation rate of human BM-MSCs also decreased by IKDR blockage. These results demonstrated that hEAG1 channel plays a crucial role in controlling the proliferation rate of human iPSC-MSCs but to a lesser extent in BM-MSCs. Next, I examined whether forced expression of a transcription factor- myocardin in iPSC-MSC using viral vectors (adenovirus or lentivirus) can further enhance their trans-differentiation to cardiomyocytes and improve their electrophysiological properties for cardiac regeneration. My results on RT-PCR and immunofluorescent staining revealed that myocardin induced the expression of several cardiac and smooth muscle cell markers, including α-MHC, cTnT, GATA4, α-actinin, and cardiac MHC, smooth muscle cell markers MYH11, calponin, and SM α-actin, but not the more mature cardiac markers such as β-MHC and MLC2v in iPSC-MSCs. These findings indicate that forced expression of myocardin in iPSC-MSC resulted in partial trans-differentiation into cardiomyocytes phenotype. Furthermore, I also discovered that myocardin altered the electrophysiological properties of iPSC-MSCs when examined by RT-PCR and patch clamp experiments. Forced expression of myocardin in iPSC-MSC enhanced the expression of Kv4.3, SCN9A and CACNA1C, but reduced that of KCa3.1 and Kir 2.2 in iPSC-MSCs. Moreover, BKCa, IKir, ICl, Ito and INa.TTX were detected in iPSC-MSC with ectopic expression of myocardin; while only BKCa, IKir, ICl, IKDR and IKCa were noted in iPSC-MSC transfected with green florescence protein. Furthermore, as measured by multi-electrode arrays recording plate, the conduction velocity of the neonatal rat ventricular cardiomyocytes cocultured iPSC-MSC monolayer was significantly increased after ectopic expression of myocardin. Taken together, I have demonstrated that hEAG1 channel is important in the regulation of iPSC-MSC proliferation and forced expression of myocardin in iPSC-MSC resulted in their partial transdifferentiation into cardiomyocytes phenotype and improved the electrical conduction during integration with mature cardiomyocytes.
published_or_final_version
Medicine
Doctoral
Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
4

Ratanasirintrawoot, Sutheera. "Defining markers and mechanisms of human somatic cell reprogramming." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:11236.

Full text
Abstract:
Somatic cells can be reprogrammed into induced pluripotent stem (iPS) cells by over expression of the transcription factors OCT4, SOX2, KLF4 and c-MYC. Using serial live cell immunofluorescence imaging of human fibroblasts undergoing reprogramming, we traced the emergence of nascent iPS cell colonies among heterogeneous cell populations and defined the kinetics of marker expression. We identified distinct colony types that morphologically resemble embryonic stem (ES) cells yet differ in molecular phenotype and differentiation potential. By analyzing expression of pluripotency markers, methylation at the OCT4 and NANOG promoters, and differentiation into teratomas, we determined that only one colony type represented bona fide iPS cells, whereas the others represented reprogramming intermediates. Proviral silencing and expression of TRA-1-60, DNMT3B, and REX1 distinguished the fully reprogrammed state, whereas Alkaline Phosphatase, SSEA-4, GDF3, hTERT and NANOG proved insufficient as markers. Reprogramming in chemically defined medium favored formation of bona fide iPS cell colonies relative to partially reprogrammed colonies. These data highlight the need for rigorous characterization and standardization of putative iPS cells.
APA, Harvard, Vancouver, ISO, and other styles
5

Zorzan, Irene. "Dissecting the role of TGF-beta pathway in human Pluripotent Stem Cells." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3424722.

