Academic literature on the topic 'Human cerebral organoides'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Human cerebral organoides.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Human cerebral organoides"
Logan, Sarah, Thiago Arzua, Yasheng Yan, Congshan Jiang, Xiaojie Liu, Lai-Kang Yu, Qing-Song Liu, and Xiaowen Bai. "Dynamic Characterization of Structural, Molecular, and Electrophysiological Phenotypes of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoids, and Comparison with Fetal and Adult Gene Profiles." Cells 9, no. 5 (May 23, 2020): 1301. http://dx.doi.org/10.3390/cells9051301.
Full textEstridge, R. Chris, Jennifer E. O’Neill, and Albert J. Keung. "Matrigel Tunes H9 Stem Cell-Derived Human Cerebral Organoid Development." Organoids 2, no. 4 (October 5, 2023): 165–76. http://dx.doi.org/10.3390/organoids2040013.
Full textHe, Zhisong, Ashley Maynard, Akanksha Jain, Tobias Gerber, Rebecca Petri, Hsiu-Chuan Lin, Malgorzata Santel, et al. "Lineage recording in human cerebral organoids." Nature Methods 19, no. 1 (December 30, 2021): 90–99. http://dx.doi.org/10.1038/s41592-021-01344-8.
Full textGomez-Jones, Tashaé, and Robert M. Kao. "Ethical Dimensions of Human Organoids Research." American Biology Teacher 83, no. 9 (November 2021): 575–78. http://dx.doi.org/10.1525/abt.2021.83.9.575.
Full textBao, Zhongyuan, Kaiheng Fang, Zong Miao, Chong Li, Chaojuan Yang, Qiang Yu, Chen Zhang, Zengli Miao, Yan Liu, and Jing Ji. "Human Cerebral Organoid Implantation Alleviated the Neurological Deficits of Traumatic Brain Injury in Mice." Oxidative Medicine and Cellular Longevity 2021 (November 22, 2021): 1–16. http://dx.doi.org/10.1155/2021/6338722.
Full textCamp, J. Gray, Farhath Badsha, Marta Florio, Sabina Kanton, Tobias Gerber, Michaela Wilsch-Bräuninger, Eric Lewitus, et al. "Human cerebral organoids recapitulate gene expression programs of fetal neocortex development." Proceedings of the National Academy of Sciences 112, no. 51 (December 7, 2015): 15672–77. http://dx.doi.org/10.1073/pnas.1520760112.
Full textYakoub, Abraam M., and Mark Sadek. "Development and Characterization of Human Cerebral Organoids." Cell Transplantation 27, no. 3 (March 2018): 393–406. http://dx.doi.org/10.1177/0963689717752946.
Full textBerdenis van Berlekom, Amber, Raphael Kübler, Jeske W. Hoogeboom, Daniëlle Vonk, Jacqueline A. Sluijs, R. Jeroen Pasterkamp, Jinte Middeldorp, et al. "Exposure to the Amino Acids Histidine, Lysine, and Threonine Reduces mTOR Activity and Affects Neurodevelopment in a Human Cerebral Organoid Model." Nutrients 14, no. 10 (May 23, 2022): 2175. http://dx.doi.org/10.3390/nu14102175.
Full textShnaider, T. A. "Cerebral organoids: a promising model in cellular technologies." Vavilov Journal of Genetics and Breeding 22, no. 2 (April 8, 2018): 168–78. http://dx.doi.org/10.18699/vj18.344.
Full textPeng, Xiyao, Lei Wu, Qiushi Li, Yuqing Ge, Tiegang Xu, and Jianlong Zhao. "An Easy-to-Use Arrayed Brain–Heart Chip." Biosensors 14, no. 11 (October 22, 2024): 517. http://dx.doi.org/10.3390/bios14110517.
Full textDissertations / Theses on the topic "Human cerebral organoides"
Wimmer, Ryszard. "Migration of neural stem cells during human neocortical development." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLS016.
Full textIn gyrencephalic species, and in particular in humans, the strong size increase of the neocortex is largely supported by an expanded neurogenic niche, the outer subventricular zone (oSVZ). This is largely due to the amplification of a neural stem cell population, the basal radial glial cells (bRGs, also known as oRGs). bRG cells colonize the oSVZ through an acto-myosin dependent movement called mitotic somal translocation (MST). The exact molecular mechanism of MST, whether the microtubule cytoskeleton also controls other steps of bRG cell translocation, and the contribution of these movements to bRG cell dissemination into the human developing neocortex are however unknown. Here, using live imaging of gestational week 14-21 human fetal tissue and cerebral organoids, we identify a two-step mode of translocation for bRG cells. On top MST, bRG cells undergo a microtubule-dependent movement during interphase, that we call interphasic somal translocation (IST). IST is slower than MST and controlled by the LINC complex that recruits the dynein molecular motor and its activator LIS1 to the nuclear envelope for transport. Consequently, IST is affected in LIS1 patient derived organoids. We furthermore show that MST occurs during prometaphase and is therefore a mitotic spindle translocation event. MST is controlled by the mitotic cell rounding molecular pathway, that increases the cell cortex stiffness to drive translocation. Both IST and MST are bidirectional with a net basal movement of 0,57 mm per month of human fetal gestation. We show that 85% of this movement is dependent on IST, that is both more polarized and more processive than MST. Finally, we demonstrate that IST and MST are conserved in bRG-related glioblastoma cells and occur through the same molecular pathways. Overall, our work identifies how bRG cells colonize the human fetal cortex, and how these mechanisms can be linked to pathological conditions
Kitahara, Takahiro. "Axonal Extensions along Corticospinal Tracts from Transplanted Human Cerebral Organoids." Kyoto University, 2021. http://hdl.handle.net/2433/261613.