Full text
Abstract:
Human Embryonic Stem Cells (hESCs) and induced Pluripotent Stem cells (hiPSCs) are characterized by the ability to give rise all cell types found in the adult and to be expanded indefinitely in vitro. Understanding the molecular mechanisms controlling pluripotency is fundamental to differentiate human pluripotent cells into cells types useful for clinical applications. The signaling pathway of TGF-beta and FGF are known to maintain pluripotency in human cells. Only a handful of factors controlling pluripotency have previously been identified, such as the transcription factors OCT4, SOX2 and NANOG. Therefore, I used a systematic approach to identify novel components of the pluripotency network. Here I focused on the role of TGF-beta pathway, in order to find direct functional targets downstream of this pathway. Through comparative transcriptome analysis intersected with genome location data, I obtained a list of 21 putative transcription factors, out of which 8 were confirmed. Further functional assays led to the identification of four transcription factors that are able to maintain hESCs and hiPSCs undifferentiated in the absence of TGF-beta. Particularly, one of these four transcription factors has never been studied, so I focused on it. I then characterized the transcriptional program under the control of this factor in order to understand how it maintains the human pluripotency network. Interestingly, I found that this factor regulates both pluripotency and cell morphology. Finally, knockdown of this factor during the reprogramming strongly reduces the number of iPSCs obtained.
Le cellule staminali embrionali umane (hESCs) e le cellule staminali pluripotenti indotte (hiPSCs) sono caratterizzate dalla capacità di dare origine tutti i tipi cellulari presenti nell’adulto e di poterle espandere indefinitamente in vitro. Comprendere i meccanismi molecolari che controllano la pluripotenza è fondamentale per differenziare cellule pluripotenti umane in tutti i tipi cellulari utili per applicazioni cliniche. Le vie di segnalazione che mantengono la pluripotenza nelle cellule staminali pluripotenti umane sono TGF-beta e FGF. Ad oggi, sono stati identificati solo pochi fattori di trascrizione che controllano la pluripotenza, come i fattori di trascrizione OCT4, SOX2 e NANOG. Pertanto, ho utilizzato un approccio sistematico per identificare nuovi componenti del network di pluripotenza. Mi sono focalizzata sul ruolo di TGF-beta al fine di trovare target funzionali diretti che a valle di questa via di segnalazione siano in grado di mantenere lo stato di pluripotenza. Intersecando un’analisi comparativa del trascrittoma con dati relativi alla posizione nel genoma, ho ottenuto una lista di 21 fattori di trascrizione, di cui poi 8 sono stati confermati. Ulteriori test funzionali hanno portato all’identificazione di quattro fattori di trascrizione che sono in grado di mantenere hESCs e hiPSCs pluripotenti indifferenziate in assenza di TGF-beta. In particolare, uno di questi quattro fattori di trascrizione non è mai stato studiato, quindi mi sono focalizzata su di esso. Ho successivamente caratterizzato il programma trascrizionale controllato da questo fattore per capire come sia in grado di mantenere la pluripotenza. È interessante notare che questo nuovo fattore regola sia la pluripotenza che la morfologia cellulare, ossia l’identità epiteliale. Infine, il knockdown di questo fattore durante la riprogrammazione somatica riduce fortemente il numero di colonie di iPSCs ottenute.
APA, Harvard, Vancouver, ISO, and other styles
6

Yamashiro, Chika. "Generation of human oogonia from induced pluripotent stem cells in vitro." Kyoto University, 2019. http://hdl.handle.net/2433/242826.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rohani, Leili, Claire Fabian, Heidrun Holland, Yahaira Naaldijk, Ralf Dressel, Henry Löffler-Wirth, Hans Binder, A. Arnold, and Alexandra Stolzing. "Generation of human induced pluripotent stem cells using non-synthetic mRNA." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-205889.

Full text
Abstract:
Here we describe some of the crucial steps to generate induced pluripotent stemcells (iPSCs) usingmRNA transfection. Our approach uses a V. virus-derived capping enzyme instead of a cap-analog, ensuring 100% proper cap orientation for in vitro transcribedmRNA. V. virus\' 2′-O-Methyltransferase enzymecreates a cap1 structure found in higher eukaryotes and has higher translation efficiency compared to other methods. Use of the polymeric transfection reagent polyethylenimine proved superior to other transfection methods. The mRNA created via this method did not trigger an intracellular immune response via human IFN-gamma (hIFN-γ) or alpha (hIFN-α) release, thus circumventing the use of suppressors. Resulting mRNA and protein were expressed at high levels for over 48 h, thus obviating daily transfections. Using this method, we demonstrated swift activation of pluripotency associated genes in human fibroblasts. Low oxygen conditions further facilitated colony formation. Differentiation into different germ layers was confirmed via teratoma assay. Reprogramming with non-synthetic mRNA holds great promise for safe generation of iPSCs of human origin. Using the protocols described herein we hope to make this method more accessible to other groups as a fast, inexpensive, and non-viral reprogramming approach.
APA, Harvard, Vancouver, ISO, and other styles
8

Lau, Kei-ling Kelly, and 劉己綾. "Human pluripotent stem cells as a source of dendritic cells to induce immune tolerance." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/197516.

Full text
Abstract:
Dendritic Cells (DCs) are professional antigen presenting cells that play a crucial role in the induction of immune tolerance. Although DCs have been a potential target for immunotherapy, the amount of DCs in blood source is limited and ex vivo expansion has been inefficient. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide a great source in cell-based therapy because of their self-renewal ability and pluripotency. My project focuses on generating tolerogenic DCs (tDCs) from human pluripotent stem cells (i.e. hESCs and iPSCs) and their characterization. Specifically, hESCs and hiPSCs were first differentiated to hematopoietic progenitor cells (HPCs) using three different methods (i.e. bone-marrow stromal cell co-culture and two previously reported defined medium methods). The hESC/iPSC-differentiated hematopoietic progenitor cells (HPCs) were characterized by their surface phenotype using flow cytometry. Then the hESC/iPSC-differentiated immature DCs were further expanded and differentiated from the hESC/iPSCdifferentiated CD34+ HPCs with the addition of granulocyte-macrophage colony-stimulating factor (GM-CSF) and Interleukin 4 (IL-4). Tolerogenic properties were introduced by treating hESC-differentiated DCs with rapamycin. The treated DCs were characterized for their tolerogenicity by examining their expression of PDL1, PDL2, ICOS and CD40 etc., and their ability to promote regulatory T cells (Treg) differentiation. All these were compared with monocyte-derived tDCs. In summary, this study has examined the potential of using pluripotent stem cells-derived DCs as a cell source for immune tolerance induction therapy.
published_or_final_version
Anatomy
Master
Master of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
9

Jambi, Majed. "Differentiation of Human Atrial Myocytes from Endothelial Progenitor Cell-Derived Induced Pluripotent Stem Cells." Thèse, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31158.

Full text
Abstract:
Recent advances in cellular reprogramming have enabled the generation of embryoniclike cells from virtually any cell of the body. These inducible pluripotent stem cells (iPSCs) are capable of indefinite self-renewal while maintaining the ability to differentiate into all cell types. Nowhere will this technology have a greater impact than in the ability to generate disease and patient-specific cell lines. Here we explore the capacity of human iPSCs reprogrammed from peripheral blood endothelial progenitor cells lines to differentiate into atrial myocytes for the study of patient specific atrial physiology. Methods and Results: Late outgrowth endothelial progenitor cells (EPCs) cultured from clinical blood samples provided a robust cell source for genetic reprogramming. Transcriptome analysis hinted that EPCs would be comparatively more amenable to pluripotent reprogramming than the traditional dermal fibroblast. After 6 passages, EPCs were transduced with a doxycycline inducible lentivirus system encoding human transcription factors OCT4, SOX2, KLF4 and Nanog to permit differentiation after removal of doxycycline. The high endogenous expression of key pluripotency transcripts enhanced the ease of iPSC generation as demonstrated by the rapid emergence of typical iPSC colonies. Following removal of doxycycline, genetically reprogrammed EPC-iPSC colonies displayed phenotypic characteristics identical to human embryonic stem cells and expressed high levels of the pluripotent markers SSEA-4, TRA1-60 and TRA1-81. After exposure to conditions known to favor atrial identity, EPC- iPSC differentiating into sheets of beating cardiomyocytes that expressed high levels of several atrial-specific expressed genes (CACNA1H, KCNA5, and MYL4). Conclusions: EPCs provide a stable platform for genetic reprogramming into a pluripotent state using a doxycycline conditional expression system that avoids reexpression of oncogenic/pluripotent factors. Human EPC-derived iPSC can be differentiated into functional cardiomyocytes that express characteristic markers of atrial identity.
APA, Harvard, Vancouver, ISO, and other styles
10