Full textSKAROS, ADRIANOS. "CEREBRAL CORTICAL GENERIC CIRCUITS SELECTED IN ANATOMICALLY MODERN HUMAN EVOLUTION: A DISSECTION VIA ORTHOGONAL CRISPR PERTURBATIONS." Doctoral thesis, Università degli Studi di Milano, 2022. https://hdl.handle.net/2434/945932.
Full textBuchsbaum, Isabel Yasmin [Verfasser], and Silvia [Akademischer Betreuer] Cappello. "Discovering novel mechanisms of human cortical development & disease using in vivo mouse model and in vitro human-derived cerebral organoids / Isabel Yasmin Buchsbaum ; Betreuer: Silvia Cappello." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2019. http://d-nb.info/1215499760/34.
Full textKrefft, Olivia [Verfasser], and Philipp [Akademischer Betreuer] Koch. "Unraveling the pathology of different disease severities in human cerebral organoid models of LIS1-lissencephaly / Olivia Krefft ; Betreuer: Philipp Koch." Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1223028062/34.
Full textKanton, Sabina. "Dissecting human cortical development evolution and malformation using organoids and single-cell transcriptomics." 2019. https://ul.qucosa.de/id/qucosa%3A71686.
Full textBook chapters on the topic "Human cerebral organoides"
Daoutsali, Elena, and Ronald A. M. Buijsen. "Establishment of In Vitro Brain Models for AON Delivery." In Methods in Molecular Biology, 257–64. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2010-6_17.
Full textLavazza, Andrea. "Human Cerebral Organoids: Evolving Entities and Their Moral Status." In Advances in Neuroethics, 65–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97641-5_4.
Full textHester, Mark E., and Alexis B. Hood. "Generation of Cerebral Organoids Derived from Human Pluripotent Stem Cells." In Neuromethods, 123–34. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7024-7_8.
Full textGabriel, Markus. "Could a Robot Be Conscious? Some Lessons from Philosophy." In Robotics, AI, and Humanity, 57–68. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54173-6_5.
Full textDe Paola, Massimiliano. "TLR4-Mediated Neuroinflammation in Human Induced Pluripotent Stem Cells and Cerebral Organoids." In The Role of Toll-Like Receptor 4 in Infectious and Non Infectious Inflammation, 119–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56319-6_8.
Full textSuzuki, Ikuro. "Toxicological Assessment of Drugs Based on Electrical Activities of Human iPSC-Derived Cortical Neurons, Sensory Neurons and Cerebral Organoids." In Current Human Cell Research and Applications, 57–91. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4256-1_4.
Full textKanton, Sabina, Barbara Treutlein, and J. Gray Camp. "Single-cell genomic analysis of human cerebral organoids." In Methods in Cell Biology, 229–56. Elsevier, 2020. http://dx.doi.org/10.1016/bs.mcb.2020.03.013.
Full textYan, Yasheng, Thiago Arzua, Sarah Logan, and Xiaowen Bai. "Isolation and Culture of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoid Cells." In Methods in Molecular Biology. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/7651_2020_328.
Full textLachman, Herbert M. "Use of cerebral organoids to model environmental and gene x environment interactions in the developing fetus and neurodegenerative disorders." In Phenotyping of Human iPSC-derived Neurons, 173–200. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-12-822277-5.00006-7.
Full textConference papers on the topic "Human cerebral organoides"
Yildirim, Murat, Chloe Delepine, Danielle Feldman, Vincent Pham, Stephanie Chou, Jacque Pak Kan Ip, Alexi Nott, et al. "Label-free three-photon imaging of intact human cerebral organoids for tracking early events in brain development." In Optics and the Brain. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/brain.2023.bth1b.3.
Full textMunyeshyaka, Maxime, Sanjay Singh, Joy Gumin, Jing Yang, Daniel Ledbetter, and Frederick Lang. "Abstract 3907: Invasive properties of GSCs with knownIDH1status into human cerebral organoids." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-3907.
Full textZhang, Jinqiu, Jolene Ooi, Sarah R. Langley, Obed Akwasi Aning, Magdalena Renner, Chit Fang Cheok, Enrico Petretto, Juergen A. Knoblich, and Mahmoud A. Pouladi. "A48 Expanded HTT cag repeats disrupt the balance between neural progenitor expansion and differentiation in isogenic human cerebral organoids." In EHDN 2018 Plenary Meeting, Vienna, Austria, Programme and Abstracts. BMJ Publishing Group Ltd, 2018. http://dx.doi.org/10.1136/jnnp-2018-ehdn.46.
Full textYildirim, Murat, Danielle Feldman, Tianyu Wang, Dimitre G. Ouzounov, Stephanie Chou, Justin Swaney, Kwanghun Chung, Chris Xu, Peter T. C. So, and Mriganka Sur. "Third harmonic generation imaging of intact human cerebral organoids to assess key components of early neurogenesis in Rett Syndrome (Conference Presentation)." In Multiphoton Microscopy in the Biomedical Sciences XVII, edited by Ammasi Periasamy, Peter T. So, Xiaoliang S. Xie, and Karsten König. SPIE, 2017. http://dx.doi.org/10.1117/12.2256182.
Full textDutta, Anirban, John Biber, Yongho Bae, Justyna Augustyniak, Michal Liput, Ewa Stachowiak, and Michal K. Stachowiak. "Model-based investigation of elasticity and spectral exponent from atomic force microscopy and electrophysiology in normal versus Schizophrenia human cerebral organoids." In 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 2022. http://dx.doi.org/10.1109/embc48229.2022.9871376.
Full text