Ruiz-Torres, Sonya Jomara. "Modeling Fanconi Anemia in Squamous Epithelium using Human Induced Pluripotent Stem Cell-Derived Organoids." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1573573103136768.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Human induce pluripotent stem cell"

1

Amit, M., and Joseph Itskovitz-Eldor. Atlas of human pluripotent stem cells: Derivation and culturing. New York: Humana Press, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sha, Jin, and SpringerLink (Online service), eds. Human Embryonic and Induced Pluripotent Stem Cells: Lineage-Specific Differentiation Protocols. Totowa, NJ: Springer Science+Business Media, LLC, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Turksen, Kursad, ed. Induced Pluripotent Stem Cells and Human Disease. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2585-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ye, Kaiming, and Sha Jin, eds. Human Embryonic and Induced Pluripotent Stem Cells. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-267-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Song, Loujin. Development of Novel Therapeutics for Timothy Syndrome Using Human Induced Pluripotent Stem Cells. [New York, N.Y.?]: [publisher not identified], 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pluripotent circulations: Putting actor-network theory to work on stem cells in the USA, prior to 2001. Göteborg: Acta Universitatis Gothoburgensis, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Itskovitz-Eldor, Joseph, and Michal Amit. Atlas of Human Pluripotent Stem Cells: Derivation and Culturing. Humana, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Itskovitz-Eldor, Joseph, and Michal Amit. Atlas of Human Pluripotent Stem Cells: Derivation and Culturing. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ye, Kaiming, and Sha Jin. Human Embryonic and Induced Pluripotent Stem Cells: Lineage-Specific Differentiation Protocols. Humana Press, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nat, Roxana, and Andreas Eigentler. Cell Culture, iPS Cells and Neurodegenerative Diseases. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190233563.003.0013.

Full text
Abstract:
Somatic reprogramming technology, which enables the conversion of adult human non-neural cells into neurons, has progressed rapidly in recent years. The derivation of patient-specific induced pluripotent stem (iPS) cells has become routine. The inherent broad differentiation potential of iPS cells makes possible the generation of diverse types of human neurons. This constitutes a remarkable step in facilitating the development of more appropriate and comprehensive preclinical human disease models, as well as for high throughput drug screenings and cell therapy. This chapter reviews recent progress in the human iPS cell culture models related to common and rare NDDs, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, spinal muscular atrophy, and degenerative ataxias. It focuses on the pathophysiological features revealed in cell cultures, and the neuronal subtypes most affected in NDDs. The chapter discusses the validity, limitation, and improvements of this system in faithfully and reproducibly recapitulating disease pathology.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Human induce pluripotent stem cell"

1

Liu, Hua, Pooja Chaudhari, Su Mi Choi, and Yoon-Young Jang. "Applications of Human Induced Pluripotent Stem Cell Derived Hepatocytes." In Stem Cells and Cancer Stem Cells,Volume 3, 213–20. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2415-0_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Medrano, Jose V., Carlos Simon, and Renee Reijo Pera. "Human Germ Cell Differentiation from Pluripotent Embryonic Stem Cells and Induced Pluripotent Stem Cells." In Methods in Molecular Biology, 563–78. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0659-8_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Laevsky, Ilana. "Karyotype and Fluorescent In Situ Hybridization Analysis of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Lines." In Atlas of Human Pluripotent Stem Cells, 115–26. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-548-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prots, Iryna, Beate Winner, and Jürgen Winkler. "Modelling human neurodegeneration using induced pluripotent stem cells." In The Matrix of Stem Cell Research, 97–110. Milton Park, Abingdon, Oxon ; New York, NY : Routledge, 2020.: Routledge, 2019. http://dx.doi.org/10.4324/9781315104386-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Amit, Michal, and Joseph Itskovitz-Eldor. "Morphology of Human Embryonic and Induced Pluripotent Stem Cell Colonies Cultured with Feeders." In Atlas of Human Pluripotent Stem Cells, 15–39. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-548-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Omole, Adekunle Ebenezer, Adegbenro Omotuyi John Fakoya, Kinglsey Chinonyerem Nnawuba, and Khawaja Husnain Haider. "Common Ethical Considerations of Human-Induced Pluripotent Stem Cell Research." In Handbook of Stem Cell Therapy, 1161–77. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2655-6_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Omole, Adekunle Ebenezer, Adegbenro Omotuyi John Fakoya, Kinglsey Chinonyerem Nnawuba, and Khawaja Husnain Haider. "Common Ethical Considerations of Human-Induced Pluripotent Stem Cell Research." In Handbook of Stem Cell Therapy, 1–17. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6016-0_21-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lebrin, Franck. "Modeling Human Genetic Disorders Using Induced Pluripotent Stem Cells." In Stem Cell Biology and Regenerative Medicine, 283–98. New York: River Publishers, 2022. http://dx.doi.org/10.1201/9781003339601-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kane, Nicole M., Chris Denning, and Andrew H. Baker. "Genetic Modification of Human Embryonic and Induced Pluripotent Stem Cells: Viral and Non-viral Approaches." In Stem Cell Engineering, 159–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11865-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dominko, Tanja. "Cellular Reprogramming: Current Technology, Perspectives, and Generation of Induced Pluripotent Cells." In Human Stem Cell Technology and Biology, 297–310. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470889909.ch25.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Human induce pluripotent stem cell"

1

Singh, Ankur, Shalu Suri, Ted T. Lee, Jamie M. Chilton, Steve L. Stice, Hang Lu, Todd C. McDevitt, and Andrés J. Garcia. "Adhesive Signature-Based, Label-Free Isolation of Human Pluripotent Stem Cells." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80044.

Full text
Abstract:
Generation of human induced pluripotent stem cells (hiPSCs) from fibroblasts and other somatic cells represents a highly promising strategy to produce auto- and allo-genic cell sources for therapeutic approaches as well as novel models of human development and disease1. Reprogramming protocols involve transduction of the Yamanaka factors Oct3/4, Sox2, Klf4, and c-Myc into the parental somatic cells, followed by culturing the transduced cells on mouse embryonic fibroblast (MEF) or human fibroblast feeder layers, and subsequent mechanical dissociation of pluripotent cell-like colonies for propagation on feeder layers1, 2. The presence of residual parental and feeder-layer cells introduces experimental variability, pathogenic contamination, and promotes immunogenicity3. Similar to human embryonic stem cells (hESCs), reprogrammed hiPSCs suffer from the unavoidable problem of spontaneous differentiation due to sub-optimal feeder cultures4, growth factors5, and the feeder-free substrate6. Spontaneously differentiated (SD)-hiPSCs display reduced pluripotency and often contaminate hiPSC cultures, resulting in overgrowth of cultures and compromising the quality of residual pluripotent stem cells5. Therefore, the ability to rapidly and efficiently isolate undifferentiated hiPSCs from the parental somatic cells, feeder-layer cells, and spontaneously differentiated cells is a crucial step that remains a bottleneck in all human pluripotent stem cell research.
APA, Harvard, Vancouver, ISO, and other styles
2

Rodriguez, Marita L., Charles E. Murry, and Nathan J. Sniadecki. "Assessment of Induced Pluripotent Stem Cell-Derived Cardiomyocyte Contractility Using Micropost Arrays." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14640.

Full text
Abstract:
Cardiovascular stem cell therapies have shown increasing promise as a potential therapeutic means for reversing the effects of a myocardial infarction [1]. Out of the currently available sources of human stem cells, human induced pluripotent stem cells (hiPSCs) are very promising in that: the number of cell lines that can be induced to the pluripotent state is extremely vast, they serve as a potential source for patient-specific cardiomyocytes, and their use is non-controversial. However, before they can be used feasibly in a clinical setting, the functional engraftment of these cells into the host tissue must be improved [2]. It is hypothesized that the structural and functional maturity of the stem-cell derived cardiomyocytes prior to implantation, may significantly affect the ability of these cells to engraft with resident heart tissue [3]. One of the most important functional characteristics of a cardiomyocyte is its ability to produce contractile forces. However, assessing the contractile properties of single iPS-CMs is a difficult task. iPS-CMs generally have relatively unorganized cytoskeletons, with stress fibers in multiple directions. This trait renders one or two-point force assays ineffectual in determining total cell forces. Furthermore, iPS-CMs don’t spread well on tissue culture surfaces, which make two-dimensional force measurements almost impossible.
APA, Harvard, Vancouver, ISO, and other styles
3

Miranda, Claudia Canelas. "Towards fully defined culture systems for human induced pluripotent stem cell expansion." In 2012 IEEE 2nd Portuguese Meeting in Bioengineering (ENBENG). IEEE, 2012. http://dx.doi.org/10.1109/enbeng.2012.6331387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kasai, Tomonari, Kenta Hoshikawa, Shuto Takejiri, Masashi Ikeda, Kazuki Kumon, Anna Sanchez Calle, Arun Vaidyanath, Akifumi Mizutani, Chen Ling, and Masaharu Seno. "Abstract LB-144: Derivation of a model of cancer stem cell from human induced pluripotent stem cells." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-lb-144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Budkova, Katerina, Tereza Novakova, Petr Vodicka, and Katerina Vodickova Kepkova. "A40 Human induced pluripotent stem cell as a model system for Huntington’s disease." In EHDN 2022 Plenary Meeting, Bologna, Italy, Abstracts. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jnnp-2022-ehdn.40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schmieder, F., R. Habibey, V. Busskamp, J. W. Czarske, and L. Büttner. "Adaptive Holographic Optogenetic Illumination for Human Neural Network Analysis." In Digital Holography and Three-Dimensional Imaging. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/dh.2022.w4a.7.

Full text
Abstract:
A two-wavelength optogenetic stimulation platform with high spatiotemporal resolution and inherent aberration correction is presented. By stimulating single neurons, we investigated the temporal evolution of connectivity in human induced pluripotent stem cell-derived neuronal networks in-vitro.
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, R., R. Petrut, and H. Zhang. "Generation of Phenotype-Stable Alveolar Epithelial Type II Cell from Human Induced Pluripotent Stem Cells." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a7418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chang, Yuan-Hsiang, Kuniya Abe, Hideo Yokota, Kazuhiro Sudo, Yukio Nakamura, Slo-Li Chu, Chih-Yung Hsu, and Ming-Dar Tsai. "Human Induced Pluripotent Stem Cell Reprogramming Prediction in Microscopy Images using LSTM based RNN." In 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2019. http://dx.doi.org/10.1109/embc.2019.8857568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chang, Yuan-Hsiang, Kuniya Abe, Hideo Yokota, Kazuhiro Sudo, Yukio Nakamura, Cheng-Yu Lin, and Ming-Dar Tsai. "Human induced pluripotent stem cell region recognition in microscopy images using Convolutional Neural Networks." In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2017. http://dx.doi.org/10.1109/embc.2017.8037747.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Folkmanaite, Milda, Xin Zhou, Francesca Margara, Manuela Zaccolo, and Blanca Rodriguez. "In Silico Human Induced Pluripotent Stem Cell Derived Cardiomyocyte Electro-Mechanical Modelling and Simulation." In 2021 Computing in Cardiology (CinC). IEEE, 2021. http://dx.doi.org/10.23919/cinc53138.2021.9662938.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Human induce pluripotent stem cell"

1

Ying, Mingyao. Modeling Aggressive Medulloblastoma Using Human-Induced Pluripotent Stem Cells. Fort Belvoir, VA: Defense Technical Information Center, July 2015. http://dx.doi.org/10.21236/ada620932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pailino, Lia, Lihua Lou, Alberto Sesena Rubfiaro, Jin He, and Arvind Agarwal. Nanomechanical Properties of Engineered Cardiomyocytes Under Electrical Stimulation. Florida International University, October 2021. http://dx.doi.org/10.25148/mmeurs.009775.

Full text
Abstract:
Engineered cardiomyocytes made of human-induced pluripotent stem cells (iPSC) present phenotypical characteristics similar to human fetal cardiomyocytes. There are different factors that are essential for engineered cardiomyocytes to be functional, one of them being that their mechanical properties must mimic those of adult cardiomyocytes. Techniques, such as electrical stimulation, have been used to improve the extracellular matrix's alignment and organization and improve the intracellular environment. Therefore, electrical stimulation could potentially be used to enhance the mechanical properties of engineered cardiac tissue. The goal of this study is to establish the effects of electrical stimulation on the elastic modulus of engineered cardiac tissue. Nanoindentation tests were performed on engineered cardiomyocyte constructs under seven days of electrical stimulation and engineered cardiomyocyte constructs without electrical stimulation. The tests were conducted using BioSoft™ In-Situ Indenter through displacement control mode with a 50 µm conospherical diamond fluid cell probe. The Hertzian fit model was used to analyze the data and obtain the elastic modulus for each construct. This study demonstrated that electrically stimulated cardiomyocytes (6.98 ± 0.04 kPa) present higher elastic modulus than cardiomyocytes without electrical stimulation (4.96 ± 0.29 kPa) at day 7 of maturation. These results confirm that electrical stimulation improves the maturation of cardiomyocytes. Through this study, an efficient nanoindentation method is demonstrated for engineered cardiomyocyte tissues, capable of capturing the nanomechanical differences between electrically stimulated and non-electrically stimulated cardiomyocytes.
APA, Harvard, Vancouver, ISO, and other styles
3

Gupta, Shweta. The Revolution of Human Organoids in Cell Biology. Natur Library, October 2020. http://dx.doi.org/10.47496/nl.blog.12.

Full text
Abstract:
Organoids are a new research tool derived from human pluripotent or adult stem cells or somatic cells in vitro to form small, self-organizing 3-dimensional structures that simulate many of the functions of native organs
APA, Harvard, Vancouver, ISO, and other styles
4

Setaluri, Vijayasaradhi. Differentiation of Neonatal Human-Induced Pluripotent Stem Cells to Prostate Epithelial Cells: A Model to Study Prostate Cancer Development. Fort Belvoir, VA: Defense Technical Information Center, June 2014. http://dx.doi.org/10.21236/ada609443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Setaluri, Vijayasaradhi. Differentiation of Neonatal Human-Induced Pluripotent Stem Cells to Prostate Epithelial Cells: A Model to Study Prostate Cancer Development. Fort Belvoir, VA: Defense Technical Information Center, June 2013. http://dx.doi.org/10.21236/ada583418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography